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M. M. RAO (Riverside, Calif.) and
Z. D. REN (Riverside, Calif., and Suzhou)

Abstract. We show how one can, in a unified way, calculate the Kottman and the
packing constants of the Orlicz sequence space defined by an N-function, equipped with
either the gauge or Orlicz norms. The values of these constants for a class of reflexive
Orlicz sequence spaces are found, using a quantitative index of N-functions and some
interpolation theorems. The exposition is essentially selfcontained.

1. Introduction. We say that a sequence of balls with centers {z;} and
radius v, 0 < r € 1/2, can be packed into the unit ball U(X) of a Banach
space X if ||2;]| € 1-r, i =1,2,..., and || — ;|| > 2r, 4 54 5,4, 5 = 1,2,...

DEFINITION 1.1. The packing constant of a Banach space X is defined as
(1)  P(X)=sup{r > 0: infinitely many balls of radius r
can be packed into U(X)}.

It is clear that P{X) = 0 if dim X < oc. Burlak, Rankin and Robert~
son [1] proved that P(£}) = P(£°) = 1/2 and P(¢") = 1/(1 + 217%/) for
1< p < 0o (see also Example 2.4 below).

THEOREM 1.2 (Kottman [7]). Let X be an infinite-dimensional Banach
spouce, Define

@) KOO =supling s~ a5 {2 X, Jaill =1, $ 21,

to be called the Kottman constant of X. Then
K(X)
2+ K(X)
Remark 1.3. It is seen that 1 < K{(X) < 2. Furthermore, Elton and

Odell [5] proved that if X is an infinite-dimensional Banach space, then there
exists an £ (= g(X) > 0) such that K(X) = 1+ e Consequently, 1/3 <

(3) P(X) =
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236 M. M. Rao and Z. D. Ren

P(X) < 1/2. Hudzik [6] proved that P(Y) = 1/2 for every nonreflexive
Banach lattice ¥.

et [ul lo|
(4) ou) = | ¢(t)dt and (v)= | w(s)ds
0 0

be a pair of complementary N-functions (see [8, p. 11}}. The Orlicz sequence
space £2 is defined to be the set {z = (t;) : oa(hx) = Y52, P(Ati]) < oo
for some A > 0}. The gauge norm || - iz and the Orlicz norm | - [|s are
given by

. .1
||y = inf{c>0: op(z/c) <1} and [zfls = él;%'k"[l + os (k).

These norms are equivalent: ||z]|(z) < [lz/le < 2||z]l(#). The closed separable
subspace h? of £7 is the set {z € £% : pa(Az) < oo for all A > O}

A special role (for analysis) in an Orlicz (sequence) space is played by the
rate of growth of the underlying N-function. An N-function $(u) is said to
satisfy the Ap-condition near 0, in symbols @ € Az(0), if there exist ug > 0
and K > 2 such that ®(2u) < K&(u) for 0 £ u £ ug. An N-function $(u)
is said to satisfy the Vs-condition near 0, in symbols ¢ € V2(0), if there
exist ug > 0 and ¢ > 1 such that $(u) < 5-F(au) for 0 < u < up. The basic
facts on N-functions and Orlicz spaces can be found in [8], [9] and [12]. For
instance, & € V5(0) if and only if ¥ € Ay(0), where ¥ is the complementary
N-function to . The space £2 is separable if and only if & € Ag(0), if and
only if #%2 = h%. The space £% is reflexive if and only if & € A2(0) N V2(0).
For simplicity, we use the following notations:
= (1%, | lay), =0 ]le) KP=0E" @) A= 05 )

The packing problem in Orlicz sequence spaces was investigated by
Cleaver [3], Ye [16], Ye and Li [17], Wang [14], Wang and Liu [15], Dominguez
Benavides and Rodrigues [4], Fudzik [6] and Ren [13, Section 4].

Quantitative indices of #(u), in the theory of Orlicz sequence spaces, are
provided by the following two constants:

oy ce BHu) 9 (u)
(5) g = hum_};glf 120 513
It is clear that 1/2 < o < 8% < 1. The following result will play a key role
in the analysis below.

THEOREM 14. (i) $ & Ag(0) if and only if 83 = 1;
(ii) & & V2(0) if and only if ol = 1/2.

