

170

- E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300.
- A. Goncharov, A compact set without Markov's property but with an extension operator for C^{∞} functions, Studia Math. 119 (1996), 27-35.
- A. Goncharov and M. Kocatepe, Isomorphic classification of the spaces of Whitney functions, to appear.
- I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products. 5th ed., Academic Press, 1994.
- W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Academic Press,
- N. S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966 (in Russian).
- R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992.
- B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16 (4) (1961), 59-127.
- R. Nevanlinna, Analytic Functions, Springer, 1970.
- Z. Ogrodzka, On simultaneous extension of infinitely differentiable functions, Studia Math. 28, (1967), 193-207.
- W. Pawłucki and W. Pleśniak, Markov's inequality and C[∞] functions on sets with polynomial cusps, Math. Ann. 275, (1986), 467-480.
- W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274.
- [14] R. T. Seeley, Extension of C^{∞} functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625-626.
- J. Siciak, Compact sets in \mathbb{R}^n admitting polynomial inequalities, Trudy Mat. Inst. Steklov. 203 (1994), 441-448.
- [16] M. Tidten, Fortsetzungen von C^{∞} -Funktionen, welche auf einer abgeschlossenen Menge in \mathbb{R}^n definiert sind, Manuscripta Math. 27 (1979), 291-312.
- —, Kriterien für die Existenz von Ausdehnungsoperatoren zu €(K) für kompakte Teilmengen K von \mathbb{R} , Arch. Math. (Basel) 40 (1983), 73-81.
- D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117.
- V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Sev. Kavkaz. Nauch. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).

Department of Mathematics Bilkent University 06533 Ankara, Turkey E-mail: goncha@fen.bilkent.edu.tr

and

Department of Mathematics Civil Engineering University Rostov-na-Donu, Russia

> Received January 7, 1997 (3817)Revised version May 26, 1997

STUDIA MATHEMATICA 126 (2) (1997)

On the range of convolution operators on non-quasianalytic

by

ultradifferentiable functions

J. BONET (Valencia), A. GALBIS (Valencia) and R. MEISE (Düsseldorf)

Abstract. Let $\mathcal{E}_{(\omega)}(\Omega)$ denote the non-quasianalytic class of Beurling type on an open set Ω in \mathbb{R}^n . For $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ the surjectivity of the convolution operator $T_\mu : \mathcal{E}_{(\omega)}(\Omega_1) \to$ $\mathcal{E}_{(\omega)}(\Omega_2)$ is characterized by various conditions, e.g. in terms of a convexity property of the pair (Ω_1, Ω_2) and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ . Similar conditions characterize the surjectivity of a convolution operator $S_{\mu}: \mathcal{D}'_{\{\omega\}}(\Omega_1) \to \mathcal{D}'_{\{\omega\}}(\Omega_2)$ between ultradistributions of Roumieu type whenever $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$. These results extend classical work of Hörmander on convolution operators between spaces of C^{∞} -functions and more recent one of Cioranescu and Braun, Meise and Vogt.

Since the classical work of Ehrenpreis [10] and Hörmander [14], convolution operators on various spaces of infinitely differentiable functions and distributions have been investigated by many authors (see e.g. Berenstein and Dostal [1], Chou [8], Ciorănescu [9], Franken and Meise [11], v. Grudzinski [12], Meise, Taylor and Vogt [20], Braun, Meise and Vogt [7], Meyer [23], Momm [24], [25]). The starting point for the research presented here was a recent result of Bonet and Galbis [3]. They proved that each convolution operator T_{μ} acting on the non-quasianalytic class $\mathcal{E}_{(\omega)}(\mathbb{R}^n)$ (defined in the sense of Braun, Meise and Taylor [6]) for which $T_{\mu}(\mathcal{E}_{(\omega)}(\mathbb{R}^n))$ contains some smaller class $\mathcal{E}_{(\sigma)}(\mathbb{R}^n)$ already acts surjectively on $\mathcal{E}_{(\sigma)}(\mathbb{R}^n)$.

In the present paper we show that this holds in greater generality and is an immediate corollary to the following extension of results of Hörmander [14] to the non-quasianalytic classes $\mathcal{E}_{(\omega)}(\mathbb{R}^n)$ (see 2.7–2.9).

THEOREM A. Let $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ and open sets Ω_1, Ω_2 in \mathbb{R}^n with $\Omega_1 + \operatorname{Supp} \check{\mu} \subset \Omega_2$ be given. Then the following conditions are equivalent:

- (1) For each $g \in \mathcal{E}_{(\omega)}(\Omega_1)$ there exists $f \in \mathcal{E}_{(\omega)}(\Omega_2)$ with $\mu * f|_{\Omega_1} = g$. (2) For each $g \in \mathcal{E}_{(\omega)}(\Omega_1)$ there exists $f \in \mathcal{D}'_{(\omega)}(\Omega_2)$ with $\mu * f|_{\Omega_1} = g$.

¹⁹⁹¹ Mathematics Subject Classification: 46F05, 46E10, 46F10, 35R50.

(3) (Ω_1, Ω_2) is $\check{\mu}$ -convex for (ω) and there exists $E \in \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ satisfying $\mu * E = \delta$.

Here (Ω_1, Ω_2) is μ -convex for (ω) if for each compact subset K_2 of Ω_2 there exists a compact subset K_1 of Ω_1 such that each $\varphi \in \mathcal{D}_{(\omega)}(\Omega_1)$ satisfying Supp $\mu * \varphi \subset K_2$ already satisfies Supp $\varphi \subset K_1$.

Similarly we characterize the surjectivity of convolution operators between ultradistributions of Roumieu type $\{\omega\}$ by the following theorem which extends a result of Braun, Meise and Vogt [7] for the case of $\Omega_1 = \Omega_2 = \mathbb{R}$ (see Thm. 3.5).

THEOREM B. Let $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ and open sets Ω_1, Ω_2 in \mathbb{R}^n with $\Omega_1 + \operatorname{Supp} \check{\mu} \subset \Omega_2$ be given. Then the following assertions are equivalent:

- (1) For each $g \in \mathcal{D}'_{\{\omega\}}(\Omega_1)$ there exists $f \in \mathcal{D}'_{\{\omega\}}(\Omega_2)$ with $\mu * f|_{\Omega_1} = g$.
- (2) For each $g \in \mathcal{E}_{\{\omega\}}(\Omega_1)$ there exists $f \in \mathcal{D}'_{\{\omega\}}(\Omega_2)$ with $\mu * f|_{\Omega_1} = g$.
- (3) (Ω_1, Ω_2) is $\check{\mu}$ -convex for $\{\omega\}$ and there exists $E \in \mathcal{D}'_{\{\omega\}}(\mathbb{R}^n)$ satisfying $\mu * E = \delta$.

To prove Theorem A we modify arguments that were used in Hörmander [14]. In doing this, the main difficulty is to show that (2) implies (1). To overcome it we use a result of Braun [5] which sharpens the second structure theorem of Komatsu [17]. Further we apply a result of Hansen [13] on the projective description of the topology on the space of Fourier-Laplace transforms of $\mathcal{D}_{(\omega)}(\mathbb{R}^n)$ to characterize the surjectivity of T_{μ} on $\mathcal{E}_{(\omega)}(\mathbb{R}^n)$ by a slowly decreasing condition of Ehrenpreis type, in the form due to Momm [24]. Also we apply a surjectivity criterion for continuous linear maps between Fréchet spaces (see Meise and Vogt [22], 26.1) which is better adapted to our applications than classical results of this type.

Earlier versions of Theorem B appear in the literature only in the case $\Omega_1 = \Omega_2 = \mathbb{R}$ in Braun, Meise and Vogt [7]. From this paper it also follows that Theorem A does not extend literally to the Roumieu case because there exists $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R})$ for which not all equations $\mu * f = g$, $g \in \mathcal{E}_{(\omega)}(\mathbb{R})$, admit a solution f in $\mathcal{E}_{(\omega)}(\mathbb{R})$, though there exists $E \in \mathcal{D}'_{\{\omega\}}(\mathbb{R})$ satisfying $\mu * E = \delta$. The proof of Theorem B is based on the arguments mentioned above and on reductions to the Beurling case which go back to Braun, Meise and Taylor [6].

Note that the above results apply in particular to the Gevrey classes $\Gamma^{(d)}$ and $\Gamma^{\{d\}}$ for d>1 and also to the classes $\mathcal{E}^{(M_p)}$ and $\mathcal{E}^{\{M_p\}}$ whenever the sequence $(M_p)_{p\in\mathbb{N}_0}$ satisfies the conditions (M1), (M2) and (M3) of Komatsu [17], because then $\mathcal{E}^{(M_p)}(\Omega) = \mathcal{E}_{(\omega_M)}(\Omega)$ and $\mathcal{E}^{\{M_p\}}(\Omega) = \mathcal{E}_{\{\omega_M\}}(\Omega)$ for $\omega_M(t) := \sup_{p\in\mathbb{N}_0} \log(t^p M_0/M_p)$ for t>0 and $\omega_M(0) := 0$, by Meise and Taylor [19], 3.11.

Acknowledgements. This research started during a stay of J. Bonet at the University of Düsseldorf in the winter term 1994/95 when he visited Germany under an A. v. Humboldt Research Fellowship. This support is gratefully acknowledged. J. Bonet and A. Galbis also thank DGICYT, project no. PB94-0541 for partial support.

- 1. Preliminaries. In this preliminary section we introduce the non-quasianalytic classes, the spaces of ultradistributions and most of the notation that will be used in the sequel.
- 1.1. DEFINITION. A continuous increasing function $\omega : [0, \infty[\to [0, \infty[$ is called a *weight function* if it satisfies the following conditions:
 - (a) there exists $K \geq 1$ with $\omega(2t) \leq K(1 + \omega(t))$ for all $t \geq 0$,
 - $(\beta) \int_1^\infty (\omega(t)/t^2) dt < \infty,$
 - $(\gamma) \log t = o(\omega(t)) \text{ as } t \to \infty,$
 - $(\delta) \varphi : t \mapsto \omega(e^t)$ is convex.

For a weight function ω we define $\widetilde{\omega}: \mathbb{C}^n \to [0, \infty[$ by $\widetilde{\omega}(z) = \omega(|z|)$ and again call this function ω , by abuse of notation. The function

$$\varphi^* : [0, \infty[\to \mathbb{R}, \quad \varphi^*(y) := \sup\{xy - \varphi(x) : x \ge 0\},$$

is called the Young conjugate of φ .

- 1.2. Remark. (a) Each weight function ω satisfies $\lim_{t\to\infty} \omega(t)/t = 0$ by the remark following 1.3 of [20].
- (b) For each weight function ω there exists a weight function σ satisfying $\sigma(t)=\omega(t)$ for all large t>0 and $\sigma|[0,1]\equiv 0$. This implies $\varphi_{\sigma}(y)=\varphi_{\omega}(y)$ for all large y, $\varphi_{\sigma}^*([0,\infty[)\subset [0,\infty[$ and $\varphi_{\sigma}^{**}=\varphi_{\sigma}$. From this it follows that all subsequent definitions do not change if ω is replaced by σ . In fact, they do not change if ω is replaced by a weight function κ which for some $a\geq 1$ and b>0 satisfies

(*)
$$\frac{1}{a}\kappa(t) - b \le \omega(t) \le a\kappa(t) + b, \quad t \ge 0.$$

Note that for each weight function ω there exist C>0 and a differentiable weight function κ which satisfies (*) and

$$\kappa'(t) \le C\kappa(t) + C$$
 for all $t \ge 0$.

- 1.3. DEFINITION. Let ω be a weight function.
- (a) For a set $K \subset \mathbb{R}^n$ and $\lambda > 0$ let

$$\mathcal{E}_{\omega}(K,\lambda)$$

$$:=\{f\in C^{\infty}(K): \|f\|_{K,\lambda}:=\sup_{x\in K}\sup_{\alpha\in\mathbb{N}^n_0}|f^{(\alpha)}(x)|\exp(-\lambda\varphi^*(|\alpha|/\lambda))<\infty\}.$$

(b) For an open set $\Omega \subset \mathbb{R}^n$ define

$$\begin{split} \mathcal{E}_{(\omega)}(\varOmega) &:= \underset{K \in \varOmega}{\text{proj proj }} \mathcal{E}_{\omega}(K, m) \\ &= \{ f \in C^{\infty}(\varOmega) : \|f\|_{K, m} < \infty \text{ for each } K \Subset \varOmega \text{ and each } m \in \mathbb{N} \}, \end{split}$$

and

$$\mathcal{E}_{\{\omega\}}(\Omega) := \underset{K \subseteq \Omega}{\operatorname{proj}} \xrightarrow{\operatorname{ind}} \mathcal{E}_{\omega}(K, 1/m)$$

$$= \{ f \in C^{\infty}(\Omega) : \text{ for each } K \subseteq \Omega \text{ there is } m \in \mathbb{N} \text{ with } ||f||_{K, 1/m} < \infty \}.$$

The elements of $\mathcal{E}_{(\omega)}(\Omega)$ (resp. $\mathcal{E}_{\{\omega\}}(\Omega)$) are called ω -ultradifferentiable functions of Beurling (resp. Roumieu) type on Ω . We write $\mathcal{E}_*(\Omega)$, where * can be either (ω) or $\{\omega\}$.

(c) For a compact set K in \mathbb{R}^n we let

$$\mathcal{D}_*(K) := \{ f \in \mathcal{E}_*(\mathbb{R}^n) : \operatorname{Supp}(f) \subset K \},$$

endowed with the induced topology. For an open set $\Omega \subset \mathbb{R}^n$ and a fundamental sequence $(K_j)_{j\in\mathbb{N}}$ of compact subsets of Ω we let

$$\mathcal{D}_*(\Omega) := \inf_{j \to \infty} \mathcal{D}_*(K_j).$$

For $\lambda > 0$ and $\varphi \in \mathcal{D}_*(\mathbb{R}^n)$ we let $\|\varphi\|_{\lambda} = \|\varphi\|_{\mathbb{R}^n,\lambda}$. The dual $\mathcal{D}'_*(\Omega)$ of $\mathcal{D}_*(\Omega)$ is endowed with its strong topology. The elements of $\mathcal{D}'_{(\omega)}(\Omega)$ (resp. $\mathcal{D}'_{\{\omega\}}(\Omega)$) are called ω -ultradistributions of Beurling (resp. Roumieu) type on Ω .

1.4. Remark. (a) By Meise, Taylor and Vogt [21], 3.3, for each open set Ω in \mathbb{R}^n , the semi-norms

$$\| \|_{\mathcal{K},\sigma} : f \mapsto \sup_{x \in \mathcal{K}} \sup_{\alpha \in \mathbb{N}_0^n} |f^{(\alpha)}(x)| \exp(-\varphi_\sigma^*(|\alpha|)),$$

where K is any compact set in Ω and σ is a weight function satisfying $\sigma = o(\omega)$, form a fundamental system of semi-norms for $\mathcal{E}_{\{\omega\}}(\Omega)$.

