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On the range of convolution operators on non-quasianalytic
ultradifferentiable functions

by

J. BONET (Valencia), A. GALBIS {Valencia)
and R. MEISE (Dasseldorf)

Abstract. Let £,)(42) denote the non-quasianalytic class of Beurling type on an open
set 2 inR™. For p € Efw) (R™) the surjectivity of the convolution operator T« £ (1) —
E(w)(ﬁz) is characterized by various conditions, e.g. in terms of a convexity property of
the pair (21, £23) and the existence of a fundamental solution for J or equivalently by
a slowly decreasing condition for the Fourier-Laplace transform of p. Similar conditions
characterize the surjectivity of a convolution operator S, : Df[w}(ﬂl) - D%w}(ﬂz) be-
tween ultradistributions of Roumien type whenever ;1 € Eiw}(R“). These results extend

clasgical work of Hormander on convolution operators between spaces of &'™-functions
and more recent one of Ciorfinescu and Braun, Meise and Vogt.

Since the classical work of Ehrenpreis [10] and Hérmander [14], convo-
lution operators on various spaces of infinitely differentiable functions and
distributions have been investigated by many authors (see e.g. Berenstein
and Dostal [1], Chou [8], Cior&nescu [9], Franken and Meise [11], v. Grudzin-
ski [12], Meise, Taylor and Vogt [20], Braun, Meise and Vogt [7], Meyer [23],
Momm [24], [25]). The starting point for the research presented here was
a recent result of Bonet and Galbis [3]. They proved that sach convolution
operator T, acting on the non-quasianalytic class £,)(R") (defined in the
senge of Braun, Meise and Taylor [6]) for which T, (€q,)(R)) contains some
smaller class £,y (R") already acts surjectively on £y (R™).

In the preseut paper we show that this holds in greater generality and is
an immediate corollary to the following extension of results of Hoérmander
[14] to the non~cuiasianalytic classes £,)(R™) (see 2.7-2.9).

THEOREM A. Let pn € &, (R") and open sets 02y, 2y in R* with {4 +
Supp ft C (2 be given. Then the following conditions are equivalent:

(1) For cach g & Ery (1) there ewists | € £,y (£22) with p+* fla, = g.
(2)  For each g€ Ew)(12y) there ewists f € Déu)(ﬂz) with p* flo, = g.

1991 Mathematics Subject Classification: 48105, 46E10, 46F10, 35R50.
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(3) (21, (2) is fi-convez for (w) and there ewists E € 'wa) (R™) satisfying
px E =4

Here ({21,42,) is u-conves for (w) if for each compact subset K, of 0,
there exists a compact subset Ky of £2; such that each y € D,y () satis-
fying Supp p * ¢ C K> already satisfies Suppy C K.

Similarly we characterize the surjectivity of convolution operators be-
tween ultradistributions of Roumieu type {w} by the following theorem
which extends a result of Braun, Meise and Vogt [7] for the case of @ =
2, = R (see Thm, 3.5).

THEOREM B. Let p € Eiw (R™) and open sels £21, 12y in R™ with ) +
Supp it C 25 be given, Then t}ae following assertions are eguivalent:

(1) For each g € D1 (1) there ezists f € D\ () with p* flo, =g.

(2)  For each g € £,}(f21) there exists f € D%w}(ﬂz) with p* flo, =g

(3) (124, ) is ji-convex for {w} and there exists E & Diuy (R™) satisfying
pt B =8,

To prove Theorem A we modify arguments that were used in Hormander
[14]. In doing this, the main difficulty is to show that (2) tmplies (1). To
overcome it we use a result of Braun [5] which sharpens the second struc-
ture theorem of Komatsu [17]. Further we apply a result of Hansen [13] on
the projective description of the topology on the space of Fourier-Laplace
transforms of Dy,)(R") to characterize the surjectivity of T}, on Ewy(R™)
by a slowly decreasing condition of Ehrenpreis type, in the form due to
Momm [24]. Also we apply a surjectivity criterion for continuous linear
maps between Fréchet spaces (see Meise and Vogt [22], 26.1) which is better
adapted to our applications than classical results of this type.

Earlier versions of Theorem B appear in the literature only in the case
) = {2 = R in Braun, Meise and Vogt [7]. From this paper it also follows
that Theorern A does not extend literally to the Rowmiou case because
there exists y € wa}(R) for which not all equations pe f = g, g € €,(R),
admit a solution f in £, (R), though there exists & € Dl ) (R) satisfying
p* B = é. The proof of Theorem B is based on the arguments mentioned
above and on reductions to the Beurling case which go back to Braun, Meise
and Taylor [6],

Note that the above results apply in particular to the Gevrey classes
I and ' for d > 1 and also to the classes £M») and £1Mp} whenever
the sequence (M, }yen, satisfies the conditions (M1), (M2) and (M3) of Ko-
matsu [17), because then £0)(2) = Ewyy () and EM}(£2) = £¢,,1()
for war(f) = sup e, 10g(¢? Mo /M) for £ > 0 and war(0) := 0, by Meise and
Taylor [19], 3.11. :
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1. Preliminaries. In this preliminary section we introduce the non-
quasianalytic classes, the spaces of ultradistributions and most of the nota-
tion that will be used in the sequel.

1.1. DEFINITION. A continuous increasing function w : [0, oo[ = [0, 00[
is called a weight function if it satisfies the following conditions:
(ex) there exists K > 1 with w(2¢) < K(1 +w(t)) for all t > 0,

(8) §7° (w(t)/1?) dt < oo,
{(7) logt = o(w(t)) as t — oo,
() ¢ : t > w(et) is convex.

For a weight function w we define & : C* — [0, oc[ by @(2) = w(]z|) and
again call this function w, by abuse of notation. The function

" (y) = sup{zy — p(z) : & 2 O},
is called the Young conjugate of ¢.

@* : [0,00] — R,

1.2. Remark. (a) Each weight function w satisfies lim; o w(t)/t = 0
by the remark following 1.3 of [20].

(b) For each weight function w there exists a weight function o satisfying
o(t) = w(t) for all large ¢ > 0 and &[0, 1] = 0. This implies ©,{y) = @u(y)
for all large y, ¢} ([0, c0[) C [0,00] and ¢2* = ,. From this it follows that
all subsequent definitions do not change if w is replaced by ¢. In fact, they
do not change if w is replaced by a weight function & which for some a > 1
and b > 0 satisfies

(%) | %m('{;) ~b < w(t) < ak(t) +b, 2 0.

Note that for each weight function w there exist ¢' > 0 and a differentiable

weight function x which satisfies () and

k() < Cw{t) + C

1.3. DEFINITION. Let w be a weight function.
{a) For a set K C R™ and A >0 let

EL(K,A)

={f e C%(K): | flxa = sup ;g@ £ (z)| exp(—Ap*(Jo] /A)) < oo}

forallt > 0.
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(b) For an open set 2 C R define

Ew)(2) = proj proj (K, m)
K€ meN
= {f € 0°(2) : ||fllg,m < oo for cach K & {2 and each m ¢ N},

and
£y (£2) = proj -illgﬁ'w(K, 1/m)
;‘_;EhmEN
= {feC®(%):

for each K @ £ there is m € N with || f||x,) jm < o0},

The elements of £(,,)({2) (resp. £ {2)) are called w-ultradifferentiabie func-
tions of Beurling (vesp. Roumieu) type on f2. We write £,(§2), where % can
be either (w) or {w}.

(c) For a compact set K in R* we let

Du(K) = {f € &«(R™) : Supp(f) < K},

endowed with the induced topology. For an open set 2 € B and a funda-
mental sequence (K;};en of compact subsets of 12 we let

Du(£2) 1= ind Py (K).
J—=*

For A > 0 and ¢ € D.(R") we lot ||| = ||e]lwn,5. The dual Di(2) of
D, (£2) is endowed with its strong topology. The elements of ’Déw)(!)) (resp.