Proof. The proof is similar to-that of Theorem 3 in Rao and Ren [12,
pp. 23-26]. »

and G5 =lim S}le
Te—>
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Other quantitative indices of #(u) at 0 are provided by the following two
constants:

0 _ oo b0
(6) Ag = lim inf (15((15)) and BY = lil?_%lp %g,
where ¢ is the right derivative of &. Clearly, 1 < A3 < BS < co. It is also
known that & & Ag(0) < B = 0o, & ¢ V5(0) < AY =1 and that

1 1 1 1

(7) TR @t E
where ¥ is the complementary N-function to & (see Lindenstrauss and
Tzafriri [10]). The relation between the indices (5) and (8) is as follows.

PROPOSITION 1.5. Let & be an N-function. Then
(8) 27143 < Y < g < 271/B3,

Proof. If B = oo, then clearly 83 < 1 = 2-1/53. Assume that

Bg < oo. For any given & > 0, by (6) there exists tg > 0 such that té(t)/®(t)
< BY +eforall 0 <t <ty If0 <t <ty <ty, we have

B(ts) _ T 41 dt < tf By +e dt = In (tQ)Bg+E

B "AE(T) ? t

Letting t1 = #~*(u) and ¢; = $~(2u) in the above, we get for 0 < 2u <
B(to),
&7(u)
d—1(2u)
vs;h(igl; proves the right side of (8). Similarly, one can prove the left side
of (8). m

Sections 1 and 2 of this paper are adapted from Ren [13, Section 4].
The main results of this paper are Theorems 4.3 and 4.8. Some illustrative
examples are inclncled,

< 9-1/(Bg+s)

2. Estimates for K(¢(?)) and P(/#)). We start with Ye's result.
LemMa 2.1 (Ye [16}). Let & be an N-function.

(i) If & ¢ Ay(0), then K(£®)) = 2 and P(£®) = 1/2.

(ii) If & e Aq(0), then

{9) E(®y= sup {c>0:ps(z/c)=1/2}.

ol #y=1

The proof of Lemma 2.1(i) can be found in Orlicz [10, p. 180]. Formula (9)
is a special case of a general theorem given in Wang and Liu [15].
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LEMMA 2.2. (i} Let & be an N-function. Then
1

e < K4
(10) o3 < (£,
or equivalently,
1
11 e < P19,
(11) 1+ 2a3

(i) If & & Va(0), then K(£®)) = 2 and P(£P)) = 1/2.
Proof. (i) By (5), there exist 1/2 > uy, ™\, 0 such that
lim_ & (ug) /B (2un) = 0.
For any given 1> & > 0, there is an ng > 1 such that G (un) [P (2un) <
o3 + £ for all n > ng, or equivalently,
(12) B[(al + &) {2un)] > Un,

Let kp = [1/(2un)] (the integer part). Then ky, < 1/(2un) < kn -+ 1. Choose
¢n > 0 such that ky2uy, + $(cn) = 1. Since $(cn) < (kn + 1)2un = kn2un =
2u, N\, 0 as n — 00, we may assume that J(c,) < & for all n 2 ng. For
simplicity, we set U = Ungtis Mi = kngti aBd di = Cngtiy ¢ = 1,2,...
Let Z; = (0,0,...,0) and X; = (~1(20:), 8~ (2uy),..., 671 (2vi), di) be
(m; + 1)}-component vectors. Define {;}52, C £%) by

zi = (21,22, ., Zi-1, Xi, Zigen, - ).
Then gz(x;) = 1, and so ||z||(g) = 1, i > 1. For i % j, from (12) we have

al+=
945[ F— (@i — mj)}

n = ng.

£

> ﬁgg[(ag + &) (s - )]

> 1—}—5{771@-45{(&% + &)@ (2u)] + myPl(ag + )87 (2v5)]}

1 1 )
> s {m +myvs} = m{[l — $(dy)] + [1 ~ B(d))]}
1
> m[(l“t‘?)"' 1-e)=1,
which implies that
—&
|l — ziliay > Lre

We have thus proved (10) since & is arbitrary. Finally, (11) follows from (10)
and (3). : :
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(i) If & ¢ V2(0), then o = 1/2 by Theorem 1.4(ii), and so 2 < K(£(%))
by (10). Since K {£0)) < 2 is always true, we obtain the desired conclusion. w

Lemma 2.2 sharpens Theorem 4 of Rao and Ren [12, p. 256] when the
Orlicz function space is a sequence space; and {10) will be used in Section 4.
A more complete discussion of packing in Orlicz function spaces for non-
atomic measures is given in Ren [13]. In view of Lemmas 2.1(i) and 2.2(ii},
if #(%) is nonreflexive, then K(£%)) = 2 and P(£(®)) = 1/2. Therefore, we
only need to estimate K (£(?)) and P(£()) for a reflexive space #®). In view
of (3), it suffices to consider one of these.

