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On non-primary Fréchet Schwartz spaces
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J. . DIAZ (Cérdoba)

Abstract. Let F be a Fréchet Schwariz space with a continuous norm and with a
finite-climensional decomposition, and let F be any infinite-dimensional subspace of E. It
is proved that B can be written as G @& H where G and H do not contain any subspace
isomorphic to F. In particular, F is not primary. If the subspace F is not normable then
the statement holds for other quasinormable Fréchet spaces, e.g., if £ is a quasinormable
and locally normable Kéthe sequence space, or if B is a space of holomorphic functions of
bounded type Hp(L), where U is 2 Banach space or a bounded absolutely convex open
set in a Banach space.

Introduction. A Fréchet space F is said to be primary if whenever
E =G @& H then either G or H is isomorphic to K. This property has been
thoroughly studied for Banach spaces, indeed classical Banach spaces are
primary; but very little is known for non-Banach Fréchet spaces. In fact,
it is folklore that the space w = KN is primary (actually, every infinite-
dimensional closed subspace of w is isomorphic to w), but other examples
arose quite recently. Thus, it has been proved that X' N ig primary if X is:
2, (1< p< oo, coy or Ly (1 < p < o0) (see [18], [23], [1] and [4]). The
primary Fréchet spaces with a continucus norm known so far are: M5, fq
(1<p <o) (24], Nyeplg 1 <p < 0o) [10], and the complementably
universal element for the class of Fréchet spaces with a continuous norm
and an unconditional basgis (respectively, for the class of Kothe sequence
spaces of order p, with p & [1,00) U {0}), [11].

In this paper we prove that primariness does not occur in some rather
large classes of non-Banach Fréchet spaces, e.g., Fréchet Schwariz spaces
with continuous norm and finite-dimensional decomposition, quasinormable

1991 Mathematics Subject Classification: 46A04, 46A11, 46A45.

Key words and phrases: Fréchet spaces, primary spaces, Schwartz spaces, uncendi-
tlonal decornpositions, spaces of Moscatelll type, holomorphic functions of bounded type.

The author is indebted to Pilar Rueda and Manuel Maestre for useful inforppation
concerning Fréchet spaces of holomorphic functions. He is also grateful to José Bonet and
Pawel Domasski for references and suggestions on Fréchet Schwartz spaces. The research
has been partially supported by the DGICYT project no. PB94-0941.

1201)



icm

292 J. C. Diaz

locally normable Kéthe sequence spaces, and Kéthe sequence spaces of
Moscatelli type. Our rmain tool is a topological invariant developed by Za-
hariuta (see [16], [17] and [27]). To avoid solecisms all spaces are assumed
to be infinite-dimensional unless the contrary is stated.

The paper is divided into two sections. In Section 1 we prove that if  is
a Fréchet Schwartz space with a continuous norm and a finite-dimensional
decomposition, and if F'is any subspace of E then we can write E = G@H in
such a way that neither ' nor H contains a copy of F. This is a consequence
of a more general result, namely Theorem 1.4, which also applies, if F is
not normable, to other classes of quasinormable Fréchet spaces, including
spaces of holomorphic functions of bounded type on Banach spaces.

In Section 2 we consider Kothe sequence spaces Ay (4) of Moscatelli type
and prove that they are not primary. This is somehow surprising because
their structure is rather simple, Indeed, these spaces can be described in
a natural way as (£1)" M 41(41(a1), £1(0a),...), where ap = (ak(n)), are
unbounded sequences with ap(n) > 1 for kyn € N. Moreover, this class
of spaces has a complementably universal element, which so far seemed
a likely candidate to be primary. We should also observe that the crucial
Corollary 2.5 fails for some Fréchet spaces of Moscatelli type, according to
3, Proof of Theorem 2.1].

The main results are obtained for Fréchet spaces with a continuous norm.
When a nonnormable Fréchet space 5 with a continuous norm is denoted as
(E,(Vk)), we assume that (V3) is a decreasing sequence of absolutely convex
closed O-neighbourhoods such that (k~¥4) is a O-neighbourhood basis, the
Minkowski functional associated with Vi is 2 norm on F, and moreover V;,
and Vr.1 do not induce equivalent topologies for every k € N. The gauge of
a 0-neighbourhood V' (resp. V%) is denoted by || - |y {resp. || - ||k)-

Let us introduce notation of Kéthe sequence spaces. The reader is also
referred to [7]. Given a countable index set I o & matrix A = (ay())er is
sald to be a Kéthe matriz if 0 < ar(t) < apr1(i), k € N, i € I. For every
P € [1,00] U0 we define the Kothe sequence space of order p as