D’{uﬁ(ﬂ)) are called w-ultradistributions of Beurling (resp. Roumieu) type
on d44.

1.4. Remark. {a) By Meise, Taylor and Vogt [21], 3.3, for each open

set £2 in R™, the semi-norms
[ i = f = sup sup [F (@) exp(--o3(|er])),
nE R ol

where K is any compact set in 2 and o i a weighl function satisfying
7 = o(w), form a fundamental system of semi-norms for £(,1(£2).

‘(b) For each compact set K in R™, Dy, (K) is a (DFN)-space by Braun,
ﬁ/[eme and Taylor [6], 3.6. A fundamental systewm of bounded sets is given
¥

By, = {(,D S D{w}(K) : ‘W]K,m = S |@(E)}GW(C)/7’H At < 1},
n-k‘"
Where (,’5(5) = S{P(m)e‘“““ﬂf) d;&) é‘ & ]R‘ﬂ‘
(c) For eaqh compact set K in R™, Dy, (K) iy a nuclear Fréchet space,
by Braun, Meise and Taylor [6], 3.6. A fundamental system of sexi-norms
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on D) (K) is given by (|| - ||l &,m)men defined in 1.3 but also by

Il = § 13()le™® dE, € Diy(K).
Rr

(d) Let £2 be an open subset of R and (K, +);en a fundamental sequence
of compact subsets of 2. Then a fundamental system of semi-norms for
Dwy(12) is obtained by (Ko :=0)

lelem = sup Ly sup  sup [0 ()| exp(~Myep* (jal /M),
j€Ny T agfN\K; weNg
where £ = (L;)jen, and M = (M;)jen, are increasing sequences in 10, 00]
resp. N. This can be shown similarly to Hérmander [16], 15.4.1,

1.5. ExaMPLE. The following functions w : [0, oo[ — [0, oo are examples

of weight functions:

(1) wlt)=t%0<a<],

() w(t) = (log(L +1)%, B> 1,
(3} w(t) =t(logle+1t))"?, B> L

Note that for w(t) = t%, the classes £,y resp. g3 coincide with the Gevrey
classes '@ resp. M4} for d = 1/a.

1.6. Conwolution operators. Let p € EL(R™), u 5 0, and open sets {21, {2
in R® be given. If 21 + Supp p C {22 theh we define (compare Braun, Meise
and Taylor [6], Sect. 6):

(a) S:L : Du(1) = Du((22), Sfi(‘p) = p* ol
where g : z — p(p(z —-)), © € R™. Since S, is continuous and linear, so
is its adjoint operator

Sy = (5L D(2) = DL(20).
(b) Th: EL () = E((%),  Tp(v) = pxv|an
where p * v(p) = (4 * (7 % ))(0) and where #() = v(¢) and ¥(z) =
P(—z), = € R*. Again Tﬁ iy continuous and linear, so that its adjoint

T, = (Tﬁ)t L E.(22) = Eul 1)

is continuous and linear.

Note that S,(v) = 2% v and Tu(f) = A f, so that it 18 reasonable
to call the operators S, and T, convolution opemtorts. Note.fur-ther that
Tﬁ|9*(nl) = Sﬁ and Sulz, (2q) = Tu and that Tﬁ and S}, are injective.

1.7. Spaces of entire functions. Let A(C") denote the space of all en-
tire functions on C", endowed with the Fréchet space topology of uniform
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convergence on all compact subsets of C*, For an upper semi-continuous
function v : C* — 0, 00] we define .

A, €)= {f € At [fl = sup [£()[o() < oo}

and note that A(v,C") is a Banach space.
1.8. Fourier-Laplace transform. For p € &E,(R") its Fourier-Laplace
transform i € A(C") is defined ag
i(z) = plexp(~1(-,2))), zeC".
To characterize its growth behaviour, ix a weight function w and define the
functions w;, w;k, v5 and vz by

e) = exp(-(mel + (), wsele) = e (~ilimal - ).

vi(2) = exp (—«j}lmzl + %w(z)) ro ve(2) = exp(—g)lm 2| + kw(z)).

Then the Fourier-Laplace transform F : u -+ [i is an isomorphism between
the following spaces (see Braun, Meise and Taylor [6], 3.5 and 7.4):

géu)(Rn) - EI}_EI Alw;, C), giw}(mn) - lﬁf;l pr‘;’cj Alwjr, C),

Dy (R™) — ijnd proj A(vsr, C"),  Dywyp(R™) — ind A(vw,, C").
ok N i d

Moreover, for p, v € £,(R™) and ¢ & D (R™) we have

F(Su()) = F(@)F(v) and F(Th(p)) = F(u)F(p),
hence F o S} o F~1 (resp. F o T o F~1) is the operator of multiplication
by F ().

Note that by Bierstedt, Meise and Summers [2], 1.6, the inductive limits
ind;_, A(w;,C*) and ind;—, A(v;,C*) can be represented as ntersections of
weighted Banach spaces. To indicate that this can be done also in the more
complicated case ind;_, proj,..;, A(v; 5, C*), let
Vi={v:C" = |0, ool : v Is upper semi-continuous and for each j € N

there are oty > 0 and & = k(5) & N with v < ey}
and let _
AV(CT") = {f € A(C") 1 | Flls < o0 for each v & V7,
endowed with the locally convex topology of the system (i lo)vep of semi-

norms. Then one can use 1.2(b) and 1.4(d) to modify the proof of Hormander

[16], 15.4.2 (see also Berenstein and Dostal (1], 1T, §1, and Hangen [13], 4.6},
to show that

ind proj A(v;, C) = AV(C")

as locally convex spaces.

icm

Convolution aperators on ultradifferentiable functions 177

1.9. Ultradifferential operators. Let w be a weight function. If @ & A(C)
satisfies log |G| = O{w) (resp. o(w)) then

NI

o 3 (- S0

achf
defines an element Ty of Dzw)(IRi"') (resp. D w}(R™)). The operator
(D) : DL(RY) - DUR™), G(D)t =T % s,
is then called an wliradifferential operator of class *. From 1.4(b) and (c) it
follows that G(D) : Du(K) — D,(K) is a continuous linear map for each
K C R* compact. Note that Supp G(D)T C Supp T for each T € D, (R").
For later application we note the following extension of Komatsu [17],

10.2: For each K C R" compact and each j € N there exists G € A(C")
with log |G| = O(w) such that

(*) [ellks < sup [GEBE)], @ € Dyy(K).
EeiRn

To prove this, fix A > 0 and use Braun [5], Lemma 6 and the proof of
Lemma 7 (for an alternative proof see Langenbruch [18], 1.3 and 1.4), to
find G € A(C") satisfying log || = O(w) such that log |G(€)! > (A4 Lw(¢)
for all £ € R™. Then for each ¢ € Dy, (R™) we have

g6y de < [lpte) e dg < (Jem0 de) sup [GH(E)P(6).
Since w satisfies 1.1{y) this implies (+) in view of 1.4(c).

2. The Beurling case. In this section we characterize those ultradis-
tributions u € 5(’w)(R"') for which the convolution operator T}, : £,y({22) —
Ewy(f21) s surjective where {21 and (2, are open subsets of R" satisfy-
ing {2y -+ Suppp C 2. In doing this we extend some of the results of
Hérmander [14]. Throughout this section w will always denote a fixed weight
function.

To formulate our first result we need the following definition.