THEOREM 2.3, Let & be an N-function and let © € Ay(0)NV2(0). Then

(13) 1<ov/B < Lo p®y < X< otAs oy
Qg Gy
or equivalently,
(14) : < ! < L < P(#F)
8 T 1421-VBG T 1420 < ()
1 1 1
< < _ d
142G T 149211/ As < 2’
where
= o f 7w 1
== . < —
(15) & mf{ds—l(zu) 0O<ug 2},
and
ry : t¢(t) -1
16 it {29 o iyl
(16) Ag 1nf{ 0 0<t< (1)

Proof. The left side of (13) follows immediately from (10}, (8) and the
fact that By < co if & € A2(0). By using (9), Ye [16] proved

(17) K@) <1/ds.
‘We now assert
(18) 1/ap < 244

By (16), t(t)/B(t) > Ag if 0 < t < 7(1). Therefore, if 0 <t < 12 <
$~1(1) one has

2 ta ¥ Az
P(t2) o(t) Ag (tz)
Ine—tm \Lerdt > \ —dt=1In| — .

" B(8) }1 a1 tgl r t
Letting t; = &~*(u) and ¢; = $7*(2u) for 0 < v £ 1/2 in the above and
noting that @ is strictly increasing, we obtain

9 {u) -1/4
> &
&1 (2u) ~ 2 ’
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which implies (18). Finally, to prove the last part of (13) we must show
(19) 1< Ap.

Since @ € V3(0), there exist a > 1 and £, > 0 such that t¢(£)/@(t) > aif 0 <
t < to. We may assune that to < $7*(1). Therefore, for all ¢ € [tg, 5~1(1)]

we have
(1) Plo(t)]
(1) P(1)
where ¥ is the complementary N-function to $. Thus, (19) holds. m

=1+ —<= > 1+ ¥[g(t0)] >

It should be noted that Ye and Li [17] first showed that £(%) is reflexive
if and only if P(£®)) < 1/2, with a longer proof. This result was reproved in
Hudzik [6, Theorem 3] by using Banach lattice technigues. Also under the
assumption $(1) = 1, Dominguez Benavides and Rodriguez [4, Theorem b
and Corollary 2] gave some lower and upper bounds for K (¢(®)) and P(£%)),
and these are all contained in Theorem 2.3. The referee has informed us
that the leftmost inequality in (13) was also obtained by H. Hudzik and
T. Landes, Packing constant in Orlicz spaces equipped with the Luzemburg
norm, Boll. Un. Mat. Ital. A (7) 9 (1995), 225-237.

ExaMPLE 2.4 ([1]). If &,(u ) [ul?, 1 < p < oo, then £7 = £(%e) and

I+ lc@,) = || - llp- Since 0§ = &g, = 271/, from (18) and (3) one has
1
Py — 9l/p Py =
(20) K(E )—2 ’ P(‘e)—l_l_zlml/p'

EXAMPLE 2.5. Let M, (u) = el*" — 1 with 1 < r < oo and &(u) =
JulP + [ulP*® with 1 < p < 00 and a > 0. Then

(21) KWy = oM = K(£7), Py = p(en)
and
(22) K@) = K(e°), PH®D) = pw),

Note that M () = [In(1 - u)]lf'" for w 2 0 and
() -1
_ =9~ /'
= Py, = lim M (2u)

which shows that M, € A2(0)NV3(0) in view of Theorem 1.4. By (15), one
has

= inf{[F(w)]"": 0 < u < 1/2},
where F(u) = In(1 + u)/In(1 + 2u). Let .
G(u) = (14 2u) In(1+ 2u) — 2(1 + w) In{1 + w).
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Then G(0) = 0 and G'(u) = 2[In{1 + 2u) —In(1 +u)] > O for % > 0. Thus,
for u > 0 we have

G(u)

(1 +u)(1+ 2u)[In(1 + 2u))?
and so &y, = af,_. Finally, (21) follows from Theorem 2.3.
It remains to establish (22). Since

to(t) at®
3@ T iy
we have A = BY = p, which implies (22) in view of Theorem 2.3.