(b) For each compact set K in \mathbb{R}^n , $\mathcal{D}_{\{\omega\}}(K)$ is a (DFN)-space by Braun, Meise and Taylor [6], 3.6. A fundamental system of bounded sets is given by

$$B_m := \Big\{ \varphi \in \mathcal{D}_{\{\omega\}}(K) : |\varphi|_{K,m} := \int_{\mathbb{R}^n} |\widehat{\varphi}(\xi)| e^{\omega(\xi)/m} \, d\xi \le 1 \Big\},\,$$

where $\widehat{\varphi}(\xi) = \int \varphi(x)e^{-i\langle x,\xi\rangle} dx$, $\xi \in \mathbb{R}^n$

(c) For each compact set K in \mathbb{R}^n , $\mathcal{D}_{(\omega)}(K)$ is a nuclear Fréchet space, by Braun, Meise and Taylor [6], 3.6. A fundamental system of semi-norms

on $\mathcal{D}_{(\omega)}(K)$ is given by $(\|\cdot\|_{K,m})_{m\in\mathbb{N}}$ defined in 1.3 but also by

$$\|\varphi\|_m := \int_{\mathbb{R}^n} |\widehat{\varphi}(\xi)| e^{m\omega(\xi)} d\xi, \quad \varphi \in \mathcal{D}_{(\omega)}(K).$$

(d) Let Ω be an open subset of \mathbb{R}^n and $(K_j)_{j\in\mathbb{N}}$ a fundamental sequence of compact subsets of Ω . Then a fundamental system of semi-norms for $\mathcal{D}_{(\omega)}(\Omega)$ is obtained by $(K_0 := \emptyset)$

$$\|\varphi\|_{\mathcal{L},\mathcal{M}} := \sup_{j\in\mathbb{N}_0} L_j \sup_{x\in\Omega\setminus K_j} \sup_{\alpha\in\mathbb{N}_0^n} |\varphi^{(\alpha)}(x)| \exp(-M_j \varphi^*(|\alpha|/M_j)),$$

where $\mathcal{L} = (L_j)_{j \in \mathbb{N}_0}$ and $\mathcal{M} = (M_j)_{j \in \mathbb{N}_0}$ are increasing sequences in $]0, \infty[$ resp. N. This can be shown similarly to Hörmander [16], 15.4.1.

1.5. Example. The following functions $\omega : [0, \infty[\to [0, \infty[$ are examples of weight functions:

(1)
$$\omega(t) = t^{\alpha}, 0 < \alpha < 1,$$

(2)
$$\omega(t) = (\log(1+t))^{\beta}, \beta > 1,$$

(3)
$$\omega(t) = t(\log(e+t))^{-\beta}, \ \beta > 1$$

Note that for $\omega(t) = t^{\alpha}$, the classes $\mathcal{E}_{(\omega)}$ resp. $\mathcal{E}_{\{\omega\}}$ coincide with the Gevrey classes $\Gamma^{(d)}$ resp. $\Gamma^{\{d\}}$ for $d := 1/\alpha$.

1.6. Convolution operators. Let $\mu \in \mathcal{E}'_*(\mathbb{R}^n)$, $\mu \neq 0$, and open sets Ω_1, Ω_2 in \mathbb{R}^n be given. If $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$ then we define (compare Braun, Meise and Taylor [6], Sect. 6):

(a)
$$S^t_{\mu}: \mathcal{D}_*(\Omega_1) \to \mathcal{D}_*(\Omega_2), \quad S^t_{\mu}(\varphi) := \mu * \varphi |_{\Omega_2},$$

where $\mu * \varphi : x \mapsto \mu(\varphi(x - \cdot)), x \in \mathbb{R}^n$. Since S^t_{μ} is continuous and linear, so is its adjoint operator

$$\begin{split} S_{\mu} &:= (S_{\mu}^t)^t : \mathcal{D}'_{\star}(\Omega_2) \to \mathcal{D}'_{\star}(\Omega_1). \\ (\mathrm{b}) & T_{\mu}^t : \mathcal{E}'_{\star}(\Omega_1) \to \mathcal{E}'_{\star}(\Omega_2), \quad T_{\mu}^t(\nu) := \mu * \nu |_{\Omega_2}, \end{split}$$

where $\mu * \nu(\varphi) := (\mu * (\check{\nu} * \varphi))(0)$ and where $\check{\nu}(\psi) := \nu(\check{\psi})$ and $\check{\psi}(x) := \psi(-x), \ x \in \mathbb{R}^n$. Again T^t_{μ} is continuous and linear, so that its adjoint

$$T_{\mu}:=(T_{\mu}^t)^t:\mathcal{E}_*(\varOmega_2)\to\mathcal{E}_*(\varOmega_1)$$

is continuous and linear.

Note that $S_{\mu}(\nu) = \check{\mu} * \nu$ and $T_{\mu}(f) = \check{\mu} * f$, so that it is reasonable to call the operators S_{μ} and T_{μ} convolution operators. Note further that $T_{\mu}^{t}|_{\mathcal{D}_{*}(\Omega_{1})} = S_{\mu}^{t}$ and $S_{\mu}|_{\mathcal{E}_{*}(\Omega_{2})} = T_{\mu}$ and that T_{μ}^{t} and S_{μ}^{t} are injective.

1.7. Spaces of entire functions. Let $A(\mathbb{C}^n)$ denote the space of all entire functions on \mathbb{C}^n , endowed with the Fréchet space topology of uniform

. . 1

convergence on all compact subsets of \mathbb{C}^n . For an upper semi-continuous function $v:\mathbb{C}^n\to]0,\infty[$ we define

$$A(v, \mathbb{C}^n) := \{ f \in A(\mathbb{C}^n) : ||f||_v := \sup_{z \in \mathbb{C}^n} |f(z)|v(z) < \infty \}$$

and note that $A(v, \mathbb{C}^n)$ is a Banach space.

1.8. Fourier-Laplace transform. For $\mu \in \mathcal{E}'_*(\mathbb{R}^n)$ its Fourier-Laplace transform $\widehat{\mu} \in A(\mathbb{C}^n)$ is defined as

$$\widehat{\mu}(z) := \mu(\exp(-i\langle \cdot, z \rangle)), \quad z \in \mathbb{C}^n.$$

To characterize its growth behaviour, fix a weight function ω and define the functions $w_j, w_{j,k}, v_j$ and $v_{j,k}$ by

$$w_j(z) := \exp(-j(|\operatorname{Im} z| + \omega(z))), \qquad w_{j,k}(z) := \exp\left(-j|\operatorname{Im} z| - \frac{1}{k}\omega(z)\right),$$
 $v_j(z) := \exp\left(-j|\operatorname{Im} z| + \frac{1}{j}\omega(z)\right)r, \qquad v_{j,k}(z) := \exp(-j|\operatorname{Im} z| + k\omega(z)).$

Then the Fourier-Laplace transform $\mathcal{F}: \mu \mapsto \widehat{\mu}$ is an isomorphism between the following spaces (see Braun, Meise and Taylor [6], 3.5 and 7.4):

$$\mathcal{E}'_{(\omega)}(\mathbb{R}^n) \to \inf_{j \to \infty} A(w_j, \mathbb{C}^n), \qquad \qquad \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n) \to \inf_{j \to \infty} \operatorname{Proj}_{k} A(w_{j,k}, \mathbb{C}^n),$$

$$\mathcal{D}_{(\omega)}(\mathbb{R}^n) \to \inf_{j \to \infty} \operatorname{Proj}_{k \to \infty} A(v_{j,k}, \mathbb{C}^n), \qquad \mathcal{D}_{\{\omega\}}(\mathbb{R}^n) \to \inf_{j \to \infty} A(v_{j}, \mathbb{C}^n).$$

Moreover, for $\mu, \nu \in \mathcal{E}'_*(\mathbb{R}^n)$ and $\varphi \in \mathcal{D}_*(\mathbb{R}^n)$ we have

$$\mathcal{F}(S^t_{\mu}(\nu)) = \mathcal{F}(\mu)\mathcal{F}(\nu) \quad \text{and} \quad \mathcal{F}(T^t_{\mu}(\varphi)) = \mathcal{F}(\mu)\mathcal{F}(\varphi),$$

hence $\mathcal{F} \circ S^t_{\mu} \circ \mathcal{F}^{-1}$ (resp. $\mathcal{F} \circ T^t_{\mu} \circ \mathcal{F}^{-1}$) is the operator of multiplication by $\mathcal{F}(\mu)$.

Note that by Bierstedt, Meise and Summers [2], 1.6, the inductive limits $\operatorname{ind}_{j\to} A(w_j, \mathbb{C}^n)$ and $\operatorname{ind}_{j\to} A(v_j, \mathbb{C}^n)$ can be represented as intersections of weighted Banach spaces. To indicate that this can be done also in the more complicated case $\operatorname{ind}_{j\to} \operatorname{proj}_{\leftarrow k} A(v_j, k, \mathbb{C}^n)$, let

$$\overline{V}:=\{v:\mathbb{C}^n \to [0,\infty[:v \text{ is upper semi-continuous and for each } j\in\mathbb{N} \text{ there are } \alpha_j>0 \text{ and } k=k(j)\in\mathbb{N} \text{ with } v\leq \alpha_j v_{j,k}\}$$

and let

$$A\overline{V}(\mathbb{C}^n) := \{ f \in A(\mathbb{C}^n) : ||f||_v < \infty \text{ for each } v \in \overline{V} \},$$

endowed with the locally convex topology of the system $(\| \|_v)_{v \in \tilde{V}}$ of seminorms. Then one can use 1.2(b) and 1.4(d) to modify the proof of Hörmander [16], 15.4.2 (see also Berenstein and Dostal [1], II, §1, and Hansen [13], 4.6), to show that

$$\inf_{j \to \infty} \operatorname{proj}_{k} A(v_{j,k}, \mathbb{C}^n) = A \overline{V}(\mathbb{C}^n)$$

as locally convex spaces.

1.9. Ultradifferential operators. Let ω be a weight function. If $G \in A(\mathbb{C}^n)$ satisfies $\log |G| = O(\omega)$ (resp. $o(\omega)$) then

$$T_G: arphi \mapsto \sum_{lpha \in \mathbb{N}^n} (-i)^{|lpha|} \; rac{G^{(lpha)}(0)}{lpha!} arphi^{(lpha)}(0)$$

defines an element T_G of $\mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ (resp. $\mathcal{D}'_{\{\omega\}}(\mathbb{R}^n)$). The operator

$$G(D): \mathcal{D}'_*(\mathbb{R}^n) \to \mathcal{D}'_*(\mathbb{R}^n), \quad G(D)\mu := T_G * \mu,$$

is then called an ultradifferential operator of class *. From 1.4(b) and (c) it follows that $G(D): \mathcal{D}_*(K) \to \mathcal{D}_*(K)$ is a continuous linear map for each $K \subset \mathbb{R}^n$ compact. Note that $\operatorname{Supp} G(D)T \subset \operatorname{Supp} T$ for each $T \in \mathcal{D}'_*(\mathbb{R}^n)$.

For later application we note the following extension of Komatsu [17], 10.2: For each $K \subset \mathbb{R}^n$ compact and each $j \in \mathbb{N}$ there exists $G \in A(\mathbb{C}^n)$ with $\log |G| = O(\omega)$ such that

(*)
$$\|\varphi\|_{K,j} \le \sup_{\xi \in \mathbb{R}^n} |G(\xi)\widehat{\varphi}(\xi)|, \quad \varphi \in \mathcal{D}_{(\omega)}(K).$$

To prove this, fix $\lambda > 0$ and use Braun [5], Lemma 6 and the proof of Lemma 7 (for an alternative proof see Langenbruch [18], 1.3 and 1.4), to find $G \in A(\mathbb{C}^n)$ satisfying $\log |G| = O(\omega)$ such that $\log |G(\xi)| \geq (\lambda + 1)\omega(\xi)$ for all $\xi \in \mathbb{R}^n$. Then for each $\varphi \in \mathcal{D}_{(\omega)}(\mathbb{R}^n)$ we have

$$\int |\widehat{\varphi}(\xi)| e^{\lambda \omega(\xi)} d\xi \le \int |\widehat{\varphi}(\xi)G(\xi)| e^{-\omega(\xi)} d\xi \le \left(\int e^{-\omega(\xi)} d\xi\right) \sup_{\xi \in \mathbb{R}^n} |G(\xi)\widehat{\varphi}(\xi)|.$$

Since ω satisfies 1.1(γ) this implies (*) in view of 1.4(c).

2. The Beurling case. In this section we characterize those ultradistributions $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ for which the convolution operator $T_{\mu} : \mathcal{E}_{(\omega)}(\Omega_2) \to \mathcal{E}_{(\omega)}(\Omega_1)$ is surjective where Ω_1 and Ω_2 are open subsets of \mathbb{R}^n satisfying $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$. In doing this we extend some of the results of Hörmander [14]. Throughout this section ω will always denote a fixed weight function.

To formulate our first result we need the following definition.

2.1. DEFINITION. For $\mu \in \mathcal{E}'_*(\mathbb{R}^n)$ and open sets Ω_1, Ω_2 in \mathbb{R}^n satisfying $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$, the pair (Ω_1, Ω_2) is called μ -convex for * if the following holds: For each compact set K_2 in Ω_2 there exists a compact set K_1 in Ω_1 such that the map $S^t_{\mu}: \mathcal{D}_*(\Omega_1) \to \mathcal{D}_*(\Omega_2)$ satisfies $(S^t_{\mu})^{-1}(\mathcal{D}_*(K_2)) \subset \mathcal{D}_*(K_1)$.

Remark. (a) A standard smoothing argument shows that (Ω_1, Ω_2) is μ -convex for * if and only if the following holds: For each compact set K_2 in Ω_2 there exists a compact set K_1 in Ω_1 such that each $\nu \in \mathcal{E}'_*(\Omega_1)$ which satisfies Supp $T^t_\mu \nu \subset K_2$ already satisfies Supp $\nu \subset K_1$.