2.1. DEFINTTION, For 4 € £/ (R") and open sets {2, (% in R" satisfying
1 +8upp pu ¢ £2, the pair (21, £25) is called y-convez for  if the following
holds: For each compact set Ky in {2, there exists a compact set K in
{21 such that the map S% : D, (1) — Dy(£2) satisfies (S5)"H(Du(K3)) C
Dy (Kl) )

Remark. (a) A standard smoothing argument shows that ({24, 122) is
p~convex for * if and only if the following holds: For each compact set Ky
in {2; there exists a compact set K in 2y such that each v € £(2;) which
satisfies Supp Tﬁu C K3 already satisfies Suppwv C K.
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(b) If o € EL(R™), p # 0, is given and 2, is a convex open set in B" which
contains Supp i then the largest open set £, satisfying {2y + Supppu C 0,
is convex, satisfies even 2y + conv(Supp i) € {22 and the pair (12, 12) is
p-convex for +. This follows by a standard smoothing argument from the
theorem of supports (see Hormander [16], Thmn. 4.3.3).

2.2. PROPOSITION. Let p € £fw (R™) and open sets (21, 23 in R™ with

2 + Supp i C 12 be given. Then the following assertions are equivalent:

1) Euw(fn) C SMDEM)(L%).

(2) (8L 8L(Dy (1) — Diwy(f1) i sequentially continuous.

(8) (124,12} is p-convex for (w) and the following condition is satisfied:
For each compact set Ky in {21 and each j € N there exist I € N and
¢ > 0 such that |¢||x,,; < ClIStell for each p € Dy (K7).

(4)  Th: Ewy(R2) = Euy(1) is surjective.

Proof. (1)=(2). To prove this we claim that (1) implies

(5) For each K, compact in (2 there exists K compact in  and
m,l €Ny and €' > 0 such that for each f € &)(f) and ¢ €
D) (121) satisfying S € D) (Kz) we have

1500 < CllflemlStplins
To derive (5) from (1) fix K as above, let
H = {veDyp)(K):v= qu,b for some 9 € D,y (21)}
and define the bilinear form
B:Euy()x H—C,  B(fv):={f(SE) " wdh.

Obviously, B(:,v) is continuous on E¢,y(2,) for each v € H. If f € £){((h)
is fixed, then the hypothesis implies the existence of some u € ’Dzu)(ﬂg)
satisfying f = S,u. Hence, for each v € H,

B{f,v) = Sf(SE)"lv dA = Su(u)[(Sﬁ)“l'uj = ?L[S,‘l,(Sﬁ)_'l”U] = (V).

Thus, B(f, -} is continucus on K. Since B is a separately continuous bilinear
form on the product of a Fréchet space with a motrizable locally convex
space, B is continuous, which implies (5).

To derive {2)-from (5), let (iok)ken be a sequence in Dy,y(§2,) for which
(Sfor)ken is a nullsequence in Dyyy(2s). Since D) (f22) is a strict (LF)-
space, there exists a compact Ko in £2; 80 that (S"ﬂnpk)ke x is a null-sequence
in D) (K2). Applying (5) for this K, we get a compact set Ky in {2 such
that ¢ € D(,y(K1) for each k. To show that i) tends to zero weakly in
D) ix v € E(’w)(ﬂl) and m € Ny according to (5). By Braun (5],
Thm. 8, there exist an ultradifferential operator G(D2) of class (w) and g €
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£,(R™,m) so that v = G(D)g. Next note that by an easy regularization
argument condition (5) holds even for all f € projxen, E,(K,m). This
implies

(on)| = (G ew)| = [J9(G(~D)er) aA|
< Clgllsey,mll UG (=DYpr)cas S C'lglzerm [ Skl 7

since G(—D) is a continuous linear operator on D(uy(Ka). Hence (v(px))
is a null-sequence. Now the fact that D) (K 1) is a Fréchet~Montel space
implies that the weak null-sequence (¢ )ken is indeed a null-sequence. Hence
(§%)~1 is sequentially continucus.

(2)=>(3). ¥f we assume that ({21, (%) is not u-convex for (w) then there
exist a compact set Ky in 23 and a sequence (i) ken in D)(1) so that
Uken Supp @k is not relatively compact in £21, while Shex € Dy)(Ka2) for
all k € N. Since ‘Daw)(Kz) is a Fréchet space we can find a sequence (Ak)keri]
in 0, 1] so that (5% (Akwx))ken is a mull-sequence in D(wy(Ka2). Since (S§)~
is sequentially continuous by hypothesis, this implies that (Apigr)ren is 2
null-sequence in D,)(f21). Hence there exists a compact set K in {21 so
that Suppox C K for all k € N, contradicting our choice of the sequence
(ox)ken. Comsequently, (12, {22) is p-convex for (w).

To show that the second condition also holds, fix a compact set K
in £21. Then Ky := K + Supp p is compact in {2y, by hypothesis. Hence the
p-convexity of ({21, {2;) implies the existence of & compact set @ > Kj s0
that '

(95)"H{(Dw) (K2) N Sh(Pu{1))) € D) (Q):
Therefore, the restriction of (§4)7F to Deuy(Ka2) N S, (Du({11)) maps this
space into Dy, (Q) C Dy (21). By (2) this map is sequentially continu-
ous for the topologies induced by Dy,y({22) resp. D)y (f21) and therefore
continuous. Obviously, this implies (3). '

(3)=>(4). By the surjectivity criterion in Meise and Vogt [22], 26.1, con-
dition (4) follows from
(6) If T(B) is bounded in &,(f22) for some B C &,(h) then B is

bounded in &[,,({21).
To prove that (3) implies (6), fix any set B in £[,,(f1) for which TL(B) Is
bounded. Since £,)({22) is a Fréchet space, there exist a compact set Ko in
25, m € N and € > 0 such that
M [T()] € Ollflxam for all § € Ey(12) and v € B.

Obviously (7) implies Supp(Thv) ¢ Kp for each v € B. By the remark
after 2.1, the u-convexity of (£2y, {2) implies the existence of a compact sgt
Ky in (% so that Suppy C Ki for all v € B. Note that B is bounded in
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ng)(ﬂlj if for each sequence (0j);en in B an.d eafch null-sequence (o;);ey
the sequence (v;)jen, ¥j 1= @50}, is bounded in E(w)(ﬂl). To prove this fix
(5)jen and {e;);en. Then (7) implies that (Tﬁyj )jen I8 a null-sequence in

E{,({22). Next choose ¢ > 0 50 that K + Be(0) C 2y and Ky + B.(0) c 0,
and note that for each x € Dy,)(Be(0)) we have

(8) ‘ Tz(VJ)*X=(}L*VJ)*X=M*(yJ*X):SL(VJ*X)

Since (T7;(v;))jen converges to zero in 8(’01)(]1%”), the left hand side in (8)
converges to zero in Dy,)(R") and hence in Dy, (K2 + Be(0}). Using (8),
it follows from (3) that (v; # x)jen converges to zero in Dy, (IR™}. Next fix
f € £uy(f1). Then there exists ¢ € D)) so that v (f) = v;(p) for
all § € N. Since Supp¢ is compact there exist =1,...,2, € 2y and ¢, €
Diwy(Be(zk)), L <k < p, so that o = 375 k. Then let xy := pp(zp — ).
Since Supp xx C B:(0) we get from the above

vi(f) = vi(p) = Vj(z ‘Pk) = Zvj * Xk (ZK) = 0.
k=1 'ES)

Hence (vj)}jen converges to zero pointwise. Since £p,)(£21) is barrelled,
(vj)sen is bounded in £, (f1). Hence (6) holds.

(4)=-(1). This holds trivially.

To derive further conditions that are equivalent to 2.2(2), we will use
the following definition which goes back to Ehrenpreis [10]. The present
formulation is due to Momm [24].