Ao(L, A) = Ap(A) = { (2)

el = (Y loilPae)” < oo, iR}, 15p<oo,
i=1
Ao(l, A) = Ao (4) == {{z:) :
(@)l = sup{lzs|ar(i) : i € N} < o0, Vk € N}

The closed subspace of Ay (A) of the elements such that (#;ax(i)); converges
to 0 for all k & Nis denoted by A(A). Given a subset J C I , the sectional
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subspace of Ap(I, A) with respect to J is
)\p(J, A) = )\p(AJ) = {:C = (IL‘,,) S )\;,,(I, A) ca =0 Ve Q J}.
The element with entry 1 in the sth component and 0 elsewhere is dencted
by €;.
Given sets A and B we write 4 < B to indicate that A © aB for some

a > 1. The cardinal of a set 4 is denoted by | A|.
For other unexplained functional analytic notions see [21] and [22].

1. Fréchet Schwartz spaces. If U and V' are subsets of a vector space
E and £y is the set of all finite-dimensional subspaces of F spanned by
elements of V we define

BV, U) i=sup{dimL: L e &, LNU CV}
The definition of 3(-,-) has been given in [16] for absolutely convex sets U/

and V', but we need a more general notion. The next statement collects the
basic properties of 8(-,-). The proofs are straightforward.

Lemma 1.1. Let E be a vector space and let U,V C E.

(a) B(A, B) £ B(V,U) whenever ACV and U C B.

(b) If T is an injective linear operator defined on B then B(T(V),T(U))
=A(V,U).

(¢) B(aV,U) = B(V,a ) for every scalar o > 0.

(d) If § is a subspace of B then (VN S, UNS) <V.U).

LeMMa 1.2, Let (F, (Vi) be ¢ nonnormable Fréchet space. For every
scalar & > 0 and for any p < min{s,r} there exists t > 0 such that

BV, N1V;, W, LaVy) > 0.

Proof. Since the topologies induced by V, and V, are not equi"ra]ent
there exists « € V, \ aVi. Hence, aV; N [z] C V¥, N [z] where [z] is the
subspace spanned by . We take £ > 0 such that V, N [z] C ¢V, N [z]. By
Lemma 1.1(d), :

BV NV, VU aV,) 2 BV NV, Nial, (Vp UaVs) Ng])
= B(Vo N [el, Vp N [a]) = 1. m
LeMMa 1.3, Let (F,(Un)) be a Fréchet space isomorphic to a subspace

: ] k) < olk+1) <
of (B, (Vi)). For every k € N there evist k < o(k) < 7(
T('IG("F §) < ok +2) < r(k+2) and M = M(k) > 0 such that for every

couple of scalars s and £ one has

ﬁ(Ua(k) MNtUqtks2), Usiiy U SUU(;H,Q)) _
<BMWVn tvfr(k+1))v Voey U 8V (k42))-
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Proof Let T denote an isomorphism from F into . Given k& € N we
can find o(i)’s and r(i)’s, i = k, k + 1,k + 2, satisfying the order in the
statement and such that

Vi T(F) > T(Ua(k)) > Vr(k) N T(F) > T(Ua(k+1))
> Vegor) NT(F) > T(Us(ieg)) > Vaoray N T(F),

We take M, depending on k, such that the inclusion A ¢ M'/2B holds for
every couple of sets A < B in the above chain. To finish, for arbitrary s and
t we have

BUqry 0 tWotiy2)s Usiy U 8Us )
= BT Uopr)) VT (Ustrnra)s T(Uony) U ST Uiiz)))

< BV (Ve N Vi) 0 T(F), MY (V00 U sV g)) N T(F))
< BM(Vi NtV gor))s Vety U sVigigny). ®

DEFINITION. A (Schauder) decomposition of a Fréchet space (E, (V)
is a sequence (Pp) of continuous linear projections defined on E such that
Pi-Pj=6;;F; (i,j €N),and z =3 >, Py (x) for every z € E. The decom-
position is said to be: unconditional if the series converges unconditionally;
finite-dimensional if dim P,,(E) < oo for every n; normable if Po(E)isa
normable subspace of E, for every n. A decomposition is said to have the

property (5) if for every k € N there exists &' > k (we can assume k' = k1)
such that

s men{le- 3R], ek 1) =0

Equivalently, for every £ > 0 there exists m & N such that for every n > m
we have -

oo
Z Pj(Vis1) CeVa,

J=n
Finally, the decomposition is said to have the property (gng) if it is a
normable decomposition and there exists a O-neighbourhood, say Vi, such
that Vi N B, (E) induces the topology of F.(E) for every » € N. (Note that
(8) + (gna) implies that F is a quasinarmable Fréchet sp'ace with continuous
norm. Moreover, E is quasinormable by operators in the sense of Peris [25].)
Examples of Fréchet spaces with an unconditional decomposition with
properties (S) and (gng) are given after the following theorem. ‘