- (b) If $\mu \in \mathcal{E}'_*(\mathbb{R}^n)$, $\mu \neq 0$, is given and Ω_2 is a convex open set in \mathbb{R}^n which contains Supp μ then the largest open set Ω_1 satisfying $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$ is convex, satisfies even $\Omega_1 + \operatorname{conv}(\operatorname{Supp} \mu) \subset \Omega_2$ and the pair (Ω_1, Ω_2) is μ -convex for *. This follows by a standard smoothing argument from the theorem of supports (see Hörmander [16], Thm. 4.3.3).
- **2.2.** PROPOSITION. Let $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ and open sets Ω_1, Ω_2 in \mathbb{R}^n with $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$ be given. Then the following assertions are equivalent:
- (1) $\mathcal{E}_{(\omega)}(\Omega_1) \subset S_{\mu}\mathcal{D}'_{(\omega)}(\Omega_2).$
- (2) $(S_{\mu}^t)^{-1}: S_{\mu}^t(\mathcal{D}_{(\omega)}(\Omega_1)) \to \mathcal{D}_{(\omega)}(\Omega_1)$ is sequentially continuous.
- (3) (Ω_1, Ω_2) is μ -convex for (ω) and the following condition is satisfied: For each compact set K_1 in Ω_1 and each $j \in \mathbb{N}$ there exist $l \in \mathbb{N}$ and C > 0 such that $\|\varphi\|_{K_1,j} \leq C\|S^t_{\mu}\varphi\|_l$ for each $\varphi \in \mathcal{D}_{(\omega)}(K_1)$.
- (4) $T_{\mu}: \mathcal{E}_{(\omega)}(\Omega_2) \to \mathcal{E}_{(\omega)}(\Omega_1)$ is surjective.

Proof. (1) \Rightarrow (2). To prove this we claim that (1) implies

(5) For each K_2 compact in Ω_2 there exists K_1 compact in Ω_1 and $m, l \in \mathbb{N}_0$ and C > 0 such that for each $f \in \mathcal{E}_{(\omega)}(\Omega_1)$ and $\varphi \in \mathcal{D}_{(\omega)}(\Omega_1)$ satisfying $S^t_{\mu}\varphi \in \mathcal{D}_{(\omega)}(K_2)$ we have

$$\left| \int f \varphi \, d\lambda \right| \le C \|f\|_{K_1, m} \|S^t_{\mu} \varphi\|_{K_2, l}.$$

To derive (5) from (1) fix K_2 as above, let

$$H := \{ v \in \mathcal{D}_{(\omega)}(K_2) : v = S_n^t \psi \text{ for some } \psi \in \mathcal{D}_{(\omega)}(\Omega_1) \}$$

and define the bilinear form

$$B: \mathcal{E}_{(\omega)}(\Omega_1) \times H \to \mathbb{C}, \quad B(f,v) := \int f(S^t_\mu)^{-1} v \, d\lambda.$$

Obviously, $B(\cdot, v)$ is continuous on $\mathcal{E}_{(\omega)}(\Omega_1)$ for each $v \in H$. If $f \in \mathcal{E}_{(\omega)}(\Omega_1)$ is fixed, then the hypothesis implies the existence of some $u \in \mathcal{D}'_{(\omega)}(\Omega_2)$ satisfying $f = S_u u$. Hence, for each $v \in H$,

$$B(f,v) = \int f(S_{\mu}^t)^{-1} v \, d\lambda = S_{\mu}(u)[(S_{\mu}^t)^{-1} v] = u[S_{\mu}(S_{\mu}^t)^{-1} v] = u(v).$$

Thus, $B(f,\cdot)$ is continuous on H. Since B is a separately continuous bilinear form on the product of a Fréchet space with a metrizable locally convex space, B is continuous, which implies (5).

To derive (2) from (5), let $(\varphi_k)_{k\in\mathbb{N}}$ be a sequence in $\mathcal{D}_{(\omega)}(\Omega_1)$ for which $(S^t_{\mu}\varphi_k)_{k\in\mathbb{N}}$ is a null-sequence in $\mathcal{D}_{(\omega)}(\Omega_2)$. Since $\mathcal{D}_{(\omega)}(\Omega_2)$ is a strict (LF)-space, there exists a compact K_2 in Ω_2 so that $(S^t_{\mu}\varphi_k)_{k\in\mathbb{N}}$ is a null-sequence in $\mathcal{D}_{(\omega)}(K_2)$. Applying (5) for this K_2 , we get a compact set K_1 in Ω_1 such that $\varphi_k \in \mathcal{D}_{(\omega)}(K_1)$ for each k. To show that φ_k tends to zero weakly in $\mathcal{D}_{(\omega)}(K_1)$ fix $\nu \in \mathcal{E}'_{(\omega)}(\Omega_1)$ and $m \in \mathbb{N}_0$ according to (5). By Braun [5], Thm. 8, there exist an ultradifferential operator G(D) of class (ω) and $g \in \mathbb{N}_0$

 $\mathcal{E}_{\omega}(\mathbb{R}^n,m)$ so that $\nu=G(D)g$. Next note that by an easy regularization argument condition (5) holds even for all $f\in\operatorname{proj}_{K\otimes\Omega_1}\mathcal{E}_{\omega}(K,m)$. This implies

$$|\nu(\varphi_k)| = |(G(D)g)(\varphi_k)| = \left| \int g(G(-D)\varphi_k) \, d\lambda \right|$$

$$\leq C ||g||_{K_1,m} ||S_{\mu}^t(G(-D)\varphi_k)||_{K_2,l} \leq C' ||g||_{K_1,m} ||S_{\mu}^t \varphi_k||_{K_2,\tilde{l}}$$

since G(-D) is a continuous linear operator on $\mathcal{D}_{(\omega)}(K_2)$. Hence $(\nu(\varphi_k))_k$ is a null-sequence. Now the fact that $\mathcal{D}_{(\omega)}(K_1)$ is a Fréchet-Montel space implies that the weak null-sequence $(\varphi_k)_{k\in\mathbb{N}}$ is indeed a null-sequence. Hence $(S_u^k)^{-1}$ is sequentially continuous.

(2) \Rightarrow (3). If we assume that (Ω_1, Ω_2) is not μ -convex for (ω) then there exist a compact set K_2 in Ω_2 and a sequence $(\varphi_k)_{k\in\mathbb{N}}$ in $\mathcal{D}_{(\omega)}(\Omega_1)$ so that $\bigcup_{k\in\mathbb{N}} \operatorname{Supp} \varphi_k$ is not relatively compact in Ω_1 , while $S_{\mu}^t \varphi_k \in \mathcal{D}_{(\omega)}(K_2)$ for all $k\in\mathbb{N}$. Since $\mathcal{D}_{(\omega)}(K_2)$ is a Fréchet space we can find a sequence $(\lambda_k)_{k\in\mathbb{N}}$ in]0,1] so that $(S_{\mu}^t(\lambda_k\varphi_k))_{k\in\mathbb{N}}$ is a null-sequence in $\mathcal{D}_{(\omega)}(K_2)$. Since $(S_{\mu}^t)^{-1}$ is sequentially continuous by hypothesis, this implies that $(\lambda_k\varphi_k)_{k\in\mathbb{N}}$ is a null-sequence in $\mathcal{D}_{(\omega)}(\Omega_1)$. Hence there exists a compact set K_1 in Ω_1 so that $\operatorname{Supp} \varphi_k \subset K_1$ for all $k\in\mathbb{N}$, contradicting our choice of the sequence $(\varphi_k)_{k\in\mathbb{N}}$. Consequently, (Ω_1,Ω_2) is μ -convex for (ω) .

To show that the second condition also holds, fix a compact set K_1 in Ω_1 . Then $K_2 := K_1 + \operatorname{Supp} \mu$ is compact in Ω_2 , by hypothesis. Hence the μ -convexity of (Ω_1, Ω_2) implies the existence of a compact set $Q \supset K_1$ so that

$$(S^t_{\mu})^{-1}(\mathcal{D}_{(\omega)}(K_2)\cap S^t_{\mu}(\mathcal{D}_{\omega}(\Omega_1)))\subset \mathcal{D}_{(\omega)}(Q).$$

Therefore, the restriction of $(S^t_{\mu})^{-1}$ to $\mathcal{D}_{(\omega)}(K_2) \cap S^t_{\mu}(\mathcal{D}_{\omega}(\Omega_1))$ maps this space into $\mathcal{D}_{(\omega)}(Q) \subset \mathcal{D}_{(\omega)}(\Omega_1)$. By (2) this map is sequentially continuous for the topologies induced by $\mathcal{D}_{(\omega)}(\Omega_2)$ resp. $\mathcal{D}_{(\omega)}(\Omega_1)$ and therefore continuous. Obviously, this implies (3).

(3)⇒(4). By the surjectivity criterion in Meise and Vogt [22], 26.1, condition (4) follows from

(6) If $T^t_{\mu}(B)$ is bounded in $\mathcal{E}'_{(\omega)}(\Omega_2)$ for some $B \subset \mathcal{E}'_{(\omega)}(\Omega_1)$ then B is bounded in $\mathcal{E}'_{(\omega)}(\Omega_1)$.

To prove that (3) implies (6), fix any set B in $\mathcal{E}'_{(\omega)}(\Omega_1)$ for which $T^t_{\mu}(B)$ is bounded. Since $\mathcal{E}_{(\omega)}(\Omega_2)$ is a Fréchet space, there exist a compact set K_2 in Ω_2 , $m \in \mathbb{N}$ and C > 0 such that

(7)
$$|T_{\mu}^t \nu(f)| \leq C ||f||_{K_2, m}$$
 for all $f \in \mathcal{E}_{(\omega)}(\Omega_2)$ and $\nu \in B$.

Obviously (7) implies $\operatorname{Supp}(T^t_{\mu}\nu) \subset K_2$ for each $\nu \in B$. By the remark after 2.1, the μ -convexity of (Ω_1, Ω_2) implies the existence of a compact set K_1 in Ω_1 so that $\operatorname{Supp}\nu \subset K_1$ for all $\nu \in B$. Note that B is bounded in

 $\mathcal{E}'_{(\omega)}(\Omega_1)$ if for each sequence $(\sigma_j)_{j\in\mathbb{N}}$ in B and each null-sequence $(\alpha_j)_{j\in\mathbb{N}}$ the sequence $(\nu_j)_{j\in\mathbb{N}}$, $\nu_j:=\alpha_j\sigma_j$, is bounded in $\mathcal{E}'_{(\omega)}(\Omega_1)$. To prove this fix $(\sigma_j)_{j\in\mathbb{N}}$ and $(\alpha_j)_{j\in\mathbb{N}}$. Then (7) implies that $(T^t_\mu\nu_j)_{j\in\mathbb{N}}$ is a null-sequence in $\mathcal{E}'_{(\omega)}(\Omega_2)$. Next choose $\varepsilon>0$ so that $K_1+\overline{B_\varepsilon(0)}\subset\Omega_1$ and $K_2+\overline{B_\varepsilon(0)}\subset\Omega_2$ and note that for each $\chi\in\mathcal{D}_{(\omega)}(B_\varepsilon(0))$ we have

(8)
$$T^{t}_{\mu}(\nu_{j}) * \chi = (\mu * \nu_{j}) * \chi = \mu * (\nu_{j} * \chi) = S^{t}_{\mu}(\nu_{j} * \chi).$$

Since $(T^t_{\mu}(\nu_j))_{j\in\mathbb{N}}$ converges to zero in $\mathcal{E}'_{(\omega)}(\mathbb{R}^n)$, the left hand side in (8) converges to zero in $\mathcal{D}_{(\omega)}(\mathbb{R}^n)$ and hence in $\mathcal{D}_{(\omega)}(K_2 + \overline{B_{\varepsilon}(0)})$. Using (8), it follows from (3) that $(\nu_j * \chi)_{j\in\mathbb{N}}$ converges to zero in $\mathcal{D}_{(\omega)}(\mathbb{R}^n)$. Next fix $f \in \mathcal{E}_{(\omega)}(\Omega_1)$. Then there exists $\varphi \in \mathcal{D}_{(\omega)}(\Omega_1)$ so that $\nu_j(f) = \nu_j(\varphi)$ for all $j \in \mathbb{N}$. Since Supp φ is compact there exist $x_1, \ldots, x_p \in \Omega_1$ and $\varphi_k \in \mathcal{D}_{(\omega)}(B_{\varepsilon}(x_k))$, $1 \le k \le p$, so that $\varphi = \sum_{k=1}^p \varphi_k$. Then let $\chi_k := \varphi_k(x_k - \cdot)$. Since Supp $\chi_k \subset B_{\varepsilon}(0)$ we get from the above

$$\nu_j(f) = \nu_j(\varphi) = \nu_j\left(\sum_{k=1}^p \varphi_k\right) = \sum_{k=1}^p \nu_j * \chi_k(x_k) \to 0.$$

Hence $(\nu_j)_{j\in\mathbb{N}}$ converges to zero pointwise. Since $\mathcal{E}_{(\omega)}(\Omega_1)$ is barrelled, $(\nu_j)_{j\in\mathbb{N}}$ is bounded in $\mathcal{E}'_{(\omega)}(\Omega_1)$. Hence (6) holds.

 $(4)\Rightarrow(1)$. This holds trivially.

To derive further conditions that are equivalent to 2.2(2), we will use the following definition which goes back to Ehrenpreis [10]. The present formulation is due to Momm [24].

2.3. DEFINITION. An ultradistribution $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ is called *slowly decreasing for* (ω) if there exists C > 0 such that for each $x \in \mathbb{R}^n$ with $|x| \geq C$ there is $\xi \in \mathbb{C}^n$ with

$$|x - \xi| \le C\omega(x)$$
 and $|\widehat{\mu}(\xi)| \ge \exp(-C|\operatorname{Im} \xi| - C\omega(\xi)).$

From Bonet, Galbis and Momm [4] we recall:

2.4. LEMMA. The ultradistribution $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ is slowly decreasing for (ω) if and only if there exists $k \in \mathbb{N}$ such that for each $j \in \mathbb{N}$ there exist $m \in \mathbb{N}$ and C > 0, R > 0 such that for each $z \in \mathbb{C}^n$, $|z| \geq R$, there exists $w \in \mathbb{C}^n$ satisfying

$$|w-z| \le k\omega(z) + \frac{1}{j}|\mathrm{Im}\,z| \quad and \quad |\widehat{\mu}(w)| \ge C\exp(-m(|\mathrm{Im}\,z| + \omega(z))).$$

Similarly to Ehrenpreis [10], Thm. 2.2, we prove:

2.5. PROPOSITION. If $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ is slowly decreasing for (ω) then $S_{\mu} : \mathcal{D}'_{(\omega)}(\mathbb{R}^n) \to \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ is surjective. In particular, there exists $E \in \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ satisfying $S_{\mu}(E) = \delta$.