EXAMPLE 2.6. Let M{u) = el*l — |u| — 1 and N(v) = (1+ |v])1n(l + |v|)
— ly|. Then

(23) K@My =2, Py =

Fl{u) =

>0,

0 <t < oo,

1
1442

and
(24) 1.41 ~ 242 < K (e < 2t/(e=1) 1 50,

or equivalently,

1 1
- NNy =
1+ 2L/2 S PET) < 1+ 2(e—2)/(e-1}"

In fact, since tM'{t)/M(t) = t(e* —1)/(e* — t — 1) for £ > 0, we have
BY, =2 and

>0

d[eM'(t)] _ (ef —1)% — ¢3!
dt| M) | (et —t—1)2
if t > 0. Therefore, Apr = BY, and (23) follows from Theorem 2.3.
As for (24), note that BY = limy_.o tN'(t)/N(t) = 2. We assert that for
t >0,

d [tN'(1)] _ [In(1+8))2—#?/(1 +1)
= W)~ g <
Consider the function f(v) = /v — 1/+/v —Inw for v > 1. One has f(1) =0
and if v > 1, \
Py =2 \/_1) >0,

Putting v = 1+ ¢ in the above, we see that t — /1 +¢In(14+¢} > 0if £ > 0,

which proves (25). Since N=1(1) = e — 1, from (25) and (16) we have

- tN'(t )]

A =e—1
N { N(t) t=e—1

Finally, (24) follows from Theorem 2.3.



icm

242 M. M, Rao and Z. D. Ren

ProBLEM 2.7. Find the value of K (E(N )), where the N-function N(v) is
given above in Example 2.6. ‘

3. Estimates for K (¢%) and P{¢%). For the Orlicz norm, we start with
Wang'’s result.

LemmMa 3.1 (Wang [14]). Let & be an N-function.
(i) If & ¢ Az(0), then K(£%) =2 and P(4%) = 1/2.
(i) If & € Ay(0), then
. kyx ky —1
(26) K(Jeds)m”fﬁpﬁlklmnfl{c>0:94’( z ) = m2 }
The proof of (26) can also be found in Wang and Liu {15].
LemMaA 3.2. (i) Let & be an N-function. Then
(27) 265 < K(£%),

or equivalently,

1
14+1/8%
where ¥ i3 the complementary N-function to &.

(i) If @ ¢ Va(0), then K(£%) = 2 and P(¢%) = 1/2.

Proof. (i) By (5), for any given 0 < & < 1/2 there exist 1/2 > v, \, 0
such that

(28) < P(£%),

7{v,) g

29 LT 0 _ =

( ) LP"l(%n) > .6!11 2: n 2 1.

Let k, = [1/(2v,)]. Then 1/(ks + 1) < 2u, < 1/ky. Note tht [F1(v)/v]
A oo asv N\, 0. For all n > 1 we have

- 1 1w, )
30 2k + 1)1 n
(30) U +1) (Z(kn+1)>> o
and

v1(2v,) 1

31 B b LY AN -1
(31) S2n) > (k)
Pus

b, 1

T k¥ 1(1/ky)
and

- 1 1
n =2 kn '3 W) = il (= .
R (a5:)
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Then b, —+ 0 and
0<en < 2(kn + L)@t (—1—) ~ 2k, @1 L w1 1Y Lo
2kn 2kn 2kn

as 1 - 0o. Choose ng > 1 such that b,c, < e for all n > ng. For simplicity,
set Yo = Ung, Ko = kng, bo = by, and ¢g = ¢py. Put Zp = (0,0,...,0) and
Xo = (bo, bo; - - -, bo), each with kg components. Define {;}32, C £2 by

i—1
[P —
Ty = (Z(),ZQ,. -':ZD,X[),ZD,...).
Then ||2il¢ = 1 for all i > 1. For 4 # j, from (30), (29) and (31) we have

1 1
i = a5lle = bo2ko¥ 1 =) = Gt -
lzi — 2;lle = bo2ko (27430) 60[2(ko+1)!l" (2(k0+1)) co]

> bo [L—p——:i—vo) ~ Co] > by [% (ﬁ% - %)Wﬂ(z")o) - CO]

> 2(/33 - E)boko!l"_l (i) — boeg
5 ko
= 2483, — & —bpeg > 2(63 —-E),

which shows that K (£%) > 2(B3 ~ ¢). Since ¢ is arbitrary, we obtain (27).
(i) If & ¢ V2(D), then ¥ ¢ A,(0) and by Theorem 1.4, 53 = 1. It follows
from {27) that 2 < K(£%), as desired. =

Lemma 3.2 will be used in Section 4. In view of Lemmas 3.1(i) and
3.2(ii), if £¥ is nonreflexive, then K (£%) = 2 and P(£%) = 1/2. Therefore,
we only need to estimate the Kottman constants and the packing constants
of reflexive Orlica sequence spaces £7, For this we use the following.