THEOl!i.EM 1.4, Let (E, (Vi) be a Fréchet space with an unconditional
decomposition (P,) having the properties (S) and (gng). Let F' be any non-
normable subspace of E. Then the space B can be written as a direct sum
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G & H where neither G nor H contains a copy of F. In particulor, E is not
primary.

Proof. Define @, =37 ; P; and R, = id ~ Q,,. We can assume that
(1) Qn(Ve) TV, R (Viy)CVi, VkneN

(In the other case we define new seminorms

|||z = sup {H i Pj(m)”}i in< m}
j=n

The sequence (||| - [||x) of seminorms induces the same topology as (|| - {lx),
the properties (S) and (gno) still hold, and (1) is satisfied.) We denote by
(Ux) a O-neighbourbood basis of F. Now we select sequences (my.), (s,) and
t,) of integers, with m,, < my,y1 and s, < t,, such that

(

(2) V1N Qua, (B} C 382V N Qra, (B},

(3) ﬁ(Uj M tnU'n,j: Uj ] Snt+1) > 0, Vj =1,...,n,
(4) ntn Vsl N Ry (B) C 3V N R o (B), Yg<n+1

For n = 1 take my = 1. In this case, inclusion {2) is obvious with s; = 3.
By Lemma 1.2 we choose £ > 81 to cbtain (3). Then we use the property
(§) to find a suitable ms > 1 for the expression (4). Assume that we have
already found s;, #; and m;4y for i < n ~ 1. By the property (gng), the
neighbourhood Vy induces the topology of @Qm, (&), thus we can choose s,
which fulfils (2). Then we use Lemma. 1.2 to fix ¢, > sy, such that (3) holds.
To finish, by (S) there exists M1 > my, such that the inclusions in (4) are
satisfied. The construction proceeds by induction.
Since the decomposition is unconditional we see that

0] o0
Z Qmai - Qmﬂi—l and Qm-]_ + Z Qmw.{_l - sz{

g=] i=1
are well defined continuous projections onto subspaces G and H, respec-
tively. Clearly, E = G @ H. Let us check that F is not isomorphic to a
subspace of . The other cage is analogous.
By contradiction, if F' is isomorphic to a subspace of G, given any k € I,
there are o(i)’s, 7(i)’s (i = k,k + 1,k + 2) and M fulfilling the assertion of
Lemma. 1.3. We select an odd integer n such that

(8) n > sup{M, o(k), 7(k), o (k + 2)/a(k), 7(k + 2}/k}.
On the one hand, by (5) and (3),

BUqy NEnUo(rtny Usiy U $nUoer2))
> B(Uriry N tnUna(i)s Usry U saUo(iy41) > 0-
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On the other hand,
BMVi Nt Ve(hi1) N Gy (Vo) U snVigpgny) N G)
S BV Nt Vo) NG, (Ve U 82 Vi) N G).
There is a contradiction with Lemma 1.3 if we prove that the right hand

side of the last inequality is equal to zero. In fact, assume on the contrary
that there is z € @, & 3 0, such that

(6) [CC] n (V:r(k) UseVar) C (Ve N th-r(Ic)+1)-

Set o := sup{y : Y2 € V,(4)Usn Vo }. By (6), ax belongs to n(V}mthT(k)_,_l).
Since z belongs to  and n has been chosen to be odd one has (Q
Qumn_,)(z} = 0. Therefore we can write

at = Qm,,_, (@x) + Ry, (ax).
On account of (1), (4) and (5),
B, (az) € n(Va N ta Vegky+1) 0 B, (E) C W Ve (k)41 N R, (E)
C 3Vem) N Bon, (B) C $(Vagy U s Ving).
In the same way, by (1), (2) and (5),
Qrmny (02) € (Vi NtV (k)11) N Q. (B)
CnVe N Q. (B) C VN Qn,_, (E)
c %anna N@m., (E)C %Snvnk C %(Vr(k) U sn Vo).

Altogether we see that a belongs to %(Vr(k) Usn Vo), contrary to the choice
of a. This finishes the proof. m

Ty

We state separately the main particular cases of Theorem 1.4.