Proof. It suffices to show that

(1)
$$(S_{\mu}^t)^{-1}: S_{\mu}^t(\mathcal{D}_{(\omega)}(\mathbb{R}^n)) \to \mathcal{D}_{(\omega)}(\mathbb{R}^n)$$
 is continuous

if $S^t_{\mu}(\mathcal{D}_{(\omega)}(\mathbb{R}^n))$ carries the topology induced by $\mathcal{D}_{(\omega)}(\mathbb{R}^n)$. Namely, (1) implies that for each $\lambda \in \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ the linear form $\widetilde{\nu} := \lambda \circ (S^t_{\mu})^{-1}$ is continuous on $S^t_{\mu}(\mathcal{D}_{(\omega)}(\mathbb{R}^n))$, hence admits an extension $\nu \in \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$, by the Hahn–Banach theorem, and ν satisfies

$$(S_{\mu}(\nu))(\varphi) = \nu(S_{\mu}^{t}\varphi) = \widetilde{\nu}(S_{\mu}^{t}\varphi) = \lambda(\varphi), \quad \varphi \in \mathcal{D}_{(\omega)}(\mathbb{R}^{n}).$$

Since the Fourier-Laplace transform is an isomorphism between $\mathcal{D}_{(\omega)}(\mathbb{R}^n)$ and the space $\operatorname{ind}_{j\to}\operatorname{proj}_{\leftarrow k}A(v_{j,k},\mathbb{C}^n)=A\overline{V}(\mathbb{C}^n)$, introduced in 1.8, and since $(S_{\mu}(\varphi))^{\wedge}=\widehat{\mu}\widehat{\varphi}$, (1) follows from

(2) for each $v \in \overline{V}$ there exists $w \in \overline{V}$ and $\varepsilon > 0$ such that $f \in A\overline{V}(\mathbb{C}^n)$ and $\|\widehat{\mu}f\|_w \leq \varepsilon$ imply $\|f\|_v \leq 1$.

To prove (2) we note that by Lemma 2.4 there exist $k \in \mathbb{N}$, $m \in \mathbb{N}$, C > 0 and R > 0 such that for each $z \in \mathbb{C}^n$ with $|z| \geq R$ and $r(z) := k\omega(z) + \frac{1}{8}|\operatorname{Im} z|$ we have

(3)
$$\sup_{|\zeta-z| \le r(z)} |\widehat{\mu}(\zeta)| \ge Cw_m(z).$$

Since μ is in $\mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ we get from 1.8 and 1.1(α) the existence of $l \in \mathbb{N}$ and A > 0 such that

(4)
$$\sup_{|\zeta-z| \le 4r(z)} |\widehat{\mu}(\zeta)| \le A/w_l(z).$$

Now let p := l + 2m, fix $v \in \overline{V}$ and note that without restriction v(z) > 0 for each $z \in \mathbb{C}^n$. Then define

$$\widetilde{\omega}(z) := \sup_{|\zeta-z| \le 4r(\zeta)} v(\zeta)/w_p(\zeta), \quad z \in \mathbb{C}^n.$$

To show that \widetilde{w} belongs to \overline{V} , fix $j \in \mathbb{N}$ and let q := p + 2j. Since v is in \overline{V} there exist $\alpha_q > 0$ and $k(q) \in \mathbb{N}$ such that $v \leq \alpha_q v_{q,k(q)}$. To apply this we need some preparation. First note that by 1.2(a) we can find $L \geq 1$ such that $\omega(t) \leq t + L$ for all $t \geq 0$. Then for $\zeta, z \in \mathbb{C}^n$ satisfying $|\zeta - z| \leq 4r(\zeta)$ we have

$$|\operatorname{Im}\zeta| \ge |\operatorname{Im}z| - |z - \zeta| \ge |\operatorname{Im}z| - 4k\omega(\zeta) - \frac{1}{2}|\operatorname{Im}\zeta|$$

and hence

182

(5)
$$|\operatorname{Im} \zeta| \ge \frac{2}{3} |\operatorname{Im} z| - \frac{8}{3} k\omega(\zeta).$$

Also we have

$$|\zeta| \ge |z| - |z - \zeta| \ge |z| - 4k\omega(\zeta) - \frac{1}{2}|\operatorname{Im} \zeta| \ge |z| - 4k\omega(\zeta) - \frac{1}{2}|\zeta|.$$

This implies

(6)
$$|z| \leq \frac{3}{2}|\zeta| + 4k\omega(\zeta) \leq \left(\frac{3}{2} + 4k\right)|\zeta| + 4kL.$$

By 1.2(a) we can find $R_0 > 0$ such that $\omega(t) \leq \frac{1}{16k}t$ for $t \geq R_0$. Because of (6) we can choose $R_1 \geq R_0$ such that $|z| \geq R_1$ and $|\zeta - z| \leq 4r(\zeta)$ imply $|\zeta| \ge R_0$. Therefore we have, for such z and ζ ,

$$|\zeta| \le |\zeta - z| + |z| \le 4k\omega(\zeta) + \frac{1}{2}|\zeta| + |z| \le \frac{1}{4}|\zeta| + \frac{1}{2}|\zeta| + |z| = \frac{3}{4}|\zeta| + |z|$$

and hence $|\zeta| < 4|z|$. Now the choice of q and (5) imply for $|z| \geq R_1$ and $|\zeta - z| < 4r(\zeta),$

$$\begin{split} \frac{v(\zeta)}{w_p(\zeta)} &\leq \alpha_q \frac{v_{q,k(q)}(\zeta)}{w_p(\zeta)} = \alpha_q \exp((-q+p)|\mathrm{Im}\,\zeta| + (k(q)+p)\omega(\zeta)) \\ &\leq \alpha_q \exp\left(-2j\left(\frac{2}{3}|\mathrm{Im}\,z| - \frac{8}{3}k\omega(\zeta)\right) + (k(q)+p)\omega(\zeta)\right) \\ &\leq \alpha_q \exp\left(-j|\mathrm{Im}\,z| + \left(\frac{16}{3}kj + k(q) + p\right)\omega(\zeta)\right). \end{split}$$

Since $|\zeta| \leq 4|z|$ and since $1.1(\alpha)$ implies the existence of $S \in \mathbb{N}$ satisfying $\omega(4t) \leq S\omega(t)$ for $t \geq R_1$ (assuming that R_1 is sufficiently large), we get from this

$$rac{v(\zeta)}{w_p(\zeta)} \leq lpha_q \exp(-j|\mathrm{Im}\,z| +
u(j)\omega(z)), \hspace{0.5cm} |z| \geq R_1, \hspace{0.1cm} |\zeta-z| \leq 4r(\zeta),$$

if we let $\nu(j) := S(\frac{16}{3}kj + k(q) + p)$. Since $v_{j,\nu(j)}$ is continuous and since $\widetilde{\omega}$ is bounded on $\{z \in \mathbb{C}^n : |z| \leq R_1\}$, we can find $\beta_j \geq \alpha_q$ such that $\widetilde{w} \leq$ $\beta_j v_{j,\nu(j)}$. Since $j \in \mathbb{N}$ was chosen arbitrarily, this proves $\widetilde{w} \in \overline{V}$. Similarly to the proof of Bierstedt, Meise and Summers [2], Prop. 0.2, we can find a continuous function $w \in \overline{V}$ which satisfies $w > \widetilde{w}$ and w(z) > 0 for each $z \in \mathbb{C}^n$.

Next let

$$M := \left(\sup_{|z| \le R_1} v(z)\right) \left(\sup_{|z| \le R_1} \frac{1}{v(z)}\right) + 1$$

and choose $0 < \varepsilon < C^2/(AM)$, where C (resp. A) is the constant from (3) (resp. (4)). Then fix $f \in A\overline{V}(\mathbb{C}^n)$ satisfying $\|\widehat{\mu}f\|_w \leq \varepsilon$. To show that $||f||_v \leq 1$, fix $z \in \mathbb{C}^n$ with $|z| \geq R$, apply Hörmander [14], Lemma 3.2, to $f=\widehat{\mu}f/\widehat{\mu}$, and use (3) and (4) together with the choice of p to get for $z\in\mathbb{C}^n$ with $|z| \geq R_1$,

v(z)|f(z)|(7) $\leq v(z)(\sup_{|\zeta-z|\leq 4r(z)}|\widehat{\mu}(\zeta)|)(\sup_{|\zeta-z|\leq 4r(z)}|\widehat{\mu}(\zeta)f(\zeta)|)(\sup_{|\zeta-z|\leq r(z)}|\widehat{\mu}(\zeta)|)^{-2}$ $\leq v(z) \frac{A}{w_I(z)} \left(\frac{1}{Cw_m(z)}\right)^2 \sup_{|\zeta-z| \leq 4r(z)} w(\zeta) |\widehat{\mu}(\zeta)f(\zeta)| / w(\zeta)$ $\leq \frac{Av(z)}{C^2 w_n(z)} \sup_{|\zeta-z| \leq Av(z)} \frac{\varepsilon}{w(\zeta)}$

By the continuity of w, the supremum in the last estimate is attained at some $\zeta_0 \in \mathbb{C}^n$ satisfying $|\zeta_0 - z| \leq 4r(z)$. Because of the definition of \widetilde{w} and the choice of w this implies

$$w(\zeta_0) \ge \widetilde{w}(\zeta_0) = \sup_{|\zeta - \zeta_0| \le 4r(\zeta)} \frac{v(\zeta)}{w_p(\zeta)} \ge \frac{v(z)}{w_p(z)}.$$

Hence from (7) we get

$$(8) \quad v(z)|f(z)| \leq AC^{-2}\varepsilon \frac{v(z)}{w_{p}(z)} \cdot \frac{1}{w(\zeta_{0})} \leq AC^{-2}\varepsilon < \frac{1}{M} < 1, \quad |z| \leq R_{1}.$$

By the maximum principle we conclude from this

(9)
$$\sup_{|z| \le R_1} v(z)|f(z)| \le \sup_{|z| \le R_1} v(z) \cdot \frac{1}{\sup_{|z| \le R_1} v(z)} \cdot \frac{1}{M} < 1.$$

Obviously, (8) and (9) imply $||f||_{v} \leq 1$, which completes the proof.

2.6. PROPOSITION. Let $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ and open sets Ω_1, Ω_2 in \mathbb{R}^n with $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$ be given. Then the following conditions are equivalent:

 $T_{\mu}: \mathcal{E}_{(\omega)}(\Omega_2) \to \mathcal{E}_{(\omega)}(\Omega_1)$ is surjective.

 $T^t_{\mu}(\mathcal{E}'_{(\omega)}(\Omega_1))$ is closed in $\mathcal{E}'_{(\omega)}(\Omega_2)$.

 (Ω_1,Ω_2) is μ -convex for (ω) and μ is slowly decreasing for (ω) .

 (Ω_1,Ω_2) is μ -convex for (ω) and there exists $E\in \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ with $S_{\mu}(E) = \delta$.

 $S^t_{\mu}(\mathcal{D}_{(\omega)}(\Omega_1))$ is closed in $\mathcal{D}_{(\omega)}(\Omega_2)$.

 $S^t_{\mu}(\mathcal{D}_{(\omega)}(\Omega_1))$ is sequentially closed in $\mathcal{D}_{(\omega)}(\Omega_2)$.

 $S^{\overline{t}}_{\mu}(\mathcal{D}_{(\omega)}(\Omega_1))\cap G$ is sequentially closed for each Fréchet subspace Gof $\mathcal{D}_{(\omega)}(\Omega_2)$.

 (Ω_2,Ω_2) is μ -convex for (ω) and the following condition holds: For each K_1 compact in Ω_1 there exist $m \in \mathbb{N}$ and C > 0 such that $\sup\nolimits_{x\in\mathbb{R}^n}|\varphi(x)|\leq C\|S^t_\mu\varphi\|_m \ \textit{for all}\ \varphi\in\mathcal{D}_{(\omega)}(K_1).$

Proof. (1) \Rightarrow (2). This is well known; see e.g. Meise and Vogt [22], 26.3. (2)⇒(3). Since convolutions commute with translations, we may assume $0\in\Omega_1$. Then we choose $\delta>0$ so that $\overline{B_\delta(0)}\subset\Omega_1$. If we assume that μ is not slowly decreasing for ω then also $\nu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ defined by $\widehat{\nu}(z) := \widehat{\mu}(z/\delta)$ is not slowly decreasing for ω . Therefore, it follows from the proof of Bonet and Galbis [3], Thm. 11, that there exists a sequence $(f_j)_{j \in \mathbb{N}}$ in $\mathrm{ind}_{k \to} A(w_k, \mathbb{C}^n)$, where $w_k(z) := \exp(-k(|\mathrm{Im}\,z| + \omega(z)))$, for which $(\widehat{\nu}f_j)_{j \in \mathbb{N}}$ is bounded in $\mathrm{ind}_{k \to} A(w_k, \mathbb{C}^n)$ while $(f_j)_{j \in \mathbb{N}}$ is not bounded in this space and satisfies

$$|f_j(z)| \le C \exp(|\operatorname{Im} z| + C\omega(z))$$
 for all $z \in \mathbb{C}^n$ with $|z| \ge r_j$,

for some sequence $(r_j)_{j\in\mathbb{N}}$ in $]0,\infty[$. Hence it follows from Braun, Meise and Taylor [6], 7.4, that there is a sequence $(\nu_j)_{j\in\mathbb{N}}$ in $\mathcal{E}'_{(\omega)}(\Omega_1)$ satisfying $\widehat{\nu}_j(z)=f_j(\delta z)$. Since $\widehat{\mu}\ast\widehat{\nu}_j(z)=\widehat{\mu}(z)\widehat{\nu}_j(z)=\widehat{\nu}(\delta z)f_j(\delta z)$, the sequence $(T^t_{\mu}(\nu_j))_{j\in\mathbb{N}}$ is bounded in $\mathcal{E}'_{(\omega)}(\Omega_2)$, while $(\nu_j)_{j\in\mathbb{N}}$ is unbounded in $\mathcal{E}'_{(\omega)}(\Omega_1)$. However, this contradicts (2), since the injectivity of T^t_{μ} in connection with (2) implies by Meise and Vogt [22], 26.3, that $(T^t_{\mu})^{-1}:T^t_{\mu}(\mathcal{E}'_{(\omega)}(\Omega_1))\to \mathcal{E}'_{(\omega)}(\Omega_1)$ is continuous.

To show that the continuity of $(T_{\mu}^t)^{-1}$ also implies the μ -convexity of (Ω_1, Ω_2) , let K_2 be any compact subset of Ω_2 . Then the set

$$B := \{ \varphi \in \mathcal{D}_{(\omega)}(K_2) \cap S^t_{\mu}(\mathcal{D}_{(\omega)}(\Omega_1)) : \sup_{x \in K_2} |\varphi(x)| \le 1 \}$$

is bounded in $\mathcal{E}'_{(\omega)}(\Omega_2)$ and $\mathrm{span}(B) = S^t_{\mu}(\mathcal{D}_{(\omega)}(\Omega_1))$. Hence $(T^t_{\mu})^{-1}(B)$ is bounded in $\mathcal{E}'_{(\omega)}(\Omega_1)$. This implies the existence of a compact set K_1 in Ω_1 so that $\mathrm{Supp}\,\psi\subset K_1$ for each $\psi\in (T^t_{\mu})^{-1}(B)$ and hence the μ -convexity of (Ω_1,Ω_2) .