ProrosITION 3.3 (Wang [14]). Let @ be an N-function. Define

1
(32) o= int (ke > 15l = 0L+ exlhio)]}
Joia=1 ke
and
1
(33) Qp= sup {lc > 1 el = —[1+ Qgs(kmm)]}.
el o=1 ko

If ¢ € Ax{0) N V5(0), then 1 < g < Qs < 00.

Remark 3.4. Under the assumption of Proposition 3.3, we have the
following estimates for ()¢, which will be used in the proof of Theorem 3.5:

_ 1 c
(34) l<l+ s S@e <5
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where

(35) stup{if?;‘)) :0<u_<_d5"1(1)},

(36) .Hlf{ "5(()) 0 <t < -1(1)]}

with ¥ (v) = SM ¥(s) ds being the complementary N-function to ®(w).

Proof of (34) Since ¢ € Aa(0), we have C' < co and $(2u) < CP(u)
forall 0 < u < &-1(1). & = (£) € S(¢%), then 372, &(|t:]) = 2o(z) <
lzli¢ey < llzlle = 1, so that [t:] < &7 (1), where S(X) denotes the unit
sphere of a Banach space X. Therefore, we have

Cog(x) = CZSP(IM) > Zsﬁ(thz-D = 00(22) Z [|22/(2) > |l2lle =1
i= i=1

and hence,

inf {ke >1:ke =1+ op(kez)} = go.

]| o =1

Next we consider the right side of (34). Since & € V3(0), one has D > 1.
For any given z = (t;) € S(£%), assume that k, > 1 satisfies

1
14+ = <14

inf ) <
c - umnwlg@( )<

1= Jlalle = ,j—wum(kmmn

. (see [12, p. 69]). For any given & > 0 satisfying k, —& > g& —¢ > 1, we have

1>Zf’{¢(k —e)lta]} = Z{(k —e)[tlgl (ks — £)lts]] — B[(ke — ) [t:l]}

i=1

D= 1) 8l(ke ~ el 2 (D~ (ke ~ oa(e) 2 25 b ),

and this proves the right side of (34), since ¢ is arbitrary. m

THEOREM 3.5

(37) 1< 21/B <980 < K(£%) < = < 24 < 2,
s‘P
or equivalently,
1 1 1
38 - <
(38) 3 < 1421-1/85 — 141/8%
< PI") < — L L

< ol
1+ 205 = 14004 <3

. Let B be an N-function and let @ € Ax(0)NV2(0), Then
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where
_ ¢~ {u) Qs —1
* i
(39) % mf{g15—1(2u) 0<u< 5 },
) to(t
(40) A?j‘5=1nf{g;((t))«:0<t$@_l(Q§—l)},

with Qg given by (33).

Proof. Assume that & € As(0) N V3(0). The left side of (37) follows
immediately from (27), (8) and (7):

1< 2450 = 9114 < 909 < 260 < K(¢7).
To prove the right side of (37) we first show
(41) K% < 1/a%.
Put ¢(u) = @71 (u)/®1(2u) for u > 0. Then S[¢(u)F1(2u)] = u. For any
given = (tl,tg,. .) € £% with ||z||¢ = 1, there exists k, > 1 such that
1+ oe(kaz)].

Let u; = 5P(kg|t;]) for all ¢; # 0. Then S(ky|t:]) € gp(kaz) = ko — 1 <
Qe — 1, and 80 u; < %( # — 1). It follows from (39) that

os(csks) = Z@ okt |)<ZQS[ ( (kalts]) )km]til]
_—ZM It:]) =

Because of (26), we obtam (41). Similar to (18) and (19), we can prove
(42) ol < 2V <2,
Finally, the right side of (37) follows from (41) and (42). =

It should be observed that Wang {14] first proved that 2% is reflexive if
and only if P(#%) < 1/2.