COROLLARY 1.5. Let E be a Fréchet Schwarts space with a continuous
norm and ¢ finite-dimensional decomposition. If F is any subspace of E

then we can write E = G ® H where neither ¢ nor H contains a subspoce
isomorphic to F.

Proof It follows from [5, Theorem 2] that B has an unconditional
finite-dimensional decomposition (Pr). The decomposition has the prop-
erty (5) because E is Schwarts, (Incidentally, a Fréchet space with a finite-
dimensional decomposition is Schwartz if and only if the decomposition sat-

isfies (5).) The property {gno) holds since  bas a continuous norm and the
decomposition is finite-dimensional. w

Remark. The proof of Theorem 1.4 does not work for Fréchet spaces
without a continuous norm. Therefore we do not know if Corollary 1.5 holds
for a countable product of Fréchet Schwartz spaces. In particular, if s denotes
the space of rapidly decreasing sequences, we do not know if the space sV,
which is universal for the class of nuclear Fréchet spaces, is primary or not.
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DEFINITION. A Fréchet space EF is locally normable if there is a con-
tinuous norm on E such that the topology induced by this norm and the
topology of the space coincide on every bounded subset of E.

The local normability condition was introduced by Terzioélu.and Vogt
[26] to characterize the Kothe sequence spaces of order one whose bfdua.l does
not have a continuous norm. Kéthe sequence spaces which are quasinormable
and locally normable were characterized in {8, COfOllﬂF_Y 8]. Every non-locally
normable space Ap(B) is universal for the class of Kothe sequence spaces of
order p (see [12]).

CoroOLLARY 1.6. Let \y(I, A) be a quasinormable Kithe space of .deer
p € [1,00] U {0}. If Ap(I, A) is not normable then the following conditions
are equivalent:

{(a) Ap(1, A) is locally normable. ‘

(b) For every nonnormable subspace F C )\p(I,{l) there exists o subset
J C I such that neither Ap(Ay) nor A(Ap ) contains o copy of F, ‘

(¢) There exists J C I such that neither Ap(Ay) nor Ap(Ap ) contains
a copy of A1, A).

Proof. (a)=(b). Since A,{(I, A) is quasinormable and locally normable
there is a sequence (J,,) of pairwise disjoint sets with 1 = Unzl. Jy, such that
(P,) is an unconditional decomposition of Ap(I, A) which satisfies (5} a,nfl
(gna), where P, is the canonical projection onto Ap(Jn, A) (see [8, Corol-
lary 8]). (We observe that Corollary 8 of (8] is stated for p € [1,00) U {0}
but it extends to p = oo.) Thus, we can apply Theorem 1.‘4. Moreover, it
follows from its proof that the subspaces G and H are sectional subspaces
of A, (1, A).

{b)=>(c) is clear.

{(e)=(a). Given J C I, if Ay(J, A) is not locally noxm_able then A,{A s} or
Ap(Azys) 8 not locally normable. Assume that /\},.(A J)|15 not locally no;m—
able. By [12, Proposition 4] the space Ay(Ay) is umversal. for the ¢ assf
of Kéthe sequence spaces of order p, hence A;(As) contains a copy ©
Ap(L, A). =

Remark We can improve Corollary 1.6 if the space _)\p(I ,A) is isomog
phic o £,(A\p(1, A)) and p # co. Under these hypotheses, if Ap(d, A);\Fi} )
then there exists J ¢ I such that F' contains a complemented copy of o(Ar
and @ contains a complemented copy of Ap(Ar ) (see [11, Proposition 5]).
Consequently, we can add the following statement to Corollary 1.6.

(d) The space A\(I, A) can be written as a direct sum F € G such that
neither F' nor G contains a copy of Ap(I,A).
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Unconditional decompositions with properties stronger than (9) have
been widely used in infinite-dimensional holomorphy. (These decomposi-
tions are usually defined by canonical projections onto spaces of continuous
n-homogensgous polynomials, n € N.) E.g., see the notion of S-absolute
decomposition in [14, Chapter 8] or {15, Definition 1.1], R-Schauder decom-
position in [19], and normal decomposition in [20]. Moreover, the property
(gno) also occurs in the instances which appear in the next corollary (see
[19, Examples 4 and 6] or [20, Examples]). Therefore, our next result is a
direct consequence of Theorem 1.4.