2.3, DEFINITION. An ultradistribution g € SEw)(R”) is called slowly

decreasing for (w) if there exists ¢' > 0 such that for each z € R® with
|z| > C there is £ € C" with

|2~ ¢ < Cw(z) and |B(4)] 2 exp(~C|lwg| - Cw(£)).
From Bonet, Galbis and Momm [4] we recall:

2.4. LEMMA. The ultradistribution p € E(’ w)(]R{“') i slowly decreasing for

(w) i and only if there emists k € N such that for each j € N there eist

m €N and C >0, B > 0 such that for each z € C*, |z| 2 R, there exists
w € C* satisfying

1
[w — 2| < kw(z) +_3\Im 2l end |fi(w)| = Cexp(—m(|Tm 2| + w(2)))-

Similarly to Ehrenpreis [10], Thm. 2.2, we prove:
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2.5. PROPOSITION. If 4 € EEW)(]R’”) is slowly decreasing for (w) then S, :

2 )(R”) -y J(R™) is surjective. In particular, there exists E' € Dy, (R")
w [

satisfying Su(E) = 6.

Proof. It suffices to show that
(1) (587" : SL(P(uy(R™)) = Diw)(R™)  is continuous
if Sfl(’D(w)(R”)) carries the topology inc%uced by ID(E) (R™). Narttlel_yl, (1.) im-
plies that for each A € Dy, (R™) the linear form' ZE o’(Sﬂ)n is con-
tinuous on §%(D(w)(R™)), hence admits an extension ¥ & D,y (R™), by the
Hahn-Banach theorem, and v satisfies

(Su())(p) = v(Ske) = T(S}p) = A}, ¢ € Dwy(R"):
Since the Fourier-Laplace transform is an isomorphism between Dy,)(R")
and the space ind;_, proj._i A(vss, C*) = AV(C"), introduced in 1.8, and
since (S, ()" = 7, (1) follows from ~
(2) foreachwve V there exists w € V and e > 0 such that f € AV(C")
and ||Ef|lw < € imply £l £ 1.

To prove (2) we note that by Lemma 2.4 there exist k € NmeNC>0
and R > 0 such that for each z € C* with (2| > Rand r(z) 1= kw(z)+3|Tm 2|
we have
@ IC—iFSp?“(Z)
Since p is in £, (R") we get from 1.8 and 1.1(e) the existence of € N and
A > 0 such that

4 sup
“ I¢—2]<dr(z)

i) = Cwm(2).

(O] < Afw(2)-

Now let p := I + 2m, fix v € V and note that without restriction v(z) > 0
for each z € C™. Then define
©O(z) = sup

[¢—z|L4r({)
To show that  belongs to V, fix j € N and let ¢ :=p+ 2j. Since v ishi.n
7 there exist a, > 0 and k(g) € N such that v < agUgi(): To apply t 1§
we need some preparation, First note that by 1.2(a) we can find L > 1 suc
that w(t) < t + L for all ¢ > 0. Then for {,z € C" satisfying |¢ — 2| < 4r(()
we have

v({)/wp(¢), z€C.

[ ¢| > [Imz| — |2 — (| = [Tmz]| — 4kw(¢) — A {Tm|

and hence



182 J. Bonet et al.
(5) ] > ifm 2| - Shkw(C).
Also we have

IC1 > 12| — |2 — ¢} 2 |2] = 4hw(C) - §[Im ] 2 |2| — dkw(C) — 31K
This implies
(6) 2] < BI¢] + 4kw(C) < (3 + 4k)[¢] + 4K L.

By 1.2(a) we can find Ry > 0 such that w(t) < gzt for t > Ro. Because of
(6) we can choose Ry > Rp such that [z] > Ry and |¢ — 2| € 4r(¢) imply
i¢| = Ro. Therefore we have, for such z and ¢,

1] < 1¢ = 2| + 2] € 4kw(¢) + ICT+ 2] € I+ 5I¢T+ |2 = §1¢] + |2
and hence || < 4|z|. Now the choice of ¢ and (5) imply for |z| > Ry and
¢ — 2 < 4r(¢),

chgc)) < ””qvq{jﬁ?)c()o = agexp((—¢ +p)Im ] + (k(g) + p)wl(<))
< g exp(~25(3[lmz| — §ke(()) + (k(g) + p)(0))
< ogexp(—jIm 2| + (k5 + k(g) +p)w(())-
Since |¢| < 4|z| and since 1.1{ax) implies the existence of S € N satisfying

w(4dt) < Sw(t) for t > Ry (assuming that R; is sufficiently large), we get
from this

v(()
wp(C)

if we let v(5) = S(%kj + k(g) + p). Since v;,,(;y is continuous and since
@ is bounded on {2z € C" : |z| < Ry}, we can find §; > a4 such that & <
Biv;u(j)- Since j € N was chosen arbitrarily, this proves @ € V. Similarly
to the proof of Bierstedt, Meise and Summers [2], Prop. 0.2, we can find a
conté;uous function w € V which satisfies w > @ and w(z) > 0 for each
RS .

Next let

< agexp(—jlimz| + v(fw(z)), 2] = B, [ =2 < 4r(C),

1

M= sup v(z ( sup ———) +1
: |2|<Ry % jzl< Ry (%)

and choose 0 < £ < C?/ (AM), where C (resp. A) is the constant from

(3) (resp. (4)). Then fix f € AV(C") satisfying ||fif|lw < & To show that

[|f]]. €1, fix z € C* with |z| > R, apply Hérmander [14], Lemma 3.2, to

f = pf/u, and use (3) and (4) together with the choice of p to get for 2 € cr
Wlth |Z| 2 Rl:«
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0 @)
vl e EOD(_swe BOFON s RO

|¢—z|£4r{=z) [ 2| <4r(2) [¢—z|gr(z
A 2
<) 5 (o) (2, MOS0
Av(z)

< et BUP —
Ozwp(z) |¢—z|S4r{z} w(C)
By the continuity of w, the supremum in the last estimate is attained at
some (o € C satisfying [(o — 2| < 4r(2). Because of the definition of @ and
the choice of w this implies

. v(¢)
w(Go) 2 lco) c—colarce) 2o (C)

v(z)

wp(z)

2

Hence from (7) we get

1 1
8) w(z}|f(z SAC“zev(z)~———-<AC”2a<m<l, z| < Rj.
®) v2If () R AR - 2] < Ry
By the maximum principle we conclude from this
. 1 1
9 sup v{z)|f(z)| £ su v(z) » ————— == < L.
®) |2| <Ry @I \zls%1 % supyi<r, U(2) M

Obviously, (8) and (8) imply || f|ly < 1, which completes the proof.

2.6, PROPOSITION. Let p € Eé’w (R™) and open sets (1, {2 in R with
2 + Supp u C {23 be given. Then t?be following conditions are equivalent:

(1)  Ty: S(W)(QQ) — E(M)(ﬂl) 18 surjective.

(2)  Th(El,) (1)) is closed in Ely((22).

(3)  (f,{%) is pu-conveg for (w) and p is slowly decreasing for (w).

(4)  (f,02) is p-convez for (w) and there evists E € Dl (R™) with
Sp(l) = 6. '

(5)  S5(Dwy($21)) 4s closed in D) (122)-

(6)  SL(D)(fh)) is sequentially closed in Dey(M22).

(1) 85D ($1)) NG is sequentially closed for each Fréchet subspace G
Of 'D(W)(Qz).

(8) ({2, 23) is p-convez for (w) and the following condition holds:
For each K5 compact in 2y there ezist m € N and C > 0 such that
Supepe |©(2)] < C|Stellm for all @ € Ppuy(K).