 $(3)\Rightarrow (4)$. This holds by Proposition 2.5.

 $(4)\Rightarrow (6)$. Let $(\varphi_j)_{j\in\mathbb{N}}$ be any sequence in $\mathcal{D}_{(\omega)}(\Omega_1)$ for which $(S^t_{\mu}\varphi_j)_{j\in\mathbb{N}}$ converges to some ψ in $\mathcal{D}_{(\omega)}(\Omega_2)$. Then there exists K_2 compact in Ω_2 so that $(S^t_{\mu}\varphi_j)_{j\in\mathbb{N}}$ converges in $\mathcal{D}_{(\omega)}(K_2)$. Since (Ω_1,Ω_2) is μ -convex by hypothesis, there exists K_1 compact in Ω_1 so that $\varphi_n \in \mathcal{D}_{(\omega)}(K_1)$ for all $n \in \mathbb{N}$. By hypothesis there exists a fundamental solution E in $\mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ for μ . Hence we have

$$E * (S_{\mu}^t \varphi_j) = (E * \mu) * \varphi_j = \delta * \varphi_j = \varphi_j$$
 for each $j \in \mathbb{N}$.

Since convolution with E maps $\mathcal{D}_{(\omega)}(\mathbb{R}^n)$ continuously into $\mathcal{E}_{(\omega)}(\mathbb{R}^n)$ and since $(\varphi_j)_{j\in\mathbb{N}}$ is in $\mathcal{D}_{(\omega)}(K_1)$, the sequence $(\varphi_j)_{j\in\mathbb{N}}$ converges to some $\varphi\in\mathcal{D}_{(\omega)}(K_1)$ which satisfies $\psi=S^t_{\mu}(\varphi)\in S^t_{\mu}(\mathcal{D}_{(\omega)}(\Omega_1))$.

 $(6)\Rightarrow(7)$. This holds trivially.

 $(7)\Rightarrow (8)$. To show that (Ω_1,Ω_2) is μ -convex for (ω) , fix a compact set K_2 in Ω_2 . Then choose a sequence $(Q_j)_{j\in\mathbb{N}}$ of compact sets in Ω_1 satisfying $Q_j\subset Q_{j+1}$ for all $j\in\mathbb{N}$ and $\Omega_1=\bigcup_{j\in\mathbb{N}}\mathring{Q}_j$. By (7), $F:=S^t_\mu(\mathcal{D}_{(\omega)}(\Omega_1))\cap\mathcal{D}_{(\omega)}(K_2)$ is a Fréchet space in the topology induced by $\mathcal{D}_{(\omega)}(K_2)$ and $F\subset\bigcup_{j=1}^\infty S^t_\mu(\mathcal{D}_{(\omega)}(Q_j))$. Hence Grothendieck's factorization theorem implies the existence of $k\in\mathbb{N}$ and of a continuous linear map $u:F\to\mathcal{D}_{(\omega)}(Q_k)$ so that

 $F \subset S^t_{\mu}(\mathcal{D}_{(\omega)}(Q_k))$ and that $S^t_{\mu} \circ u$ is the inclusion of F into $\mathcal{D}_{(\omega)}(\Omega_2)$. Since K_2 was chosen arbitrarily, $F \subset S^t_{\mu}(\mathcal{D}_{(\omega)}(Q_k))$ implies the μ -convexity of (Ω_1, Ω_2) , while the continuity of u implies (8).

(8)=>(1). By Proposition 2.2 it suffices to show that the second condition in (8) implies the second one in 2.2(3). To do this, fix a compact set K_1 in Ω_1 and $j \in \mathbb{N}$. By 1.9 there exists $P \in A(\mathbb{C}^n)$ satisfying $\log |P| = O(\omega)$ so that for each $\varphi \in \mathcal{D}_{(\omega)}(K_1)$,

$$\|\varphi\|_{K_1,j} \le \sup_{\xi \in \mathbb{R}^n} |P(\xi)\widehat{\varphi}(\xi)| \le m_n(K_1) \sup_{x \in \mathbb{R}^n} |(P(D)\varphi)(x)|.$$

Then $L:=K_1+\operatorname{Supp}\mu$ is compact in Ω_2 and for $\varphi\in\mathcal{D}_{(\omega)}(K_1)$ we have $S^t_{\mu}\varphi\in\mathcal{D}_{(\omega)}(L)\cap\mathcal{D}_{\omega}(\Omega_2)$. Since $P(D):\mathcal{D}_{(\omega)}(L)\to\mathcal{D}_{(\omega)}(L)$ is linear and continuous, there exist $l\in\mathbb{N}$ and C'>0 so that for m as in (8),

$$||P(D)\varphi||_{L,m} \le C' ||\varphi||_{L,l}$$
 for each $\varphi \in \mathcal{D}_{(\omega)}(L)$.

Hence from (8) applied to $P(D)\varphi$ we get

 $\sup_{x \in \mathbb{R}^n} |(P(D)\varphi)(x)| \le C ||S_{\mu}^t(P(D)\varphi)||_m = C ||P(D)(S_{\mu}^t\varphi)||_{L,m} \le CC' ||S_{\mu}^t\varphi||_{l}$

and consequently

$$\|\varphi\|_{K_{1,j}} \leq m_n(K_1)CC'\|S_\mu^t\varphi\|_{l}.$$

 $(5)\Rightarrow(6)$. This holds trivially.

(2) \Rightarrow (5). Let $\varphi \in \mathcal{D}_{(\omega)}(\Omega_2)$ be in the closure of $S^t_{\mu}(\mathcal{D}_{(\omega)}(\Omega_1))$ in $\mathcal{D}_{(\omega)}(\Omega_2)$. Since $\mathcal{D}_{(\omega)}(\Omega_2) \hookrightarrow \mathcal{E}'_{(\omega)}(\Omega_2)$ is continuous, φ is in the closure of $T^t_{\mu}(\mathcal{E}'_{(\omega)}(\Omega_1))$ in $\mathcal{E}'_{(\omega)}(\Omega_2)$. Hence (2) implies the existence of $\nu \in \mathcal{E}'_{(\omega)}(\Omega_1)$ satisfying $\mu * \nu = \varphi$. Since we have already shown that (2) and (4) are equivalent, μ admits a fundamental solution $E \in \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$. Hence

$$\nu = (E * \mu) * \nu = E * (\mu * \nu) = E * \varphi.$$

This shows that $\nu \in \mathcal{E}_{(\omega)}(\mathbb{R}^n) \cap \mathcal{E}'_{(\omega)}(\Omega_1) = \mathcal{D}_{(\omega)}(\Omega_1)$, hence $\varphi \in S^t_{\mu}(\mathcal{D}_{(\omega)}(\Omega_1))$.

By Propositions 2.2 and 2.6 we have proved the following theorem.

2.7. THEOREM. Let $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ and open sets Ω_1, Ω_2 in \mathbb{R}^n with $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$ be given. Then the following assertions are equivalent:

(1) $T_{\mu}: \mathcal{E}_{(\omega)}(\Omega_2) \to \mathcal{E}_{(\omega)}(\Omega_1)$ is surjective.

(2) $(S^t_{\mu})^{-1}: S^t_{\mu}(\mathcal{D}_{(\omega)}(\Omega_1)) \to \mathcal{D}_{(\omega)}(\Omega_1)$ is sequentially continuous.

 $(3) \quad \mathcal{E}_{(\omega)}(\Omega_1) \subset S_{\mu}(\mathcal{D}'_{(\omega)}(\Omega_2)).$

(4) (Ω_1, Ω_2) is μ -convex for (ω) and there exists $E \in \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ with $S_{\omega}(E) = \delta$.

(5) (Ω_1, Ω_2) is μ -convex for (ω) and for each K_1 compact in Ω_1 there exist $m \in \mathbb{N}$ and C > 0 such that $\sup_{x \in \mathbb{R}^n} |\varphi(x)| \leq C ||S_{\mu}^t \varphi||_m$ for all $\varphi \in \mathcal{D}_{(\omega)}(K_1)$.

The following corollary is an immediate consequence of Theorem 2.7. It extends and "explains" Bonet and Galbis [3], Thm. 11.

- **2.8.** COROLLARY. Let ω and σ be weight functions satisfying $\omega(t) = O(\sigma(t))$ as t tends to infinity. Let $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ and open sets Ω_1, Ω_2 in \mathbb{R}^n with $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$ be given. Then the following conditions are equivalent:
- $(1) \quad \mathcal{E}_{(\sigma)}(\Omega_1) \subset T_{\mu}(\mathcal{E}_{(\omega)}(\Omega_2)).$
- (2) $T_{\mu}: \mathcal{E}_{(\sigma)}(\Omega_2) \to \mathcal{E}_{(\sigma)}(\Omega_1)$ is surjective.

Proof. (1) \Rightarrow (2). Since $T_{\mu}(\mathcal{E}_{(\omega)}(\Omega_2)) \subset S_{\mu}(\mathcal{D}'_{(\omega)}(\Omega_2))$, (2) follows from Theorem 2.7.

- (2) \Rightarrow (1). This is an obvious consequence of $\mathcal{E}_{(\omega)}(\Omega_2) \supset \mathcal{E}_{(\sigma)}(\Omega_2)$.
- **2.9.** COROLLARY. For $\mu \in \mathcal{E}'_{(\omega)}(\mathbb{R}^n)$ the following conditions are equivalent:
- (1) $T_{\mu}: \mathcal{E}_{(\omega)}(\mathbb{R}^n) \to \mathcal{E}_{(\omega)}(\mathbb{R}^n)$ is surjective.
- (2) There exists $E \in \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ satisfying $S_{\mu}(E) = \delta$.
- (3) μ is slowly decreasing for (ω) .
- (4) $S_{\mu}: \mathcal{D}'_{(\omega)}(\mathbb{R}^n) \to \mathcal{D}'_{(\omega)}(\mathbb{R}^n)$ is surjective.
- (5) $\mathcal{E}_{(\omega)}(\mathbb{R}^n) \subset S_{\mu}(\mathcal{D}'_{(\omega)}(\mathbb{R}^n)).$

Proof. (1) implies (2) by Theorem 2.7; (2) implies (3) by Proposition 2.6 and the μ -convexity of $(\mathbb{R}^n, \mathbb{R}^n)$; (3) implies (4) by Proposition 2.5; (4) trivially implies (5) and (5) implies (1) by Theorem 2.7.

Remark. Note that by Braun, Meise and Taylor [6], 8.6, the equivalences (1)–(4) in Corollary 2.9 extend the main results of Cioranescu [9] from $\mathbb R$ to $\mathbb R^n$. For n=1 the equivalence of the conditions 2.9(2)–2.9(4) together with a sequence representation for $\ker S_{\mu}$ was derived in Franken and Meise [11].

3. The Roumieu case. In this section we characterize those ultradistributions $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ for which the convolution operator $S_{\mu} : \mathcal{D}'_{\{\omega\}}(\Omega_2) \to \mathcal{D}'_{\{\omega\}}(\Omega_1)$ is surjective, where Ω_1 and Ω_2 are appropriate open sets in \mathbb{R}^n . Throughout this section ω denotes a fixed weight function.

First we treat the case $\Omega_1 = \Omega_2 = \mathbb{R}^n$ and in doing this we will use the following slowly decreasing condition, corresponding to 2.3.

3.1. DEFINITION. An ultradistribution $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ is called *slowly decreasing for* $\{\omega\}$ if for each $m \in \mathbb{N}$ there exists R > 0 such that for each $x \in \mathbb{R}^n$ with $|x| \geq R$ there exists $\xi \in \mathbb{C}^n$ satisfying $|x - \xi| \leq \frac{1}{m}\omega(x)$ such that $|\widehat{\mu}(\xi)| \geq \exp\left(-\frac{1}{m}\omega(\xi)\right)$.

- **3.2.** LEMMA. For $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ the following conditions are equivalent:
- (1) μ is slowly decreasing for $\{\omega\}$.
- (2) For each $m \in \mathbb{N}$ there exists R > 0 such that for each $x \in \mathbb{R}^n$, $|x| \geq R$, there exists $\xi \in \mathbb{C}^n$ satisfying $|x \xi| \leq \frac{1}{m}\omega(x)$ such that $|\widehat{\mu}(\xi)| \geq \exp\left(-\frac{1}{m}\omega(x)\right)$.
- (3) There exists a weight function σ with $\sigma = o(\omega)$ such that $\mu \in \mathcal{E}'_{(\sigma)}(\mathbb{R}^n)$ and μ is slowly decreasing for (σ) .

Proof. (1) \Rightarrow (2). In view of 1.1(α) and 1.2(a) there exist $K \in \mathbb{N}$ and $R_0 > 0$ such that $\omega(2t) \leq K\omega(t)$ and $\omega(t) \leq t$ for $t \geq R_0$. If $m \in \mathbb{N}$ is given, choose $R_1 \geq R_0$ so that 3.1 holds with m replaced by Km. This implies that for $x \in \mathbb{R}^n$ with $|x| \geq R_1$ there exists $\xi \in \mathbb{C}^n$ satisfying

$$|x-\xi| \leq \frac{1}{Km}\omega(x) \leq \frac{1}{m}\omega(x) \quad \text{and} \quad |\widehat{\mu}(\xi)| \geq \exp\bigg(-\frac{1}{Km}\omega(\xi)\bigg).$$

Now $|\xi| \le |x| + |x - \xi| \le |x| + \frac{1}{m}|x| \le 2|x|$ implies

$$\frac{1}{Km}\omega(\xi) \le \frac{1}{Km}\omega(2|x|) \le \frac{1}{m}\omega(x)$$

and hence $|\widehat{\mu}(\xi)| \ge \exp(-\frac{1}{m}\omega(x))$.

 $(2)\Rightarrow(3)$. By Braun, Meise and Taylor [6], 7.6, there exists a weight function κ so that $\mu\in\mathcal{E}'_{(\kappa)}(\mathbb{R}^n)$. Applying (2) inductively, we find a strictly increasing sequence $(R_m)_{m\in\mathbb{N}}$ tending to infinity so that the conclusion of (2) holds for $x\in\mathbb{R}^n$ satisfying $|x|\geq R_m$. Then define $g:[0,\infty[\to [0,\infty[\to g(x)=0]\omega]]$ by g(x)=0 for $x\in[0,R_1[\to g(x):=\frac{1}{m}\omega(x)]$ for $x\in[R_m,R_{m+1}[$. Since $g=o(\omega)$, Braun, Meise and Taylor [6], 1.7, gives the existence of a weight function σ satisfying $g=o(\sigma)$, $\sigma=o(\omega)$ and $\kappa\leq\sigma$. To show that μ is slowly decreasing for (σ) , choose l so that

$$\sigma(t) \le \omega(t)$$
, $\sigma(t) \le t/2$ and $g(t) \le \sigma(t)$ for $t \ge R_l$.