COROLLARY 1.7. Let U denote a Banach space X or a bounded absolutely
conves open set of X, and let B denote one of the following Fréchet spaces:

(a) the space Hp(U) of all holomorphic functions of bounded type on U,
endowed with the topology of uniform convergence on U-bounded sets;

(b) the subspace How(U) (resp., Hu+(U), if X is a dual space) of all
holomorphic functions of bounded type on U which are weakly uniformly
continuous (resp., weak*-uniformly continuous) on all U-bounded sets.

If F is any nonnormable subspace of E then we can write E = G& H
where neither G nor H has o subspace isomorphic to F.

To finish this section we show two methods which give Fréchet spaces
with an unconditional decomposition with properties (§) and (gng). The
statement and the proof of part (1) are similar to a prior result of Peris
(125, Proposition 3.4]).

ProrosiTiON 1.8, Let X and X,, denote Banach spaces, n € N. Let E
be a Fréchet space with an unconditional decomposition (P,) with properties
(8) and (gno). Let A be a Fréchet Schwartz space with an unconditional
basis (en). The following spaces have an unconditional decomposition with
properties (S) and (gno):

(1) the tensor product X &, E for r=¢ or i

(2) the vector-valued sequence space

Aoy = {(2n) € T] Xn: 3 llenllen € A}
neEN .

Proof. We consider the decomposition (id® P,) in case (1). In case (2),
we take as P, the projection onto the nth component, for every n € N. The
properties of the decompositions can be readily checked by the reader. m

2. Kothe spaces of Moscatelli type. In this section we deal with the
projective limits proj, (X, Je x+1) of the Banach spaces

Xk = 4?1(4?1(&1),. . ,El(ak),ﬂl,ﬂl, . .),
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where ar = (ag(n)) are unbounded weights with ax(n) > 1 for k,n € N,
and linking maps Iy 1 @ Xpp1 — Xi defined as the canonical inclusion
on the (k- 1)th component and the identity on the rest, These are Fréchet
spaces of Moscatelli type in the terminology of Bonet and Dierolf [9]. We
write these spaces as Kothe sequence spaces A; (N2, A) such that

(1) a(i,§) = 1 Yy, k € N Vi > &,
(2) sup;an(k,j) = oo Vk €N,
(3) ap(i. ) = aq(i, ) Vi, € N¥p,g > i.

The classical nondistingnished space due to Kdthe and Grothendieck {22,
31.7] is of this kind. For that reason, these spaces are called (KG) spaces in
the sequel. The conditions (1), (2) and (3) of the (KG) spaces are widely
used without further reference.

Our interest in the structure of (K@) spaces is due to several kmown
facts:

(i) Every Kothe sequence space of order one which is isomorphic to
a complemented subspace of a (K@) space is normable or isomorphic to
a (K@) space. This is a consequence of Kondakov’s Lemma [8, Proposi-
tions 5.2 and 5.3].

(ii) Any (K G) space is a universal element for the class of K6the sequence
spaces of order one [12].

(iif) No complemented subspace of a (KG) space is Montel [2].

(iv) The class of (K G} spaces contains a complementably universal el-
ement. Indeed, if A;(G) denotes Kdthe-Grothendieck’s nondistinguished
space, then it is readily checked that £1(A\;(()) contains any other (KG)
space as a complemented subspace. By Pelezynski’s decomposition method
this is (up to isomoerphisin) the only complementably universal element for
the class of (K'G) spaces. Thus, the space £1(A1(G)) was a good candidate
to be primary.

Our main result in this section is that no (K@) space is primary (Corol-
lary 2.5). It is derived from Theorem 2.3 which provides a characterization
of the Kéthe spaces A (4) which are complemented in a given (K'G) space
A1(B).

Once more, our main tool is the topological invariant (-, -) and the circ%e
of ideas handled in [16]. For the sake of completeness we collect some basic
facts about B(-,-) in the framework of Kdthe sequence spaces. Let A be the
set of all sequences with positive terms. For any a,b € A we set

ab = (a,.;b,-),

a® = (a'f)v

a A b= (min{a, bi)),
a Vb= (max(ai, b;)).
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For any a € A we define

oo
Uai={(@a) €0l = 3 folan < 1},
n:l
We put U2UE™® i= Ugapi-«. Denote by conv(B) the closed absolutely con-
vex hull of B. The proof of the following properties can be seen in [16,
Lemmas 4 and 5].