Proof (1)=-(2). This is well known; see e.g. Meise and Vogt [22], 26.3.
(2)=>(3). Since convolutions commute with translations, we may assume

P

0 € §2;. Then we choose § > 0 so that Bs(0) C (2. If we assume that p is not

e Sy




184 J. Bonet ef al.

slowly decreasing for w then also v € 8(’w (R™) defined by D(z) := i(2/6) is
not slowly decreasing for w. Therefore, it tJollows from the proof of Bonet and
Galbis [3], Thm. 11, that there exists a sequence (f;);en in indy—, A(wy,C),
where wy(2) := exp(—k(|Im z| + w(2))), for which (¥f;)jen is bounded in
indg_, A{wy, C*) while (f;);en is not bounded in this space and satisfies

|fi(2)] < Cexp([lmz| + Cw(z)) forall 2 € C* with |2] > 7y,

for some sequence (7;)jen in ]0, 0o, Hence it follows from Braun, Meise and
Taylor [6], 7.4, that there is a sequence (v;)jen in E(’ ) (£24) satisfying U;(z) =
fi(6z). Since 1% 75 (2) = [(2)P;(2) = ¥(62) f;(6z), the sequence (T} (1;));en
is bounded in £/,,(£2:), while (v;)jen is unbounded in & (/). However,
this contradicts (2), since the injectivity of Tf in connection with (2) implies
by Meise and Vogt {22], 26.3, that (T)™' : Th(£(, () — &, (1) is
continuous.

To show that the continuity of (T7)~" also implies the p-convexity of
(11, 122), let K3 be any compact subset of {23. Then the set

B = {p € Dio)(K3) N 5, (Do ({1)) - sup p(2)l < 1}
o 2

is bounded in £{,,(£2;) and span(B) = S} (D()(¢21)). Hence (T))~*(B) is
bounded in 8(’w)(!21). This implies the existence of a compact set K in {2
so that Suppy C K; for each ¢ € (T};)~*(B) and hence the p-convexity of
(£, £2).

(3)=>(4). This holds by Proposition 2.5.

(4)=>(6). Let (¢;)jen be any sequence in Dy,,)(f2;) for which (S}¢;)5en
converges to some ¢ in D(,)({2z). Then there exists Ko compact in §2; so that
(S¢;)jen converges in Dy, (Kz). Since (21, £25) is p-convex by hypothesis,
there exists K3 compact in {2y so that ¢, € Dy,y(Ky) for all n € N. By

hypothesis there exists a fundamental solution B in D} w)(R'“) for . Hence
we have

Ex(8ip;)=(Exu)xp;=86xp; =p; foreachjeN

Since convolution with B maps Dy, (R*) continuously into Eq,y(R™) and
since (p;)jen is in Dy,y(Ky), the sequence (p;);en converges to some ¢ €
Dy.y(K1) which satisfies ¢ = Sﬁ(tp) & Sﬁ(D(w)(Q;L)).

(6)=(7). This holds trivially.

(7)=(8). To show that (21, 2;) is pg-convex for (w), fix a compact set
K3 in 2. Then choose a sequence (Q;) ey of compact sets in 2y satisfying
Qi C Qjry for all j € Nand ) = ey @y By (7), F 1= S4(Dpy (1)) N
D@;) (K3) is a Fréchet space in the topology induced by Dy, (K2) and F C
Uses S5(Dy(Q4)). Hence Grothendieck’s factorization theorem implies the
existence of k£ € N and of a continuous linear map u : F' — Dy,)(Qr) so that
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F C 84(Deny(@x)) and that S}, o is the inclugion of F into Duy(122)- ‘Since
K, was chosen arbitrarily, F C Sﬁ(ﬂ(?)(Qk)) implies the p-convexity of
(1, 2s), while the continuity of u implies (8). N

(8)=>(1). By Proposition 2.2 it suffices to shovx.r thfa;t the second condmc?n
in (8) implies the second one in 2.2(3). To do thlsz ﬁx a compact set K7 in
0, and j € N. By 1.9 there exists P € A(C") satisfying log | P| = O{w) s0
that for each ¢ & Dy (K1),

leles < sup |PEFE)] < ma(Ky) sup [(P(D)p) ()

Then L := K1 + Supp p is compact in {2 and for v € D(w)(f{ 1)' we have
St € Dyyy{L) N Do (). Since P(D) : Dy(L) — ’D(w)‘(L) is linear and
cgntinuous, there exist { € N and ¢’ > 0 so that for m as in (8),

[P(DYellzm < C'llellzy  for each ¢ € Dy)(L)-
Hence from (8) applied to P(D)y we get
sup [(P(D)e)()] < ClISLP(D))|m = CUPDYS,@)llnm < CCliSull
zER?
and consequently

el < ma(E)CC Skl

(5)=>(6). This holds trivially. .

(2)=(5). Lot ¢ & D(uy({22) be in the closure of 8, (Dwy (121)) in 'DSW)(QQ).
Since Dy (§22) < &, {{22) I8 continuous, ¢ is in the closure of T#(E(w.) ({2.1))
in £,,(f22). Hence (2) implies the existence of v € Sém)(ﬂl) sat':lsfymg
p# v = . Since we have already shown that (2) and (4) are equivalent,
p admits a fundamental solution B € wa)(R")' Hence :

ye= (Bxp)sv=Ex{urv)=Exp

This shows that v € £, (R?)NE, () =D,y (1), hence p € SL(Dwy (1))

By Propositions 2.2 and 2.6 we have proved the following theorem.

2.7. TunorEM. Let p € Efw)(R"') and open sets (2, § in R w?'th
1 -+ Supp p € §23 be given. Then the following assertions are equivalent:
(1) Ty s () = Ey(f) is surjective. ‘ '
(2) (8t SE(Diw)(fh)) = D) (121) is sequentially continuous.
(3)  Epwy(f21) C SulDiyy(22)). | ,
(4) (12, 12) is p-conves for (w) and there emists E € Di,y(R") with

S, (B) = 6. .
(5) (O, i2) is p-conves for () and for each Ky compact in £y there
exist m € N and C > 0 such that sUPzcp l@(m)l s C_’“Su‘f’nm Jor a

€ Dy (K1)
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The following corollary is an immediate consequence of Theorem 2.7, It
extends and “explains” Bonet and Galbis [3], Thm. 11.

2.8. COROLLARY. Let w and o be weight functions satisfying w(t) =
O(o(t)) as t tends to infinity. Let p € E’w)(IR{“) and open sets 21, 2y in
R* with {1 + Suppp C {2 be given. Then the following conditions are
equivalent:

(1) &y (1) C Tu(Epuy(£22)).
(@) T &y () — £y (24) is surjective.

Proof. (1)=(2). Since T,(£(,y()) C 5u(D{y(122)), (2) follows from
Theorem 2.7.
(2)=(1). This is an obvious consequence of Ewy(922) D &5y (12).

2.9. COROLLARY. For y € Ezw)(lR”) the following conditions are equiva-
lent:

(1) Tu: Ey(RY) — £y (R™) ds surjective.

(2)  There exists E € Dy, (R") satisfying S,(E) = 6.
(8)  p is slowly decreasing for (w).

4 S, Dpy(R?) — Di,y(R) s surjective.

(5)  &u)(R™) C 8D}, (RY)).

‘ Proof (1) implies (2) by Theorem 2.7; (2) implies (3) by Proposi-
tion 26 and the u-convexity of (R®, R*); (3) implies (4) by Proposition 2.5;
(4) trivially implies (5) and (5) implies (1) by Theorem 2.7.

Remark. Note that by Braun, Meise and Taylor [6], 8.6, the equiv-
alences (1)~(4) in Corollary 2.9 extend the main results of Ciorinescu 9]
from R to R®. For n = 1 the equivalence of the conditions 2.9(2)-2.9(4)

together with a sequence representation for ker Sy, was derived in Franken
and Meise [11].

?». The Roumieu case. In this section we characterize those ultradistri-
butions u € £;,,(R") for which the convolution operator St Ply () —
'D%u}(ﬂl) is surjective, where (2, and {2, are appropriate open sets in R".
Throughout this section w denotes a fixed weight function.

Fixst we treat the case 2 = (2 = R"™ and in doing this we will use the
following slowly decreasing condition, corresponding to 2.3.