ExampLe 3.6, Let M, (u) and &{u) be defined as in Example 2.5. Then
P(Mr) = P(#7) and P(£2) = P({P).

ExaMPLE 3.7. Let M(u) and N(v) be as in Example 2.6. Then A}, =
Bl = 2 and K(8M) = K(#). By wsing (34)-(37), (39) and (40) we can
verify that

1
1= Jolis =

k ~1).

1.41 ae 242 < K(#V) < 23/4% 2 1.56.

ProsreM 3.8. Find the value of K (ﬂN ), where the N-function N(v) is
given in Example 2.6.



246 M. M. Rao and Z. D. Ren

It does not appear simple to find the values of these geometric constants
for an arbitrary reflexive Orlicz sequence space. However, we can do this for
a subclass of such spaces defined by certain intermediate N-functions (see
(43) below).

4. The values of P(£%-)) and P(¢%+). In 1966, Rao [11] obtained a
Riesz—Thorin type convexity theorem between Orlicz spaces equipped with,
the Orlicz norm (see also [12, p. 226]). In 1972, Cleaver 2] extended that the-
crem to the P-product of Orlicz spaces (gee also [12, p. 240]). In 1985, Ren
proved that these interpolation thecrems are still valid for the Orlicz spaces
equipped with gauge norms (see [12, p. 226, p. 256]). Since the counting
measure is o-finite, we deduce the following.

LEMMA 4.1. Let § be an N-function. Suppose that y(u) = u?*, 0 <s< 1
and P4(u) is defined to be the inverse of

(43) 870 (w) = [ H W' U[BF (W) (uw20).

Then, for any collection {z; : 1 < i < n} C R o ¢ R®e and any
165 2 0}y with 527, ¢; = 1, we have

@ el wilay " < 2620 ”ch sl

i=] j=1
and
7 ™"
5) SN ciglles — oy O < 2630/ G- “Zc [EAFA
i=1j=1 f=]1

where e = max(l—¢;: 1 < j < m).

It should be noted that (45) was originally given in Cleaver [3, Theo-
rem 3.2].

LEMMA 4.2. Let & be an N-function and let D4(u) be the inverse of (43).
If 0 <s<1, then &, € Ag(0) N V(0).

Proof Notethat 1/2<al <8 <1,0<s<1and for u >0,
M (u) _ [sb-l(u) r" Vi)’
71 (2u) [P (2u) Vaiu]

)1—*32"»-8/2 2 28/2-—1 >

Therefore, we have

o, = (o

b =

and .
Be, = (B3)* 272 <27 /* < 1.
Thus the conclusion follows from Theorem 1.4. =
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The first main result of this paper is as follows.

THEOREM 4.3. Let & be an N-function and let &,(u) be the inverse
of (43). If 0 < s <1, then

(46) 1ag, < K(f%)) < 21-2/2,

or equivalently,

1 1

[T (®,) L g
(47) 1+2af — P < 14 28/2°
Burthermore, if & & V3(0), we have
(48) K (£8)) = 21972,
or equivalently,

1
Paly

(49) Py =+,

Proof. The left side of (46) follows from Lemma 2.2. Now we prove the
right side of (46). Since 0 < s < 1, one has £(%+) = (%) by Lemma 4.2. For
any given {z; : i = 1,2,...} C S(£%*)) satisfying R < ||z; — 25,3, # 4,
choose n > 2,¢; = 1/n, 1 £ i < n. It follows from (44) that

MRWz 3)<2(1_,];
n

'
’n"L

)2(1--.9)/(2—3)

and so
1 —3/2
R<21"9/2(1w-) .
0

Letting m — oo in the above, we obtain the right side of {46).
If & ¢ V3{0), then o = 1/2 in view of Theorem 1.4. Therefore, from
(43) we have :

(50) o = (o
Finally, (48) is deduced from (46) and (50). =

EXAMPLE 4.4, Let @(u) = e — 1 with 1 < r <'co. Then for 0 < s < 1
we have

)].——52—3/2 - 25/2—1'

&) =
217 and

(1 +w)] G2 w0
Note that of =

a%n = 2(.9*1)/r—.5/2'

y (46) and (47), we get
2(1-—.9)/1‘-+s/2 < K(e(@,)) < 21m5/2
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and
1 1
(%)
14 2(1—8)(1-1/r)+a/2 < P(ﬂ ) 1+ 98/2°
ExaMPLE 4.5. Let M(u) be the inverse of
0 if u =0,
M u) = $ u®4In(1/u)/? if0<u < e ?,
(2u/e)t/? if e™? < u < oo,
Then
1
M)y _ 93/4 M
(51) K(eM) =234, Pty = T a7