LeMMA 2.1. Let a,b e A,

(1) Uawp C U, NUp C 20Uy and Upnp = W(Ua Uly).
(2) If M(A) is o Kothe sequence space then

B(U 1 A (A), Up 0 AL(A)) = |{i : as/b; < 1},

(3) Let A1 (4) and M\ (B) be Kéthe sequence spaces and let T : A{4A) —
A (B) be a linear operator such that

TU. N A{A) © MU, and T(Uy N A(A)) C MU,

for some a,b,¢,d € A, and for some M > 0. Then for any a € (0,1) we
have

T(USUF* N A (4)) C MUSUL™™.
One should note that in [16] the authors use a strict inequality to define

U,, but the above properties do not change with our definition. We also
need the following elementary fact.

LEMMA 2.2. Let F' be a complemented subspace of a Fréchet space E,

and let P : E -+ F be a continuous projection. If A; and B; are subsets of
E such that P(By) C A; (j € J), then

(W(UBj)) nFc Eb‘ﬁv(U(Aj mF)).
j g
DerFNITION. A Kéthe space Ay(1, A) is said to be diagonally comple-
mented into a Kéthe space Aj(I,B) if there exist an injective mapping
v : 1 -+ I and a continnous and open linear operator T : Aj(A) — A (B)
such that T(e;) = ;e for some t; > 0 and every 4 € I. If v() is a bijection
then we say that A;(A) and M\ (B) are diagonally isomorphic.

THEOREM 2.3. Let A1 (A) and A1 (B) be two (KG) speces. The following
conditions are equivalent:

(a) A1(A) is diagonally complemented into Ay (B).

(b) A1(A) is isomorphic to a complemented subspace of My (B).

(¢} There exist increasing sequences (o(n)) and (T(n)) of integers and o
sequence of scalars My, > 1 such that for every k € N and every My, < 8 <t,
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one has
H{@E9) 1 o(k) <i<o{k+2), 8 <aprre)(i,5) <t}
<KL i r(k) <i S 7(h +2), 8/ Mi <brgyn(5,5) <M}

Proof (b)=(c). Denote by T': A;(4) — A;(B) an isomorphism onto a
subspace F, complemented in A;(B). Let P : A;(B) — F be a continuous
projection. By induction we choose increasing sequences (o(n)) and (r(n))
of integers such that

T(Ug(k._l)) > V.},(k) NE > Vr(k) NF > T(Ug(k))
> T(Ushin)) > Voea1) NV F > Vegyy VF > T(Upryny)
> T(Uo(k18)) > Vatrota) VF > Vigrgny N F > T(Usiig),

where Vy.(;) is selected, after choosing V. (;y, in such a way that P(V,(;) <
Vagy for @ =k, k+1, k2. We now take My, such that, for every couple of sets
A < B in the chain before, one has 4 C (Mk/él)l/SB. Given My < s < t,
we fix 0 < o < 1 such that (tM),/2)Y* < tMy,. Note that

= 1 o
T lP( (k) -rUH z)) (Mk/4) /3( ok 1)U;(k+2))
by Lemma 2.1(3). By the properties of 8(,-) and by Lemma 2.2 we have

ﬁ(Ug(k) NtUqk44) COIlV(Ua(k) uus a(k— Ul(k+2) U sU, (k+2)))

= BT (Us(r)) Nt (U (reray)s

(T (Uptay) U T(US ey U i) Y ST (Ui )))

< BU(Mye /)M B (Vagay NtV (pazy) N F,
(M /4)"3eomv (V1) N F) U (PV VigZay) 0 F) U (8Va0es) N F)))

< B M /43 (Vi) N Vi) N F,
(M /4y~ 2/300nv(VT(k+1 Vl@f_z) U sViipray) NF)
< B( My /4) (Vi ry N Ve (g ), TORT(Vor(gen) U VT(k.)
Therefore, by Lemma 2,1(1), (2), and the basic properties of 3(:,-),

{40,
max{as() (4 7)) o (hra) (3 5) /1) <1H

wind gy (3 1), 051y (559 )ai(k_kg)(ﬁd),% kt2)(G,5)/8t

< {6:
max{br(x) (i 1), briran) (4, 7)/2} < _ﬂgg}
10in{ br(g4-1) (3, 5, by (3 )bi@ig)(% ) brpeny (3,9 /8} T

'r(k-\—Z) U 'SVTUC'!‘Q))) .

(1)
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We now calculate the left hand side of (1), and estimate the right hand
side. Depending on ¢, the weight max{az()(4,7), @o(r4a)(4,5)/t} takes the
following values:

() (3, ) ifi < o(k),
max{l, ay(rta)(i,5)/t} ifo(k) <i L o(k+4),
1 if i > ok +4).