Then fix $x \in \mathbb{R}^n$ with $|x| \ge R_l$ and choose $m \ge l$ such that $|x| \in [R_m, R_{m+1}]$. By the choice of R_m there exists $\xi \in \mathbb{C}^n$ satisfying

$$|x - \xi| \le \frac{1}{m}\omega(x) = g(x) \le \sigma(x)$$

such that

$$|\widehat{\mu}(\xi)| \ge \exp\left(-\frac{1}{m}\omega(x)\right) \ge \exp(-\sigma(x)).$$

Since σ is a weight function, $1.1(\alpha)$ implies the existence of some $L \geq 1$ so that $\sigma(2t) \leq L\sigma(t)$ for $t \geq R_l$. Because of

$$|x| \le |\xi| + \sigma(x) \le |\xi| + |x|/2$$

we have $\sigma(x) \leq L\sigma(\xi)$ and hence

$$|\widehat{\mu}(\xi)| \ge \exp(-L\sigma(\xi)) \ge \exp(-L(|\operatorname{Im} \xi| + \sigma(\xi))).$$

Thus, μ is slowly decreasing for (σ) .

(3) \Rightarrow (1). By hypothesis, μ satisfies condition 2.3 for some $C \geq 1$ and σ instead of ω . Without restriction we can assume that for some $K \geq 1$,

$$\sigma(2t) \le K\sigma(t)$$
 for $t \ge C$.

Since $\sigma = o(\omega)$ and $\omega = o(t)$, by 1.2(a) we can find $C' \geq C$ such that

$$(C+C^2K)\sigma(t) \leq \frac{1}{m}\omega(t) \quad \text{and} \quad \sigma(t) \leq \frac{1}{2C}t, \quad \text{for } t \geq \frac{C'}{2}.$$

Now fix $x \in \mathbb{R}^n$ with $|x| \geq C' \geq C$. Since μ is slowly decreasing for (σ) , there exists $\xi \in \mathbb{C}^n$ with $|x - \xi| \leq C\sigma(x) \leq \frac{1}{m}\omega(x)$ such that

(6)
$$|\widehat{\mu}(\xi)| \ge \exp(-C|\operatorname{Im} \xi| - C\sigma(\xi)).$$

Since $|\xi| \ge |x| - C\sigma(x) \ge |x|/2$, we have $\sigma(x) \le K\sigma(\xi)$ and hence $|\operatorname{Im} \xi| = |\operatorname{Im}(x - \xi)| \le C\sigma(x) \le CK\sigma(\xi)$.

Therefore, (6) and our choice of C' imply

$$|\widehat{\mu}(\xi)| \ge \exp(-(C^2K + C)\sigma(\xi)) \ge \exp\left(-\frac{1}{m}\omega(\xi)\right).$$

Hence μ is slowly decreasing for $\{\omega\}$.

To formulate the next proposition in such a way that it completely extends Braun, Meise and Vogt [7], Thm. 2.4, to the case of several variables, we recall the following definition from [7], 2.1.

- **3.3.** DEFINITION. For $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ the convolution operator T_{μ} is called locally surjective on $\mathcal{E}_{\{\omega\}}(\mathbb{R}^n)$ if for each compact set K in \mathbb{R}^n and each $g \in \mathcal{E}_{\{\omega\}}(\mathbb{R}^n)$ there exists $f \in \mathcal{E}_{\{\omega\}}(\mathbb{R}^n)$ satisfying $T_{\mu}(f)|_{K} = g|_{K}$.
- **3.4.** Proposition. For $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ the following assertions are equivalent:
- (1) $S_{\mu}: \mathcal{D}'_{\{\omega\}}(\mathbb{R}^n) \to \mathcal{D}'_{\{\omega\}}(\mathbb{R}^n)$ is surjective.
- (2) There exists $E \in \mathcal{D}'_{\{\omega\}}(\mathbb{R}^n)$ satisfying $S_{\mu}(E) = \delta$.
- (3) μ is slowly decreasing for $\{\omega\}$.
- (4) If $B \subset \mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$ and $S^t_{\mu}(B)$ is bounded in $\mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$ then B is bounded in $\mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$.
- (5) T_{μ} is locally surjective on $\mathcal{E}_{\{\omega\}}(\mathbb{R}^n)$.

Proof. $(1)\Rightarrow(2)$. This holds trivially.

 $(2)\Rightarrow (3)$. By Braun, Meise and Taylor [6], 7.6, there exists a weight function σ satisfying $\sigma=o(\omega)$ such that $\mu\in\mathcal{E}'_{(\sigma)}(\mathbb{R}^n)$ and $E\in\mathcal{D}'_{(\sigma)}(\mathbb{R}^n)$. Since

 $(\mathbb{R}^n, \mathbb{R}^n)$ is μ -convex for (σ) and $S_{\mu}(E) = \delta$, also in $\mathcal{D}'_{(\sigma)}(\mathbb{R}^n)$, μ is slowly decreasing for (σ) by Proposition 2.6. Hence (3) follows from Lemma 3.2.

 $(3)\Rightarrow (4)$. Fix an arbitrary subset B of $\mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$ for which $M:=S^t_{\mu}(B)$ is bounded in $\mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$. Since $\mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$ is a (DFS)-space, there exist $p\in\mathbb{N}$ and C>0 such that

(5)
$$|\widehat{f}(z)| \le C \exp\left(p|\operatorname{Im} z| - \frac{1}{p}\omega(z)\right), \quad z \in \mathbb{C}^n, \ f \in M.$$

Since μ is in $\mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$, there exists L>0 such that for each $\varepsilon>0$ there exists $C_{\varepsilon}>0$ so that

(6)
$$|\widehat{\mu}(z)| \le C_{\varepsilon} \exp(L|\operatorname{Im} z| + \varepsilon \omega(z)), \quad z \in \mathbb{C}^{n}.$$

If $f \in M$ then $f = S^t_{\mu}(g) = \mu * g$ and hence $\widehat{f} = \widehat{\mu}\widehat{g}$ for some $g \in B$. Consequently, (4) holds if we show the existence of A > 0, $m \in \mathbb{N}_0$ and $C_0 > 0$ such that for each $f \in M$ the entire function $\widehat{g} = \widehat{f}/\widehat{\mu}$ satisfies

(7)
$$|\widehat{g}(z)| \le C_0 \exp\left(A|\operatorname{Im} z| - \frac{1}{m}\omega(z)\right), \quad z \in \mathbb{C}^n.$$

To prove this, note first that by (3), Lemma 3.2 and Lemma 2.4 there exists a weight function σ satisfying $\sigma = o(\omega)$ such that there exist $k \in \mathbb{N}$, $\nu \in \mathbb{N}$, $C_1 > 0$ and $R_0 \ge 1$ such that for each $z \in \mathbb{C}^n$ with $|z| \ge R_0$ there exists $w \in \mathbb{C}^n$ satisfying $|w - z| \le k\sigma(z) + |\operatorname{Im} z|$ such that

$$|\widehat{\mu}(w)| \ge C_1 \exp(-\nu |\operatorname{Im} z| - \nu \sigma(z)).$$

Since $\sigma = o(\omega)$, for each $q \in \mathbb{N}$ there exists $R_q \geq R_0$ such that

$$(\nu + k)\sigma(t) \le \frac{1}{q}\omega(t)$$
 for $t \ge R_q$

and hence for $|z| \geq R_q$ the point w has the properties:

(8)
$$|w-z| \le k\sigma(z) + |\operatorname{Im} z| \le \frac{1}{q}\omega(z) + |\operatorname{Im} z|,$$

$$|\widehat{\mu}(w)| \ge C_1 \exp\left(-\nu|\operatorname{Im} z| - \frac{1}{q}\omega(z)\right).$$

Now fix $q \in \mathbb{N}$, let $\varepsilon := 1/q$ and fix an arbitrary $f \in M$. Without restriction we may assume that R_q is so large that

$$\omega(4t) \leq \frac{1}{q}t \quad \text{for } t \geq R_q.$$

To prove (7) we want to apply Hörmander [14], 3.2. For that purpose let $r:=r(z):=\frac{1}{q}\omega(z)+|\mathrm{Im}\,z|$ and fix $\zeta\in\mathbb{C}^n$ with $|z-\zeta|\leq 4r$. Then

(9)
$$|\operatorname{Im} \zeta| \le |\operatorname{Im} z| + 4r, \quad \omega(\zeta) \ge \frac{1}{K}\omega(z) - \frac{r}{q}$$

because $1.1(\alpha)$ for ω implies the existence of $K \in \mathbb{N}$ so that

$$\omega(z) \le \omega(|\zeta| + 4r) \le K(\omega(\zeta) + \omega(4r)) \le K\left(\omega(\zeta) + \frac{r}{q}\right)$$

provided that R_a is large enough. Hence (5) implies

$$\begin{split} |\widehat{f}(\zeta)| & \leq C \exp \left(p(|\mathrm{Im}\,z| + 4r) - \frac{1}{pK} \omega(z) + \frac{r}{pq} \right) \\ & \leq C \exp \left(\left(5p + \frac{1}{pq} \right) |\mathrm{Im}\,z| + \left(-\frac{1}{pK} + \frac{4p}{q} + \frac{1}{q^2p} \right) \omega(z) \right). \end{split}$$

Choosing $\varepsilon = 1/q$ also in (6), we get similarly

$$|\widehat{\mu}(\zeta)| \leq C' \exp\bigg(\bigg(5L + \frac{K}{q^2}\bigg)|\mathrm{Im}\,z| + \frac{1}{q}\bigg(4L + K + \frac{K}{q^2}\bigg)\omega(z)\bigg).$$

Using (8), these estimates imply

$$(10) \quad (\sup_{|z-\zeta|\leq 4r}|\widehat{f}(\zeta)|)(\sup_{|z-\zeta|\leq 4r}|\widehat{\mu}(\zeta)|)(\sup_{|z-\zeta|\leq r}|\widehat{\mu}(\zeta)|)^{-2} \\ \leq \frac{CC'}{C_1^2}\exp(A_q|\operatorname{Im} z|+B_q\omega(z)),$$

where

$$A_q = 2\nu + 5(L+p) + \frac{1}{pq} + \frac{K}{q^2} \le 2\nu + 5(L+p) + K + 1,$$

$$B_q = -\frac{1}{pK} + \frac{1}{q} \left(2 + 4(L+p) + K + \frac{K}{q^2} + \frac{1}{pq} \right).$$

This shows that we can choose $q \in \mathbb{N}$ so large that $B_q \leq -1/(2pK)$. Then (10) implies

$$|\widehat{g}(z)| \leq C_0' \exp\bigg(A_q |\mathrm{Im}\,z| - \frac{1}{2pK} \omega(z)\bigg), \quad \ |z| \geq R_q.$$

Since C'_0 and A_q do not depend on the particular function f, this estimate implies (7), by the maximum principle.

 $(4)\Rightarrow(1)$. This follows from the surjectivity criterion 26.1 in Meise and Vogt [22],

 $(2)\Rightarrow (5)$. If a compact set K in \mathbb{R}^n and $g\in \mathcal{E}_{\{\omega\}}(\mathbb{R}^n)$ are given, choose $\varphi\in \mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$ so that φ is identically 1 in some neighbourhood of K. Then $f:=E*(\varphi g)$ is in $\mathcal{E}_{\{\omega\}}(\mathbb{R}^n)$ if E is chosen according to (2). It is easy to see that $T_{\mu}(f)|_{K}=g|_{K}$.

 $(5)\Rightarrow (3)$. Arguing by contradiction, assume that μ is not slowly decreasing for $\{\omega\}$. Then there exist $m_1\in\mathbb{N}$ and a sequence $(x_j)_{j\in\mathbb{N}}$ in \mathbb{R}^n for

which $(|x_j|)_{j\in\mathbb{N}}$ is increasing and unbounded and such that

$$|\widehat{\mu}(\zeta)| \leq \frac{1}{m_1} \omega(\zeta)$$
 for all $\zeta \in \mathbb{C}^n$ with $|\zeta - x_j| \leq \frac{1}{m_1} \omega(x_j)$.