In fact, let ¢(u) be the inverse of

0 ifu=
() = {uln(l/u) if0<u<e?,
(2/e)ut/? ife? < u < oo

Then. $(u) is an N-function, since #~(u) is strictly concave on [0, o) and
satisfies

U U
B =0 gy T
Note that M~ {u) = [&; 1(u)}5=1/2 and
-1

u-—rO g1 (21.:,) 5
Therefore, & & V3(0) by Theorem 1.4(ii) and hence, (51) follows from The-
orem 4.3.

To find the values of the Kottman and packing constants for a class of

reflexive spaces equipped with the Orlicz norm we need the Tollowing two
lemmas.

LEMMA 4.6. Let & be an N-function and let &, be the inverse of (43).
Then

1 1—8 s
52 o hd
(52) il +5
and

1 1—-8 s
B3 — = 2.
9 By, =B T3

Proof. Note that &,(t) = ¢,(t) a. on (0, c0). Putting t = &7 () for
0 < < oo, we have
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$s(t) _ w7 ()]

Y e~ e

_ (L= 9 )] @ W) ul+/2 1 [ (w22

[¢—1(u)]1~aus/2
_ (=g )
-1(w) 2

Therefore,

P, (2) , u[@ ()]’ s
rolsenE IO RE R U SONAE R )

Similarly, one can prove (53) by using (54). =

LemMa 4.7. Let @, ¥ be a pair of complementary N-functions. Suppose
that

. tp(t)
= lim
(55) c lim = (t)
erists. Then
(i) 751; = limy o B~ {u)/P™(2u) ewists, and 73 = 2“1/00-

(if) CF = limyo t3p(t)/P(L) ezists, and g = limy..q &~ 1(v)/krf H2w) =
2-1/Ca; gnd

(i) 27§7% = 1.

Proof. The assertions follow directly from (8) and (7).

The second main result of this paper is as follows.

THEOREM 4.8. Let & be an N-function and let $4(u) be the inverse of
(43). If 0 <8 < 1, then

(56) 280+ < K(£%) <2'7%2,
or equivalently,
1 1
57 e S P(P) € — s,
( ) l'l'l/ﬁgn:i-—P( )—1+23/2

where ¥;F is the complementary N-function to 6.
Furthermore, if ® & V4(0) and C3 exists, then

(38) Kl =270,
or equivalently,
1
D) = —
(59) P(’e ) 1+2s/2 _

Proof. The left side of (56) follows from Lemma 3.2. By using (45),
we can obtain the right side of (56). Now we prove the second part of the
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theorem. Note that & & V2(0) and CJ exists if and only if C§ = 1. It follows
from Lemmas 4.6 and 4.7 that

(60) 2["@3[_k — 1/&‘:‘(:{5 — 21/0‘2,s - 2(1~—3)/C'g-+~.9/2 = 21~—v3/2.
Finally, (58) is a consequence of (56) and (60). =

ExaMPLE 4.9. Let &,, 0 < 5 < 1, be the inverse of
&7 (w) = {expn(l 4+ u)]*3 — 1} %2 uw >0

8

Then,

(61) 2(4—5)/6 < K(f@,) < 21-—.9/2
and

62 L cpry<c L
(62) 1 2(2+9)/8 = ( )—1+2ﬂ/2'

In fact, letting

QS(U) = (1 “+ |u|)V1“C1+\U1) —1

(see [8, p- 34]), we have &5 (u) = [~ (w)]*~*[F5 1 (1)]*. As limgwmo tp(t)/B(2)
= 3/2, by Lemmas 4.7 and 4.6 we get

2133,; = 1/0‘%3 — 9L/ Cs, _ 9(1~s)/Ch+s/2 _ 9d~8)/6

Thus, (61) and (62) follow from (56), (57) and the above equality.

EXAMPLE 4.10. Let M (u) and $(u) be as in Example 4.5. Then K (£M) =
K(£M)y and P(EM) = P(4M)),
In fact, putting t = &~ (1) we have
tB'(t)

0 .1 o (15_1(7,6) _
oM )

By the second part of Theorem 4.8, the desired result follows.
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