3.1, DEFINITION. An ultradistribution W E Siw}(lﬁ’.") is called slowly
decrclagmg J;?rl {‘w} if for each m € N there exists R > 0 such that for each
%€ with |z| > R there exists £ € C» satisfying |z — £ < Lw(z) such
that [7(6)] > exp(—Lu(¢) o
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3.2. LEMMA. For i € Eiw}(R") the following conditions are equivalent:

(1)  p is slowly decreasing for {w}.

(2)  For each m € N there exists R > 0 such that for each x € R*,
|z] > R, there ewists £ € C* satisfying |z — £ < 2uw(z) such that
[(€)] = exp(—7w(z)).

(8)  There exists a weight function o with o = o(w) stch that u € £ (RY)
and g s slowly decreasing for (o).

Proof. (1)=>(2). In view of 1.1(c) and 1.2(a) there exist K € N and
Ro > 0 such that w(2t) < Kw(t) and w(t) <t for ¢ > By. If m € N is given,
choose Ry > Iy so that 3.1 holds with m replaced by K'm. This implies
that for z € R" with {z| > Ry there exists £ € C" satisfying

1

o] < (o) < mewle) and (B(6) 2 exp (=€)

Now [£] < |z| + |z — ¢] £ |z| + L |%] < 2|z| implies
1
7ow(€) S pw(lla) < —w(z)
and hence |Fi(£)] > exp(—Lw(z)). _

{2)=>(3). By Braun, Meise and Taylor [6], 7.6, there exists a weight
function x so that u € £, (R"). Applying (2) inductively, we find a strictly
increasing sequence (R, )men tending to infinity so that the conclusion of
{2) holds for z € R"™ satisfying |z| > Ry. Then define g : [0,00[ — [0, 00]
by g(z) = 0 for x € [0, Ry[ and g(z) = Lw(z) for & € [Rm, Rmy1[- Since
g = o{w), Braun, Meise and Taylor [6], 1.7, gives the existence of a weight
function o satisfying ¢ = o(¢), o = o(w) and & < ¢. To show that p is slowly
decreasing for (o), choose [ so that

o(t) S wlt), oft) <t/2 and g(t) <o(t) fort> R
Then fix © € R with l¢| > R; and choose m > [ such that |z| € [Rm, R
By the choice of R,, there exists £ € C" satisfying
o~ €] < Zule) = 9(s) < o(2)
such that |
i@ (€)] = exp (——%w(m)) > exp(—o(x)).

Since o is a weight function, 1.1(c} implies the existence of some L 2> 1 so
that o(2t) < Lo(t) for ¢ > R;. Because of

@] < €]+ o(z) < |+ |=]/2
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we have o(z) < Lo(£) and hence

(8)] 2 exp(—Lo(£)) = exp(—~L({Im&] + o(£))).
Thus, p is slowly decreasing for {o).
(3)=(1). By hypothesis, 4 satisfies condition 2.3 for some C' > 1 and ¢
instead of w. Without restriction we can assume that for some K > 1,
o(2t) < Ko(t) fort>C.

Since o = o(w) and w = o(t), by 1.2(a) we can find ¢' > C such that

!

1 1 C
2 - —— _—
(C+ C*K)olt) £ w(t) and oft) < th, for ¢t > 5

Now fix z € R™ with |z| > C' > C. Since u is slowly decreasing for (),
there exists £ € C* with |z ~ ¢| < Co(z) £ Zw(wz) such that
(6) |2(§)] = exp(—Clm | — Co(€))-
Since |¢] > |x| — Co(z) > |2|/2, we have o(z) < Ko(£) and hence
ing| = [m(z ~ £)] < Co(s) < CKo(?).
Therefore, (6) and our choice of ¢’ imply

6], 2 exp(—(CK + C)o() 2 exp -0l
Hence w is slowly decreasing for {w}.

To formulate the next proposition in such a way that it completely ex-
tends Braun, Meise and Vogt 7], Thm. 2.4, to the case of several variables,
we recall the following definition from [7], 2.1.

3.3. DeFINITION. For p € £/, (R™) the convolution operator T}, is called
locally surjective on Eg,y(R™) if for each compact set K in R™ and each
g € &g, (R™) there exists f € £1,1(R™) satisfying T, (f)|x = 9lx.

3.4. PROPOSITION. For y € SQw}(R”) the following assertions are equiv-
alent:

1) 8D R - Diwy(R") is surjective.
(2)  There eqists B € D}, (R") satisfying S,(E) = 6.
(8)  u s slowly decreasing for {w}.
(4) If B C Dy,)(R*) and S}(B) is bounded in D,y (R™) then B is
bounded in D, (R). :
(8) Ty is locally surjective on g,y (R™).
Proof. (1)=(2). This holds trivially.

(2)=+(3). By Braun, Meise and Taylor [6], 7.6, there exists a weight func-

tion ¢ satisfying o = o(w) such that u € £/,,(R*) and E € D{,,(R"). Since
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(R?,R") is pi-convex for (o) and Su(E) = §, also in D, (R*), p is slowly
decreasing for (o) by Proposition 2.6. Hence (3) follows from Lemma ?;.2.

(3)=>(4). Fix an arbitrary subset B of Dy,3(R") for which M = 5(B)
is bounded in Dy, (R™). Since Dy.y(R™) is a (DFS)-space, there exist p € N
and C > 0 such that :

(5) 17(2)| € Cexp (p\Imz| - %w(z)), zeC", feM.

Since 4 is in. SQw}(R"), there exists L > 0 such that for each ¢ > 0 there
exists O, > 0 so that
(©) #()| < Ceexp(Liimz| +ew(2)), =€ C

It f € M then f = S}(g) = p*yg and hence J = 7ij for some g € B.
Consequently, (4) holds if we show the existence of A > 0,m € Ny and

Oy > 0 such that for each f € M the entire function G = f/7i satisfies
1
G 3(e) < Cooxp (Ams) = (e}, =€

To prove this, note first that by (3), Lemma 3.2 and Lemma. 2.4 there
exists a weight function ¢ satisfying o = o(w) such that there exist k € N,
veN, ¢, >0and Rp > 1 such that for each z € C" with |2| > Ro there
exists w € C" satisfying |w — 2| € ko(z) + [Im 2| such that

|fi(w)| = Cy exp(—v|Imz| ~ vo(2)).
Since ¢ = o{w), for each g € N there exists Ry > Fo such that
1
(v +k)o(t) < —q—w(t) fort > Ry
and hence for |z| > R, the point w bas the properties:

1
lw ~ 2| € ko(z) + [Imz| < Ew(z) + |Im 2],

(8)
[f(w)| = Oy exp (-V|ImzL - %w(z)).

Now fix ¢ € N, let £ := 1/¢ and fix an arbitrary § € M. Without restriction
we may assume that R, is so large that

w(4t) < ét fort > Ry

To prove (7) we want to apply Hormander [14], 3.2. For that purpose let
ri=r(z) = %w(z) 4 [Imz| and fix ¢ € " with |z —¢] < 4r. Then

(9) (| < [Im 2 + 4, w(f) 2 %UJ(Z) - g
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because 1.1() for w implies the existence of K € N so that
(2) S ol +40) < K(w(Q) + ) < K (w()+ )

provided that R, is large enough. Hence (5) implies

|F(¢)] < Cexp (p(JImz| +4r) — E%w(z) n I:E)

1 1 4p 1
< Cex 5+—)1 +(—— —-—--) .
p((p o T 2] pK+ . rqu w(z)

Choosing € = 1/g also in {(6), we get similarly

BE)| < ¢ exp ((SL + gﬁz) [T 2] + -ql- (4L + K+ g—)w(z)).

Using (8}, these estimates imply

10 7 - e
(10) (lz_S?II;MIf(C)l)(lz_s?lI;Miu(C)J)(]:?Srly(g)D

= %% exp(dg[lm z| + Byw(2)),
where

1 K
Aq=2y+5(L~{~p)+}—)€—z+q—2£2v+5(L+p)+K—|—1,

1 1 K i
By=——+-[2+4(L eI
q 7K q( ( +p)+K+q2+pq).