Next choose $D \geq 1$ and $t_0 > 0$ such that $\omega(2t) \leq D\omega(t)$ for $t \geq t_0$ and choose $m \in \mathbb{N}$ so large that $2D/m \leq 1/m_1$. To localize T_{μ} as in Braun, Meise and Vogt [7], 1.8, choose k > 0 with Supp $\mu \subset \overline{B_k(0)}$, and for r > 0 let

$$\mathcal{E}_{\{\omega\}}(r) := \{ f \in \mathcal{E}_{\{\omega\}}(\mathbb{R}^n) : f|_{B_r(0)} \equiv 0 \}$$

Then define

$$\mathcal{E}_{\{\omega\}}[r] := \mathcal{E}_{\{\omega\}}(\mathbb{R}^n)/\mathcal{E}_{\{\omega\}}(r)$$

and denote the corresponding quotient map by q_r . It is easy to check that the convolution operator T_{μ} induces for each r>0 and $R\geq r+k$ a continuous linear map

$$T_{\mu}(R,r):\mathcal{E}_{\{\omega\}}[R]\to\mathcal{E}_{\{\omega\}}[r],\quad T_{\mu}(R,r)[f+\mathcal{E}_{\{\omega\}}(R)]:=T_{\mu}(f)+\mathcal{E}_{\{\omega\}}(r).$$

Obviously, T_{μ} is locally surjective if and only if the localized operators $T_{\mu}(r+k,r)$ are surjective for each r>0. Note that by Braun, Meise and Vogt [7], 1.10, $\mathcal{E}_{\{\omega\}}[r]$ is a (DFN)-space for each r>0 and that by the arguments given in the proof of [7], 2.3, the Fourier-Laplace transform is an isomorphism between $\mathcal{E}_{\{\omega\}}[r]'$ and the Fréchet space

$$\begin{split} A_r(\mathbb{C}^n) := \\ \Big\{ f \in A(\mathbb{C}^n) : \|f\|_j := \sup_{z \in \mathbb{C}^n} |f(z)| \exp\left(-\left(r + \frac{1}{j}\right) |\mathrm{Im}\,z| - \frac{1}{j}\omega(z)\right) < \infty \\ & \qquad \text{for each } j \in \mathbb{N} \Big\}. \end{split}$$

Hence (5) implies that $T_{\mu}(m+k,m)$ is surjective. Since $\mathcal{E}_{\{\omega\}}[r]$ is a (DFN)-space for each r>0, $T_{\mu}(m+k,m)^t$ is an injective topological homomorphism. As in 1.8 this implies that also the map

$$M_{\widehat{\mu}}: A_m(\mathbb{C}^n) \to A_{m+k}(\mathbb{C}^n), \quad M_{\widehat{\mu}}(f) = \widehat{\mu}f,$$

has this property. Hence we get a contradiction if we show that there exists a sequence $(f_j)_{j\in\mathbb{N}}$ in $A_1(\mathbb{C}^n)$ which is unbounded in $A_m(\mathbb{C}^n)$, while $(\widehat{\mu}f_j)_{j\in\mathbb{N}}$ is bounded in $A_{m+k}(\mathbb{C}^n)$. To construct this sequence, we proceed similarly to Momm [24] (see also [3], Thm. 11): For R>0 let $h_{j,R}:\mathbb{C}^n\to\mathbb{R}$ be defined on $\mathbb{C}^n\setminus B_R(x_j)$ as $|\operatorname{Im} z|$ and on $B_R(x_j)$ as

$$h_{j,R}(z) := \sup\{v(z) : v \text{ is plurisubharmonic on } B_R(x_j), \ \limsup_{\zeta \to \xi} v(\zeta) \le |\operatorname{Im} \xi| \text{ for } \xi \in \partial B_R(x_j)\}.$$

Then let $\varphi_j := 1 + h_{j,s_j}$, where $s_j := 1 + \frac{1}{n}\omega(x_j)$. By Momm [26],

$$\varphi_j(x_j) \ge \frac{2}{\pi\sqrt{n}} \left(1 + \frac{1}{n}\omega(x_j)\right).$$

As in Momm [25], 1.8, we can apply Hörmander's solution of the $\overline{\partial}$ -problem [15], 4.4.4, to prove that there exists $f_j \in A(\mathbb{C}^n)$ satisfying

$$|f(x_j)| \ge \exp(\inf_{|w-x_j| \le 1} \varphi_j(w) - c_n \log(1 + |x_j|^2))$$
 and $|f_j(z)| \le c_n \exp(\sup_{|w-z| \le 1} \varphi_j(w) - c_n \log(1 + |z|^2)),$

where c_n is a constant that depends only on the dimension n but not on j. Now standard estimates (see [3], Thm. 11) show that $(f_j)_{j\in\mathbb{N}}$ is in $A_1(\mathbb{C}^n)$ but unbounded in $A_m(\mathbb{C}^n)$, while $(\widehat{\mu}f_j)_{j\in\mathbb{N}}$ is bounded in $A_{m+k}(\mathbb{C}^n)$. From this contradiction we conclude that (3) holds.

- **3.5.** THEOREM. Let $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ and open sets Ω_1, Ω_2 in \mathbb{R}^n with $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$ be given. Then the following assertions are equivalent:
- (1) $S_{\mu}: \mathcal{D}'_{\{\omega\}}(\Omega_2) \to \mathcal{D}'_{\{\omega\}}(\Omega_1)$ is surjective.
- (2) $\mathcal{E}_{\{\omega\}}(\tilde{\Omega_1}) \subset S_{\mu}(\mathcal{D}'_{\{\omega\}}(\tilde{\Omega}_2)).$
- (3) (Ω_1, Ω_2) is μ -convex for $\{\omega\}$ and μ is slowly decreasing for $\{\omega\}$.
- (4) (Ω_1, Ω_2) is μ -convex for $\{\omega\}$ and there exists $E \in \mathcal{D}'_{\{\omega\}}(\mathbb{R}^n)$ with $S_{\mu}(E) = \delta$.

Proof. (1) \Leftrightarrow (2). Obviously, it suffices to show that (2) implies (1). We claim that (2) implies

(5) For each $K_2 \subset \Omega_2$ compact and each $m \in \mathbb{N}_0$ there exist $K_1 \subset \Omega_1$ compact, a weight function σ satisfying $\sigma = o(\omega)$ and $C \geq 1$ such that for each $f \in \mathcal{E}_{\{\omega\}}(\Omega_1)$ and each $\varphi \in \mathcal{D}_{\{\omega\}}(\Omega_1)$ with Supp $S^t_{\mu}\varphi \subset K_2$,

$$\left| \int_{\Omega_1} f \varphi \, d\lambda \right| \le C \|f\|_{K_1, \sigma} |S^t_{\mu} \varphi|_{K_2, m}.$$

To prove (5), fix $K_2 \subset \Omega_2$ compact and $m \in \mathbb{N}_0$ and let

 $H := \{v \in \mathcal{D}_{\{\omega\}}(\Omega_2) : \operatorname{Supp} v \subset K_2, \ v \in S^t_{\mu}(\mathcal{D}_{\{\omega\}}(\Omega_1))\} \subset \mathcal{D}_{\{\omega\}}(K_2),$ endowed with the induced topology. Then define the bilinear form

$$B: \mathcal{E}_{\{\omega\}}(\Omega_1) \times H \to \mathbb{C}, \quad B(f,v) := \int f(S^t_\mu)^{-1} v \, d\lambda.$$

Note that $B(f,v) = \langle f, (S^t_{\mu})^{-1}v \rangle$ in the dual pairing $\langle \mathcal{D}'_{\{\omega\}}(\Omega_1), \mathcal{D}_{\{\omega\}}(\Omega_1) \rangle$. If $f \in \mathcal{E}_{\{\omega\}}(\Omega_1)$ is fixed then (2) implies the existence of $u \in \mathcal{D}'_{\{\omega\}}(\Omega_2)$ so that $S_{\mu}(u) = f$ and hence

$$B(f,v) = \langle f, (S_{\mu}^t)^{-1}v \rangle = \langle S_{\mu}(u), (S_{\mu}^t)^{-1}v \rangle = \langle u, v \rangle.$$

Consequently, $v \mapsto B(f, v)$ is continuous on H and we have shown that B is separately continuous. Next note that

$$B_m := \{ v \in \mathcal{D}_{\{\omega\}}(\Omega_2) : \text{Supp } v \subset K_2, \ v \in S^t_{\mu}(\mathcal{D}_{\{\omega\}}(\Omega_1)), \ |v|_{K_2, m} \le 1 \}$$

is bounded in H and that by the separate continuity of B the set

$$T := \{ f \in \mathcal{E}_{\{\omega\}}(\Omega_1) : |B(f, v)| \le 1 \text{ for all } v \in B_m \}$$

is closed and absolutely convex in $\mathcal{E}_{\{\omega\}}(\Omega_1)$. To show that T is absorbing and hence a barrel, fix $f \in \mathcal{E}_{\{\omega\}}(\Omega_1)$. Since B is separately continuous and B_m is bounded in H, we have

$$\sup_{v \in B_m} |B(f, v)| \le \lambda$$

and hence $f \in \lambda T$. Now note that $\mathcal{E}_{\{\omega\}}(\Omega_1)$ is reflexive by Braun, Meise and Taylor [6], 4.9, hence barrelled. Therefore, T is a zero neighbourhood in $\mathcal{E}_{\{\omega\}}(\Omega_1)$. By Meise, Taylor and Vogt [21], 3.2, this implies that there exist $K_1 \subset \Omega_1$ compact, a weight function σ with $\sigma = o(\omega)$ and $C \geq 1$ such that

$${f \in \mathcal{E}_{\{\omega\}}(\Omega_1) : ||f||_{K_1,\sigma} \le 1/C} \subset T.$$

From this and the definitions of T and B it follows easily that

(6)
$$\left| \int f(S_{\mu}^{t})^{-1} v \, d\lambda \right| = |B(f, v)| \le C \|f\|_{K_{1}, \sigma} |v|_{K_{2}, m},$$

$$(f, v) \in \mathcal{E}_{\ell \omega^{1}}(\Omega_{1}) \times H.$$

Obviously (6) gives (5) if we replace v by $S^t_{\mu}\varphi$, $\varphi \in \mathcal{D}_{\{\omega\}}(\Omega_1)$.

Next note that the surjectivity of $S_{\mu}: \mathcal{D}'_{\{\omega\}}(\Omega_2) \to \mathcal{D}'_{\{\omega\}}(\Omega_1)$, by the surjectivity criterion 26.1 of Meise and Vogt [22], is equivalent to

(7) If $B \subset \mathcal{D}_{\{\omega\}}(\Omega_1)$ and $S^t_{\mu}(B)$ is bounded in $\mathcal{D}_{\{\omega\}}(\Omega_2)$ then B is bounded in $\mathcal{D}_{\{\omega\}}(\Omega_1)$,

since $\mathcal{D}'_{\{\omega\}}(\Omega_j)$ is a Fréchet space for j=1,2. To derive (7) from (5), fix any set $B \subset \mathcal{D}_{\{\omega\}}(\Omega_1)$ which satisfies the hypothesis of (7). As $\mathcal{D}_{\{\omega\}}(\Omega_2)$ is a (DFS)-space, there exist $K_2 \subset \Omega_2$ compact, $m \in \mathbb{N}$ and D > 0 such that

(8)
$$\bigcup_{\varphi \in B} \operatorname{Supp} S^t_{\mu}(\varphi) \subset K_2 \quad \text{and} \quad \sup\{|S^t_{\mu}\varphi|_{K_2,m} : \varphi \in B\} \leq D.$$

For K_2 and m as above, (5) implies that there exist $K_1 \subset \Omega_1$ compact, a weight function σ with $\sigma = o(\omega)$ and $C \geq 1$ such that (5) holds with m+1 instead of m. To show that B is $\sigma(\mathcal{D}_{\{\omega\}}(K_1), \mathcal{D}'_{\{\omega\}}(K_1))$ -bounded, fix $\nu \in \mathcal{E}'_{\{\omega\}}(\Omega_1)$. By Braun [5], Cor. 10, there exist an ultradifferential operator G of class $\{\omega\}$ and $g \in \mathcal{E}_{\sigma}(\mathbb{R}^n, 1)$ such that $\nu = G(D)g$. Next note that, by a standard smoothing argument, the estimate (5) holds not only for all $f \in \mathcal{E}_{\{\omega\}}(\Omega_1)$ but even for all $f \in \mathcal{C}^{\infty}(\Omega_1)$ satisfying $\|f\|_{K_1,\sigma} < \infty$.

Note further that

$$S^t_{\mu}(G(-D)\varphi) = \mu * (T_{\tilde{G}} * \check{\varphi})(0)$$

= $((T_{\tilde{G}} * \mu) * \check{\varphi})(0) = G(-D)(S^t_{\mu}\varphi), \quad \varphi \in \mathcal{D}_{\{\omega\}}(\mathbb{R}^n),$

so that Supp $S^t_{\mu}(G(\neg D)\varphi) \subset \text{Supp } S^t_{\mu}\varphi \subset K_2$ for each $\varphi \in B$. Therefore, (5) in the extended form gives for each $\varphi \in B$,

(9)
$$|\nu(\varphi)| = |G(D)g(\varphi)| = |g(G(-D)\varphi)| = \left| \int g(G(-D)\varphi) \, d\lambda \right|$$
$$\leq C||g||_{K_1,\sigma} |S_{\mu}^t(G(-D)\varphi)|_{K_2,m+1}.$$

Since $\log |G| = o(\omega)$, we have for each $\psi \in \mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$,

$$\int |(G(-D)\psi)^{\wedge}(\xi)|e^{\omega(\xi)/(m+1)} d\xi \leq \int |G(-\xi)\widehat{\psi}(\xi)|e^{\omega(\xi)/(m+1)} d\xi
\leq L_m \int |\widehat{\psi}(\xi)|e^{\omega(\xi)/m} d\xi.$$

This together with (8) and (9) implies

$$|\nu(\varphi)| \le CDL_m ||g||_{K_1,\sigma}$$
 for all $\varphi \in B$.

This proves that B is weakly bounded, hence bounded in $\mathcal{D}_{\{\omega\}}(K_1)$.

(1) \Rightarrow (3). To show that (Ω_1, Ω_2) is μ -convex for $\{\omega\}$, note that by Braun, Meise and Taylor [6], 7.6, there exists a weight function σ satisfying $\sigma = o(\omega)$ such that $\mu \in \mathcal{E}'_{(\sigma)}(\mathbb{R}^n) \subset \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$. Note further that (1) implies

$$\mathcal{E}_{(\omega)}(\Omega_1) \subset \mathcal{D}'_{\{\omega\}}(\Omega_1) \subset S_{\mu}(\mathcal{D}'_{\{\omega\}}(\Omega_2)) \subset S_{\mu}(\mathcal{D}'_{(\omega)}(\Omega_2)).$$

Hence (Ω_1, Ω_2) is μ -convex for (ω) . By the remark after 2.1 this implies that (Ω_1, Ω_2) is μ -convex for $\{\omega\}$.

In the remaining part of the proof we assume without restriction $0 \in \Omega_1$. Then we choose $\delta > 0$ and k > 0 such that $\overline{B_\delta(0)} \subset \Omega_1$ and $\operatorname{Supp} \mu \subset \overline{B_k(0)}$. Next we assume that μ is not slowly decreasing for $\{\omega\}$ and show that this contradicts (1). To do so, note that there exists $\nu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ satisfying $\widehat{\nu}(z) = \widehat{\mu}(z/\delta)$ and $\operatorname{Supp} \nu \subset \overline{B_{k/\delta}(0)}$. Obviously, ν is not slowly decreasing for $\{\omega\}$ since μ has this property. Using the notation introduced in the proof of Proposition 3.4, $(5) \Rightarrow (3)$, we get the existence of $m \in \mathbb{N}$ and of a sequence $(f_j)_{j \in \mathbb{N}}$ in $A_1(\mathbb{C}^n)$ so that $(\widehat{\nu}f_j)_{j \in \mathbb{N}}$ is bounded in $A_{m+k/\delta}(\mathbb{C}^n)$, while $(f_j)_{j \in \mathbb{N}}$ is unbounded in $A_m(\mathbb{C}^n)$. Next note that for each s > 0 the map

$$arPhi:A_s(\mathbb{C}^n) o A_{\delta s}(\mathbb{C}^n), \quad arPhi(f)(z):=f(\delta z), \quad z\in\mathbb{C}^n,$$

is an isomorphism. Hence, if we let $g_j := \Phi(f_j), \ j \in \mathbb{N}$, then g_j is in $A_{\delta}(\mathbb{C}^n)$ and the sequence $(g_j)_{j \in \mathbb{N}}$ is unbounded in $A_{\delta m}(\mathbb{C}^n)$ while $(\widehat{\mu}g_j)_{j \in \mathbb{N}}$ is bounded in $A_{\delta m+k}$, since $\Phi(\widehat{\nu}f_j) = \widehat{\mu}g_j$. Now note that for 0 < r < R the inclusion $A_r(\mathbb{C}^n) \hookrightarrow A_R(\mathbb{C}^n)$ is a topological homomorphism since it is—up

to the Fourier-Laplace transform—the adjoint of the surjective homomorphism $\mathcal{E}_{\{\omega\}}[R] \to \mathcal{E}_{\{\omega\}}[r]$, which is induced by restriction. Since $g_j \in A_{\delta}(\mathbb{C}^n)$ and $\widehat{\mu}g_j \in A_{\delta+k}(\mathbb{C}^n)$ for $j \in \mathbb{N}$, we conclude that $(\widehat{\mu}g_j)_{j\in\mathbb{N}}$ is bounded in $A_{\delta+k}(\mathbb{C}^n)$, while $(g_j)_{j\in\mathbb{N}}$ is unbounded in $A_{\delta}(\mathbb{C}^n)$. Hence

$$M\widehat{\mu}: A_{\delta}(\mathbb{C}^n) \to A_{\delta+k}(\mathbb{C}^n)$$

is not a topological homomorphism. Consequently,

(10) $T_{\mu}(\delta + k, \delta) : \mathcal{E}_{\{\omega\}}[\delta + k] \to \mathcal{E}_{\{\omega\}}[\delta] \text{ is not surjective.}$

This contradicts (1) since we will show next that (1) implies

(11) $T_{\mu}(\delta+k,\delta)^t: (\mathcal{E}_{\{\omega\}}[\delta])' \to (\mathcal{E}_{\{\omega\}}[\delta+k])'$ is an injective topological homomorphism.