On the other hand, the weight

min{a.g(;ﬁ) (4, 4), Gg(kwl)(igj)a‘imi.g)(ia ), Aage2) (4 5)/ 8},
depending on 4, is defined as
aa(k_l)(i,j)/s if 4 SO‘(R!— 1),
min{a 73 (4,7), Goey (5, 5)/8} i o(k—1) <1< o(k),
min{1, as(xi2)(8, 5)/5} ifo(k) <i<o(k+2),
1/s if i > o(k+2).

It is readily checked that the inequality max{-,-} < min{,-,-} does not
occur whenever ¢ < o(k) or i > o(k+2). If o(k) < i < o(k -+ 2) then we
obtain the inequality for the indices j such that s < 6y (k42 (4, ) < t. Hence,
the left hand side of (1) is

(2) HED) io(k) <i<o(h+2), 5 < aogue) (i) S t}.
Let us estimate the right hand side of (1). As before, the weight

max{br () (4, 5, br (g2 (6, 7) /£}
takes the following values:

. br(k)('i,j) ifi < r(k),
ma‘x{la bT(k-l-fZ) (%: j)/t} if T(k) << T(k + 2)’
1 4> v(k + 2),

while min{br (1) (3, 5), 820 (6 50155 5 (51 3), Drgieaay /8 } i

briry(i,4)/ 8 if £ < k),

min{b; o2 5 (6,9), by /) 3 (k) < 4 < Tk 4+ 1),

min{l, brikqy(3, )/} Hrlk-+1) <i<r(k-2),

L1/s if i > r(k +2).

Stnce My /s < 1, the inequality max{-, -} < (Mz/2)min{-, -, -} does not hold
ifi < (k) or i > 7(k+2). Two cases remain: (HErk+1) <i <
r{k+ 2)., and the inequality holds, then 2s/M;, < ooy (5, 7) < tMy; (2) IE
Tl(ﬂ < i S 7(k -+ 1), the inequality implies that br(vray (i, J) = 28/Mj, and
bg‘(,c +2)(7f’ ;r.) 2 2r(rt2)(6,9)/(tMy). The latter inequality is equivalent to
b ka1 5) < tMi/2. Consequently, by the choice of & (recall that tM/2 <
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(tMy)*), the set of indices where the inequality holds is contained in
(3) {(,5) s (k) <i < r(k+2), 8/Mk < by(rta) < tMy}.
We obtain part (¢} on account of (1), (2) and (3).
(c)=+(a). We define the following subsets of N*:
Jo = {(i,5) : 1 S o(2}},
I o= |J{(6,5) 1 0(2k) <0 < 02k +2), Mai < ap(2pa2) ()}
k21

Note that Ay (Ay,) is normable and that ax(i, ) is bounded on N* \ (J U
Jo) for k > o(4). Hence, A(Aneys) is normable. Therefore, since A1(B)
can be written as £; @ A\ (B), it suffices to show that Ay(As) is diagonally
complemented into A1 (B). By condition (c) and by [16, Lemma 2], for every
% € N there is an injective mapping

wr ({1 0(2k) <1< o(2k+2)} x N)NJ — {i:7(2k) <i<7(2k+2)} x N
such that

Go(2k+2) (5 §)

Mj

Consequently, there is a continuous and open linear operator T': A(Ag) —
A1(B) such that for every (3,5) € J, given k € N with ¢(2k) < i < 0(2k+2),
we have T(e; ;) = €y, (i) This proves that A1 (A 7) is diagonally comple-
mented into Ay (B). =

COROLLARY 2.4. Let A1 (4) and A1 (B) be two (K G) spaces. The following
conditions are equivalent:

< br(aita) (Ex(5,9)) € Miagans2) (6 5)-

(a) They are diagonally isomorphic.
(b) They are isornorphic.
(¢) They contain each other as complemented subspaces.

Proof. Only (c)=>(a) needs a proof. By Theorem 2.3, both spaces con-
tain each other as diagonally complemented subspaces, which actually im-
plies that they are diagonally isomorphic (see [16, Lemma 1]).

So far, there was some hope (in the opinion of the author) to find new
primary spaces in the class of (KG) spaces. As mentioned before, the com-
plementably universal element of the class (KG) was a firm candidate to be
primary. But we can prove that no (K G) space is primary as an application
of Theorem 2.3.