This shows that we can choose ¢ € N so large that B, < —1/(2pK). Then
(10) implies :

. , 1

3(:) < Chop ( Ayt~ @) > e
Since_a Cy and A, do not depend on the particular function £, this estimate
implies (7), by the maximum principle.

(4)=>(1). This follows from the surjectivity criterion 26.1 in Meise and
Vogt [22],

(2)=(5). If a compact set K in R™ and g € £} (R™) are given, choose
pe ’D{w}(R").sq that ¢ is identically 1 in some neighbourhood of K. Then
f = E'x(pg) is in £,,1(R™) if E is chosen according to (2). It is easy to see
that T;_,,(f)l_r{ = g[K.

. (5)=(83). Arguing by contradiction, assume that 4 is not slowly decreas-
ing for {w}. Then there exist m; ¢ N and a sequence (#;)jen n R™ for
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which {|z;])jew is increasing and unbounded and such that
1 . 1
RO € —w(Q) forall ¢ € T with |¢ — 5] € —w(z;):
M1 L

Next choose D > 1 and fp > 0 such that w(2t) < Dw(t) for £ > %y and
choose m € N so large that 2D/m < 1/my. To localize T, as in Braun,

Meise and Vogt [7], 1.8, choose k > 0 with Supp p C Bx(0), and for r > 0

let

Ep(ry ={f¢e Erw}(R™) : flB,(0y = 0}

Then define ‘
S{M}{'r] = E{w}(R”)/E{w}(r)

and denote the corresponding quotient map by g¢,. It is easy to check that the

convolution operator T}, induces for each r > 0 and R 2 r + & a continuous
linear map
Tu(B,r) : EguplRI - Epplr],  Tu(R7)F + Egun (R)] = Tu(f) + Euy (r)-

Obvicusly, T}, is locally surjective if and omly if the localized operators
Tu(r + k,r) are surjective for each r > 0. Note that by Braun, Meise and
Vogt [7], 1.10, £pir] is a (DFN)-space for each r > 0 and that by the
arguments given in the proof of [7], 2.3, the Fourier-Laplace transform is an
isomorphism between £¢,3[r]’ and the Fréchet space

A(C) =
{£ea@): 18l = sup Il exp CEHLEEE fuls)) < o0
for each j € N}.

Hence (5) implies that T, (m -+ k,m) is surjective. Since Eq,[r] is a (DFN)-
space for each r > 0, T, (m + k,m)! is an injective topological homomor-
phism. As in 1.8 this imaplies that alsc the map

Mz A (C") = Ak (CY), - Mp(f) = T
has this property. Hence we get a contradiction if we show that there exists a
sequence (f;)jen in Ay (C*) which is unbounded in A (C™), while (if;)jen
is bounded in A,,44(C™). To construct this sequence, we proceed similarly

to Momm [24] (see also [3], Thm. 11): For R > 0 let 2jp : C* — R be
defined on €™ \ Bg(z;) as |Imz| and on Bgr(z;) as

h; r(z) == sup{v(2) : v is plurisubbarmonic on Br(z;),

lmsupv(¢) € [Imé| for £ € 8Br(z;)}
¢—£
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Then let @; := 1+ hy,;, Where s; := 1 + fw(z;). By Momm [26],
2 1
wiles) 2 o2 (1 + Hw(%'))-

As in Momm [25], 1.8, we can apply Hormander’s solution of the -problem
[15], 4.4.4, to prove that there exists f; € A(C") satisfying

[£(z5)] = exp( %)) and

£5(2)] < ¢a exp(| SUp_ i (w) = enlog(1 + |2(%)),

15;:”'51 wi{w) — cnlog(l +

‘lr-
Jw— 7

where ¢, is a constant that depends only on the dimension n but not on j.
Now standard estimates (see [3], Thm. 11) show that (f;)};en is in A (C)
but unbounded in A, (C*), while (fif;}sen is bounded in Apy(C™). From
this contradiction we conclude that (3) holds.

8.5. THEOREM. Let p € & 1(R™) and open sets 21,02 in R with
21 + Supp 42 C (2 be given. Then the following assertions are equivalent:

(1 S, Dy (22) = Di 1 ($21) s surjective.
(0) () C 8Dy (22).
(8)  ($1,92) is p-convex for {w} and s slowly decreasing for {w}.
(4)  (21,0%) is p-convex for {w} and there ezists B € Dy (R™) with
S.(E)=6.
Proof. (1) & (2). Obviously, it suffices to show that (2) implies (1). We
claim that (2) implies

(5)  For each K C {23 compact and each m € Ny there exist K7 < 2
compact, a weight function ¢ satisfying ¢ = o(w) and ¢ > 1 such that
for each f € £1,1(¢21) and each o € Dyu} (1) with Supp Sty C Ky,

|§ £ d] < Cllflx, oSl
,

To prove (5), fix K3 C (2, compact and m € Ny and let
H = {v € Dy () : Suppv C Ky, v € S4(Dp,3(52))} € Dy (Ka),
endowed with the induced topology. Then define the bilinear form
B:&uy()xH—C, B(f,v) = £(S) Ywdx.
Note that B(f,v) = (f, (S},) 7 v} in the dual pairing ( 101 (1), Dy (1)),

If f € £0,3(f21) is fixed then (2) implies the existence of 1 € D’{w} (§22) s0
that S,(u) = f and hence

B(£,v) = (£,(S5)7 ) = (Su(w), (S5) v} = (u,v).
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Consequently, v — B(f,v) is continuous on H and we have shown that B
is separately continuous. Next note that

By =A{v € Dy} ({22) : Suppv C K, v € Sﬁ(fD{w}(Ql)), 0] g3 m < 1}
is bounded in H and that by the separate continuity of B the set
T = {f € £y () : |B(f,v)| € 1for all v € By}
is closed and absolutely convex in £r,1(f21). To show that T is absorbing
and hence a barrel, fix f € £(,,3(f2;). Since B is separately continuous and
B,, is bounded in H, we have

sup |B(f,v)l £ A
VEBm

and hence f € AT. Now note that £,3(f2;) is reflexive by Braun, Meise
and Taylor [6], 4.9, hence barrelled. Therefore, T is a zero neighbourhood in
£43(121). By Meise, Taylor and Vogt [21], 3.2, this implies that there exist
K3 C {2 compact, a weight function ¢ with ¢ = o(w) and C > 1 such that

{fe&y(): Ifllky 0 £1/CHCT.
From this and the definitions of T' and B it follows easily that

© £S5 v = 1BU, )l < Clfllxse vl am,
(,0) € Equy () X .

Obviously (6) gives (5) if we replace v by 5}¢, ¢ € Dy (1),
Next note that the surjectivity of S, : D, (%) — Df,y (1), by the
surjectivity criterion 26.1 of Meise and Vogt [22], is equivalent to

(7) If B C D{w}(ﬂj_) and SL(B) is bounded in I’{w}(ﬂg) then B is
bounded in D,y (12),

since Dy 1 (£2;) is a Fréchet space for j = 1,2. To derive (7) from (5), fix
any set B C Dy, (%) which satisfies the hypothesis of (7). As Dye}(122) is
a {DFS)-space, there exist Ky C (2 compact, m € N and D > 0 such that

(8) U SuppSj{p) C Ky and  sup{|Siwli,m: v € B} £ D.
pED

For Ky and m as above, (5) implies that there exist Ky C 21 compact,
a weight function o with ¢ = o(w) and C > 1 such that (5) holds with
m + 1 instead of m. To show that B is 0(Dyuy (K1), Df,;(K1))-bounded,
fix v € £f_,(21). By Braun [5], Cor. 10, there exist an ultradifferential
operator G of class {w} and g € £,(R™, 1) such that v = G(D)g. Next note
that, by a standard smoothing argument, the estimate (3) holds not only
for all f e £1w3 (1) but even for all f &€ C™((2) satisfying | fllzy,e < 0.
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Note further that
8 (G(=D)p) = p* (T * ¢)(0)
= (T + 1) % 9)(0) = G(~D)(550), ¢ € D) (RY),

so that Supp SL(G(-—D)(p) C Supp S,'icp C K for each ¢ € B. Therefore,
(5) in the extended form gives for each ¢ € B,