And, as we have noted in the proof of Proposition 3.4 that $\mathcal{E}_{\{\omega\}}[r]$ is a (DFS)-space for each r>0, (11) contradicts (10). Hence it suffices to derive (11) from (1). To do this, let $(\nu_j)_{j\in\mathbb{N}}$ be a sequence in $(\mathcal{E}_{\{\omega\}}[\delta])'$ for which $(T_{\mu}(\delta+k,\delta)^t\nu_j)_{j\in\mathbb{N}}$ converges to zero strongly. In order to show that $(\nu_j)_{j\in\mathbb{N}}$ converges strongly to zero in $(\mathcal{E}_{\{\omega\}}[\delta])'$ we prove $\sigma((\mathcal{E}_{\{\omega\}}[\delta])', \mathcal{E}_{\{\omega\}}[\delta])$ -lim $_{j\to\infty}\nu_j=0$, which is sufficient because $(\mathcal{E}_{\{\omega\}}[\delta])'$ is a Fréchet–Schwartz space. To do so, note that by the definition of the maps $T_{\mu}(R,r)$, we have

$$T_{\mu}(\delta+k,\delta)\circ q_{\delta+k}=q_{\delta}\circ T_{\mu},$$

where $q_r: \mathcal{E}_{\{\omega\}}(\mathbb{R}^n) \to \mathcal{E}_{\{\omega\}}[r]$ denotes the quotient map. Consequently, $(T^t_{\mu}(\nu_j \circ q_{\delta}))_{j \in \mathbb{N}}$ converges to zero in $\mathcal{E}_{\{\omega\}}(\mathbb{R}^n)'$. Now choose $\varepsilon > 0$ such that $\overline{B_{\delta+\varepsilon}(0)} \subset \Omega_1$ and fix $\chi \in \mathcal{D}_{\{\omega\}}(B_{\varepsilon}(0))$. Then $(\nu_j \circ q_{\delta}) * \chi \in \mathcal{D}_{\{\omega\}}(B_{\delta+\varepsilon}(0)) \subset \mathcal{D}_{\{\omega\}}(\Omega_1)$ and

$$S^t_{\mu}((\nu_j \circ q_{\delta}) * \chi) = \mu * (\nu_j \circ q_{\delta}) * \chi = T^t_{\mu}(\nu_j \circ q_{\delta}) * \chi$$

tends to zero in $\mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$. Hence it tends to zero in $\mathcal{D}_{\{\omega\}}(\Omega_2)$. Since $\mathcal{D}_{\{\omega\}}(\Omega_1)'$ and $\mathcal{D}_{\{\omega\}}(\Omega_2)'$ are Fréchet-Schwartz spaces, (1) implies that S^t_{μ} is an injective topological homomorphism. Therefore, we conclude that $((\nu_j \circ q_\delta) * \chi)_{j \in \mathbb{N}}$ is a null-sequence in $\mathcal{D}_{\{\omega\}}(\Omega_1)$ for each $\chi \in \mathcal{D}_{\{\omega\}}(B_{\varepsilon}(0))$. By the same argument that we used in the proof of Proposition 2.2, $(3) \Rightarrow (4)$, this implies that $(\nu_j \circ q_\delta(f))_{j \in \mathbb{N}}$ is a null-sequence for each $f \in \mathcal{E}_{\{\omega\}}(\mathbb{R}^n)$. Hence $(\nu_j)_{j \in \mathbb{N}}$ is a weak null-sequence, which completes the proof.

 $(3)\Rightarrow (4)$. This holds by Proposition 3.4.

(4) \Rightarrow (1). Since $\mathcal{D}_{\{\omega\}}(\Omega_j)_b'$ is a Fréchet space for j=1,2, we get (1) from the surjectivity criterion [22], 26.1, if we show:

If $M \subset \mathcal{D}_{\{\omega\}}(\Omega_1)$ and $S^t_{\mu}(M)$ is bounded in $\mathcal{D}_{\{\omega\}}(\Omega_2)$ then M is bounded in $\mathcal{D}_{\{\omega\}}(\Omega_1)$.

To prove this, fix M as above. Since $\mathcal{D}_{\{\omega\}}(\Omega_2)$ is a (DFN)-space there exists $K_2 \subset \Omega_2$ compact so that $S^t_{\mu}(M)$ is bounded in $\mathcal{D}_{\{\omega\}}(K_2)$. Choose

 $K_1 \subset \Omega_1$ compact according to the μ -convexity of (Ω_1, Ω_2) and note that $E*: \mathcal{D}_{\{\omega\}}(K_2) \to \mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$ is continuous and linear. Hence $E*S^t_{\mu}(M) = M$ is bounded in $\mathcal{D}_{\{\omega\}}(\mathbb{R}^n)$ and has support in K_1 . This implies that M is bounded in $\mathcal{D}_{\{\omega\}}(\Omega_1)$.

Remark. Note that the conditions in 3.5 in general are not equivalent to the surjectivity of $T_{\mu}: \mathcal{E}_{\{\omega\}}(\Omega_2) \to \mathcal{E}_{\{\omega\}}(\Omega_1)$. For $\Omega_1 = \Omega_2 = \mathbb{R}^n$ this follows from an easy extension of Braun, Meise and Vogt [7], Ex. 3.11, to the case of several variables. By Meyer [23], Thm. 3.13, this example also shows that there are $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ with Supp $\mu = \{0\}$ and open sets Ω in \mathbb{R}^n so that $T_{\mu}: \mathcal{E}_{\{\omega\}}(\Omega) \to \mathcal{E}_{\{\omega\}}(\Omega)$ is not surjective. In fact, even linear partial differential operators with constant coefficients in general are not surjective on $\mathcal{E}_{\{\omega\}}(\Omega)$, Ω open in \mathbb{R}^n . For a characterization and references to earlier work on this subject we refer to Langenbruch [18].

- **3.6.** COROLLARY. Let ω and σ be weight functions satisfying $\omega = o(\sigma)$, let Ω_1, Ω_2 be open subsets of \mathbb{R}^n and let $\mu \in \mathcal{E}'_{\{\omega\}}(\mathbb{R}^n)$ satisfy $\Omega_1 + \operatorname{Supp} \mu \subset \Omega_2$. Then the following conditions are equivalent:
- $(1) \quad \mathcal{E}_{\{\sigma\}}(\Omega_1) \subset T_{\mu}(\mathcal{E}_{\{\omega\}}(\Omega_2)).$
- (2) $S_{\mu}: \mathcal{D}'_{\{\sigma\}}(\Omega_1) \to \mathcal{D}'_{\{\sigma\}}(\Omega_2)$ is surjective.

Proof. (1) \Rightarrow (2). Since $\omega = o(\sigma)$, from Braun, Meise and Taylor [6], 3.9, and (1) we get

$$\mathcal{E}_{\{\sigma\}}(\Omega_1) \subset T_{\mu}(\mathcal{E}_{\{\omega\}}(\Omega_2)) \subset S_{\mu}(\mathcal{D}'_{\{\omega\}}(\Omega_2)) \subset S_{\mu}(\mathcal{D}'_{\{\sigma\}}(\Omega_2)).$$

Hence (2) follows from Theorem 3.5.

 $(2)\Rightarrow (1)$. By Theorem 3.5, there exists $E\in \mathcal{D}'_{\{\sigma\}}(\mathbb{R})$ satisfying $E*\mu=\delta$. By [6], 7.6, there exists a weight function $\kappa, \kappa=o(\sigma)$ and $\omega\leq\kappa$, so that $\mu\in\mathcal{E}'_{(\kappa)}(\mathbb{R}^n)$ and $E\in\mathcal{D}'_{(\kappa)}(\mathbb{R}^n)$. Again by Theorem 3.5, the pair (Ω_1,Ω_2) is μ -convex for $\{\sigma\}$, hence also for (κ) , by the remark after 2.1. Thus Proposition 2.6 implies $T_{\mu}(\mathcal{E}_{(\kappa)}(\Omega_2))=\mathcal{E}_{(\kappa)}(\Omega_1)$ and hence

$$\mathcal{E}_{\{\sigma\}}(\Omega_1) \subset \mathcal{E}_{(\kappa)}(\Omega_1) = T_{\mu}(\mathcal{E}_{(\kappa)}(\Omega_2)) \subset T_{\mu}(\mathcal{E}_{\{\omega\}}(\Omega_2)),$$

since $\mathcal{E}_{(\kappa)}(\Omega_2) \subset \mathcal{E}_{\{\omega\}}(\Omega_2)$.

References

- [1] C. A. Berenstein and M. A. Dostal, Analytically Uniform Spaces and Their Applications to Convolution Equations, Lecture Notes in Math. 256, Springer, 1972.
- [2] K. D. Bierstedt, R. Meise and B. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), 107-160.

- J. Bonet and A. Galbis, The range of non-surjective convolution operators on Beurling spaces, Glasgow Math. J. 38 (1996), 125-135.
- [4] J. Bonet, A. Galbis and S. Momm, Nonradial Hörmander algebras of several variables, manuscript.
- [5] R. W. Braun, An extension of Komatsu's second structure theorem for ultradistributions, J. Fac. Sci. Univ. Tokyo 40 (1993), 411-417.
- [6] R. W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237.
- [7] R. W. Braun, R. Meise and D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990), 344-370.
- [8] Ch. Chou, La Transformation de Fourier Complexe et l'Équation de Convolution, Lecture Notes in Math. 325, Springer, 1973.
- [9] I. Ciorănescu, Convolution equations in ω-ultradistribution spaces, Rev. Roumaine Math. Pures Appl. 25 (1980), 719-737.
- [10] L. Ehrenpreis, Solution of some problems of division, Part IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522-588.
- [11] U. Franken and R. Meise, Generalized Fourier expansions for zero-solutions of surjective convolution operators on $\mathcal{D}'(\mathbb{R})$ and $\mathcal{D}'_{\omega}(\mathbb{R})$, Note Mat. 10, Suppl. 1 (1990), 251-272.
- [12] O. v. Grudzinski, Konstruktion von Fundamentallösungen für Convolutoren, Manuscripta Math. 19 (1976), 283-317.
- [13] S. Hansen, Das Fundamentalprinzip für Systeme linearer partieller Differentialgleichungen mit konstanten Koeffizienten, Habilitationsschrift, Paderborn, 1982.
- [14] L. Hörmander, On the range of convolution operators, Ann. of Math. 76 (1962), 148-170.
- [15] —, An Introduction to Complex Analysis in Several Variables, Princeton Univ. Press, 1967.
- [16] -, The Analysis of Linear Partial Differential Operators I, II, Springer, 1983.
- [17] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo 20 (1973), 25-105.
- [18] M. Langenbruch, Surjective partial differential operators on spaces of ultradifferentiable functions of Roumieu type, Results Math. 29 (1996), 254-275.
- [19] R. Meise and B. A. Taylor, Whitney's extension theorem for ultradifferentiable functions of Beurling type, Ark. Mat. 26 (1988), 265-287.
- [20] R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756.
- [21] —, —, —, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996), 213-242.
- [22] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Univ. Press, 1997.
- [23] T. Meyer, Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type, Studia Math. 125 (1997), 101-129.
- [24] S. Momm, Closed ideals in nonradial Hörmander algebras, Arch. Math. (Basel) 58 (1992), 47-55.
- [25] —, Division problems in spaces of entire functions of finite order, in: Functional Analysis, K. D. Bierstedt, A. Pietsch, W. Ruess and D. Vogt (eds.), Marcel Dekker, 1993, 435-457.

in \mathbb{C}^N , Indiana Univ. Math. J. 41 (1992), 861–867.

J. Bonet et al.

S. Momm, A Phragmén-Lindelöf theorem for plurisubharmonic functions on cones

José Bonet Dpto. Matemática Aplicada Universidad Politécnica E-46071 Valencia, Spain

E-mail: jbonet@pleiades.upv.es

198

Antonio Galbis Dpto. Análisis Matemático Universidad de Valencia E-46100 Burjasot (Valencia), Spain E-mail: galbis@uv.es

R. Meise
Mathematisches Institut
Heinrich-Heine-Universität
D-40225 Düsseldorf, Fed. Rep. of Germany
E-mail: meise@mx.cs.uni-duesseldorf.de

Received February 6, 1997 Revised version May 19, 1997

(3836)

New publication from the Institute of Mathematics

Dissertationes Mathematicae, Issue 363

Stanisław Prus

Banach spaces and operators which are nearly uniformly convex

1997, 46 pp., ISSN 0012-3862 \$14.50 (\$7.25 for individuals)

From the contents:

Introduction

- I. Basic definitions and notation
 M-bases and finite-dimensional decompositions
 Some geometric properties of Banach spaces
- II. Constructions of equivalent norms
- III. (p,q)-estimates in interpolation spaces
- IV. Geometric properties of operators Nearly uniformly convex operators Nearly uniformly smooth operators
- V. Factoring operators through nearly uniformly convex spaces Factorizations and geometric properties of operators The case of spaces with finite-dimensional decompositions

To be ordered through your bookseller or directly from Institute of Mathematics, Polish Academy of Sciences P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997