CoroLLARY 2.5. Let M(A) be any (K'G) space. There ezists J C N
such that neither A1 (As) nor A (A s) contains a complemented subspace
isomorphic to My (A). In particular, A (A) is not primary.
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Proof. We take s; = 1 and select ¢; > s; such that
{(1,4) 1 < aa(1,5) St} > 0.
Set Il = {(1,_7) D8 S a,]_(l,j) S fl}. Take now 89 with 52/2 > tl, and
choose t3 > 5o such that
[{(,5) : 82 € ai8,5) <ta}| >0, =12

We put

IQ = {(%,j) . 82/2 S (,Lg('i:,j) § 2'[)2, == 1,2}.
Note that Iy and I» are disj oint. By induction, if we have already constructed

I’ﬂ.—l = {(’L j) 1
then we fix s, with (n — 1}tn—1 < 8,/n, and choose t,, such that
(1) I{(%,j) P8 < beg(i,j) < tn}| > 0, Yi<i<n.
Then we set
(2) Iy = {(8,7) : sn/n < an{i,§) S by, 1 <P < n}
By the choice of s,, the index set I, is disjoint from I; for all § < n.
We define J := {J,5; fan—1- Let us check that A1(4) is not isomorphic
to any cormplemented subspace of A1 (4s). Indeed, we prove that for every
k,r(k) € N and every M > 1, there are s and ¢ such that

~1(6,7) £ (- Dtna, 1S i< n - 1},

(3) H(k,7) 18 <ap(k, /) <t} >0
while
(4) {(i,5) € T i < 7(k), 8/M < arqy(8,7) STM} = 0.

By Theorem 2.3, this is enough to conclude that A;(A) is not isomorphic to
a complemented subspace of A (Ay). Given any k, 7(k) € N and M > 1 we
fix p € N with 2p > max{k, 7(k), M}. By (1) we have

[{(k,7) : s2p < ar(k, ) < tap}| > 0.
On the other hand, by (2),
{(8,7) e < 7(k), s2p/M < 0y (1, §) < Mt}
C {(6,4) : s29/(29) < anpli, J) < Zptap, 1 S0 S p} = Iy C N \Jr

which implies (4). To prove that A;(A4) is not isomorphic to a complemented
subspace of Ay (4w s) we just take p € N with

2p — 1 > max{k,7{k), M},
and proceed as before. m

The first part of Corollary 2.5 does not hold for some Fréchet spaces of
Moscatelli type. In fact, for the space E := (£,)¥ N€,(4,), with 1 < p < ¢
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< 0o, Albanese and Moscatelli [3, Proof of Theorem 2.1] have proved that
it E =G @& H then G or H contains a complemented copy of E.

As a further consequence of Theorem 2.3 we characterize the (KG)
spaces A1(A) which are isomorphic to their cartesian square. This prop-
erty is important for structural reasons. Moreover, it ensures that the space
of n-homogeneous polynomials and the space of n-linear forms, defined on
Ai(A), are isomorphic (see [13]).

PROPOSITION 2.6. A (KG) space A [A) ds isomorphic to its cartesian
square if and only if there exist increasing sequences (o (k)), (7(k)) and (M)
such that for every My < s < t, one has

21{(i,4) : o(k) <i Lok +2), 8 S aonin(if) St}

<G, 9) (k) <i S 7(k+2), 8/Mi < @r(ryz)(h7) < M},

Proof. By Corollary 2.4, it suffices to show that the stated condition
holds if and only if (A1(A4))? is isomorphic to a complemented subspace of
A1(A4). The space (A(A))? can be written as A1 (N?, B) where

bk(ia 2j) = bk(7‘123 -+ 1) = ak(i1j)
for every 7,4, k € N. Then our assertion can be readily obtained as a partic-

ular cage of Theorem 2.3. w

EXAMPLE (A (KG) space which is not isomorphic to its cartesian square).
We construct a matrix A with the following property: For every k,7(k) € N
and for every M > 1 there are s and t such that

{(.9) 5 8/M < araolin ) < tMY) < {(R,9) s s S anll ) < 8}

We write N as the disjoint union of a countable family (Nx}rz1 of infinite
subsets. The elements of Nj are labelled as {f¢ : § € N}. We define the
weights

ax (1, _7) =4 i<k,
Given any k € N and M > 1, we choose jg € Ny such that jp > M. Note

that, for any ¢ € N, if (ju! - 1)/M <41 < (ji!+ 1)M then i == ji. Therefore,
putting s = fx! — 1 and ¢ = ;! 4 1 we have

1{(k,7) : s < an(k, ) <t} =1,

an(i,§) =1 ifi> k.

while for every r(k), -
[{(2,9) : /M < ary(i, ) < tMY
is one if 7(k) > k and zero if (k) < k.
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