9 o) = [6D)s(w)] = 9(G(-D))| = [ 9(G(~D)) dx
< Ollgll ey, |SE(G(—D)0) K m1-
Since log |G| = o(w), we have for each ¢ € Dy, (R™),

J1(G(=Dy)" ()] @/ dg < 1G(-£)P(e)[e# @/ tmFD) dg
< Lo { [ih(€ ]/ ™ .
This together with (8) and (9) implies
()| < CDLn|9llky 0

This proves that B is weakly bounded, hence bounded in Dy,y (K1)

(1)=(3). To show that (£2;, {23} is p-convex for {w}, note that by Braun,
Meise and Taylor [6], 7.6, there exists a weight function o satisfying o = o{w)
such that p € £/, (R") C £f,, (R™). Note further that (1) implies

Ew(h) € Dy (21) C Su(Diy(822)) € Su(Diy,y(22)).

Hence ({21, §25} is y-convex for (w). By the remark after 2.1 this implies that
(44, £22) is p-convex for {w}.

In the remaining part, of the proof we assume without restriction 0 € £;.
Then we choose § > 0 and k > 0 such that Bs(0) C 2y and Supp & C Bi(0).
Next we assume that g is not slowly decreasing for {w} and show that this

contradicts (1). To do so, note that there exists v € Siw}(R”) satisfying

¥(z) = Fi(2/8) and Supp v C By/4(0). Obviously, v is not slowly decreasing
for {w} since u has this property. Using the notation introduced in the proof
of Proposition 3.4, (5)=>(3), we get the existence of m € N and of a sequence
(fj)jEN in Al ((C”‘) so that (ﬁfj)jeN is bounded in Am_|_;g/5((cn), while (fj)jEN
is unbounded in A,,{C™). Next note that for each s > 0 the map

B A,(Ch) = A5 (C),  $(f)(2) = f(62), =zeC"

is an isomorphism. Hence, if we let g; := &(f;), 7 € N, then g; is in
A5(C*) and the sequence (g;)jen is unbounded in Ag,,(C*) while (fg;)jen
is bounded in Agmyr, since B(Vf;) = fig;. Now note that for 0 < r < R the
inclusion A,(C") < AR(C") is a topological homomorphism since it is—up

for all ¢ € B.
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to the Fourier-Laplace transform—the adjoint of the surjective homomor-
phism E(,}[R] — Equy[r], which is induced by restrictifm. Smcta g; € As (C“)
and fig; € As+x(C*) for § € N, we conclude that (Figi)jen is bounded in
As1k(C™), while (g5)jen is unbounded in Aj (C"). Hence

M7 As(C") — Appr(C)
is not a topological homomerphism. Consequently,
(10) T, (6 + K, 6) 1 Equ}[6 + k] — £} [6] I8 mot surjective.
This contradicts (1) since we will show next that (1) implies

(1) Tu(6 + k. 6) ¢ (Equy[6]) ~ (Eqwy[8 + K]) is an injective topological
homomorphisimn. '
And, as we have noted in the proof of Proposition 3.4 that Eglr] is a
(DFS)-space for each » > 0, (11) contradicts (10). Hence it suffices to
derive (11) from (1). To do this, let (vj)jen be a sequence in (Eqwy 6]
for which (T,(8 + k, §)*v;}jen converges to zero strongly. In order to shotv
that (v;)jen converges strongly to zero in (Equy[8]) we prove’o((f){w} 61,
&} ])-4imy o0 v; = 0, which is sufficient because (Eqw3[6]) is a Fréchet—
Schwartz space. To do so, note that by the definition of the maps TH(R,T),
we have
T(6 +k,6) 0 gsan = g5 © Ty
where g, : £(}(R™) — Euyr] denotes the quotient map. Consequently,
(T5(vj 0gs))jen converges to zero in £y (R™). Now choose & > 0 such that
Bs.(0) C 21 and fix x € Dy} (B:(0)}. Then (viogs)*x € Doy (Bs+(0)) C
D{w}(ﬂl) and
S:L((Vj ogs)*x) =pr{vjogs)xx= Tﬁ(uj Ogsr*X

tends to zero in Dy, (R™). Hence it tends to zero in D{WI(QZ?' Since
Dywy($1) and Dp,y(f2) are Fréchet-Schwartz spaces, (1) implies that
S}, 1s an injective topological homomorphism. Therefore, we conclude that
((vjoqsy*x)jen is a nmull-sequence in Dy,)(f21) for each x € Dy} (Be(0))- By
the same argument that we used in the proof of Proposition 2.2, (3)=(4),
this implies that (; o g5(f))jen is a null-sequence for each f € £y (R7).
Hence (v;);en is a weak null-sequence, which completes the proof.

(3)=>(4). This holds by Proposition 3.4. _

(4)=>(1). Since Dy,}(12;)} is a Fréchet space for j = 1,2, we get (1) from
the surjectivity criterion [22], 26.1, if we show:

If M C D,y (1) and S; (M) is bounded in Dy,y(§2z) then M is bounded
iIl 'D{_w}(gl) ’
To prove this, fix M as above. Since Dywy(f22) is a (DFN)-space there ex-
ists Ky C {2, compact so that St (M) is bounded in Dy} (Kz). Choose
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K1 C () compact according to the p-convexity of (21, {22) and note that
Ex : Dy, 3(Kz) — Dy,y(R™) is continuous and linear. Hence B*5) (M) = M
is bounded in Dy} (R"®) and has support in K. This implies that M is
bounded in Dy, ().

Remark. Note that the conditions in 3.5 in general are not equivalent
to the surjectivity of T, : Eu}(22) — Eguy (). For 21 = 23 = R™ this
follows from an easy extension of Braun, Meise and Vogt {7}, Ex. 3.11, to the
case of several variables. By Meyer [23], Thm. 3.13, this example also shows
that there are y € £{,,,(R") with Suppp = {0} and open sets 2 in R™ so
that T}, : £r,3(2) — £4,3(2) is not surjective. In fact, even linear partial
differential operators with constant coefficients in general are not surjective
on £(,1(f2), 2 open in R". For a characterization and references to earlier
work on this subject we refer to Langenbruch [18].

3.6. COROLLARY. Let w and o be weight functions satisfying w = o(a),
let (1,822 be open subsets of R™ and let p & Séw (R™) satisfy 4 +
Supp i C {25, Then the following conditions are equivalent:

(1) Eep(f21) C Tu(Egw)(£22))-
(2)  Su: Dig}(ﬂﬂ — D’{U}(Qz) is surjective.

Proof. (1}=(2). Since w = ofc), from Braun, Meise and Taylor [6], 3.9,

and (1) we get
oy (121) C Tu(€qy (22)) C Su(Dly(122)) € SulDlpy (122))-

Hence (2) follows from Theorem 3.5.

(2)=(1). By Theorem 3.5, there exists E € ’D%a}(R) satisfying F*p = 6.
By (8], 7.6, there exists a weight function s, & = o(0) and w < &, so that i €
EEN) (R*) and E € 'DER) (R™). Again by Theorem 3.5, the pair (§2y, {22) is p-
convex for {o}, hence also for (), by the remark after 2.1. Thus Proposition
2.6 implies T}, (Ex)(22)) = Ex) (1) and hence

£t} () C £y (1) = Tu () () € T(Egwy(22)),
since 8(,;,)(!22) C E{w}(ﬂg).
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