M. CHRAPEK (Kielce) J. DUDKIEWICZ (Kielce) W. DZIUBDZIELA (Częstochowa)

ON THE LIMIT DISTRIBUTIONS OF *k*TH ORDER STATISTICS FOR SEMI-PARETO PROCESSES

Abstract. Asymptotic properties of the kth largest values for semi-Pareto processes are investigated. Conditions for convergence in distribution of the kth largest values are given. The obtained limit laws are represented in terms of a compound Poisson distribution.

1. Introduction. Pillai [5] has discussed semi-Pareto processes, of which Pareto processes form a proper sub-class. He has examined asymptotic properties of the maximum and minimum of the first n observations. We here obtain conditions for convergence in distribution of the kth largest values for semi-Pareto processes.

We say that a random variable X has semi-Pareto distribution and write $X \sim P_S(\alpha, p)$ if its survival function is of the form

(1)
$$\overline{F}_X(x) = 1 - F_X(x) = P(X > x) = \frac{1}{1 + \psi(x)}, \quad x \ge 0,$$

where $\psi(x)$ satisfies the functional equation

$$\psi(x) = \frac{1}{p}\psi(p^{1/\alpha}x),$$

where $\alpha > 0$ and 0 .

The autoregressive semi-Pareto model ARSP(1) is built using a sequence of independent identically distributed (i.i.d.) random variables in the following manner ([5]). Let $\{\varepsilon_n, n \ge 1\}$ be i.i.d. $P_S(\alpha, p)$ random variables and

¹⁹⁹¹ Mathematics Subject Classification: Primary 60G70; Secondary 69J05.

 $Key\ words\ and\ phrases:$ extreme values, autoregressive process, semi-Pareto process.

^[189]

for each $n = 1, 2, \ldots$ define

(2)
$$X_n = \begin{cases} p^{-1/\alpha} X_{n-1} & \text{with probability } p, \\ \min(p^{-1/\alpha} X_{n-1}, \varepsilon_n) & \text{with probability } 1-p \end{cases}$$

The process defined by (2) will be called an ARSP(1) process.

The ARSP(1) process is clearly Markovian. If the initial distribution is $X_0 \sim P_S(\alpha, p)$, then $X_n \sim P_S(\alpha, p)$ and the process is strictly stationary.

In particular, if $\{\varepsilon_n, n \ge 1\}$ is a sequence of i.i.d. random variables with common distribution of the Pareto form

(3)
$$P(\varepsilon_1 > x) = [1 + (x/\sigma)^{1/\gamma}]^{-1}, \quad x \ge 0,$$

where $\sigma > 0$ and $\gamma > 0$, we obtain the *autoregressive Pareto* (ARP(1)) process ([7]).

2. Level crossing processes. Let $\{X_n, n \ge 1\}$ be an ARSP(1) process. For each $n \ge 1$, let $M_n^{(1)} \ge M_n^{(2)} \ge \ldots \ge M_n^{(n)}$ be the order statistics of X_1, \ldots, X_n . The problem is to study the limiting behaviour of the *k*th order statistics $M_n^{(k)}$ for any fixed $k \ge 1$ as $n \to \infty$. The asymptotic distribution of $M_n^{(k)}$ will be obtained by considering the number of exceedances of a level x by X_1, \ldots, X_n .

For any x > 0, we define the *level crossing process* $Z_n(x)$ associated with $\{X_n\}$ by

(4)
$$Z_n(x) = \begin{cases} 1 & \text{if } X_n > x, \\ 0 & \text{if } X_n \le x, \end{cases}$$

(cf. [1, 5, 7]). The two-state stochastic process $\{Z_n(x), n \ge 1\}$ turns out to be a Markov chain with transition matrix

$$P = \frac{1}{1+\psi(x)} \begin{bmatrix} p+\psi(x) & 1-p\\ (1-p)\psi(x) & 1+p\psi(x) \end{bmatrix}.$$

The obvious relation

(5)
$$P(M_n^{(k)} \le x) = P\Big(\sum_{j=1}^n Z_j(x) < k\Big), \quad -\infty < x < \infty,$$

will play a role in this paper.

3. Asymptotic distributions of kth order statistics. Suppose that, for $\tau > 0$, there exists a sequence $\{u_n = u_n(\tau)\}$ such that

(6)
$$\lim_{n \to \infty} n \overline{F}_X(u_n(\tau)) = \tau,$$

where \overline{F}_X is given by (1).

We shall investigate properties of the random variable

$$S_n(\tau) = \sum_{j=1}^n Z_j(u_n(\tau))$$

for some fixed $\tau > 0$, as $n \to \infty$, and as consequences, we shall obtain limiting distributional results for the *k*th order statistics. The main tool is a result which gives conditions for the convergence in distribution of sums of 0-1 Markov chains to a compound Poisson distribution (cf. [2, 4, 6]).

THEOREM 1. Let $\{Y_{n,j}, j = 1, ..., n\}$, n = 1, 2, ..., be a sequence of two-state 0 and 1 homogeneous Markov chains, with transition matrices

(7)
$$\begin{bmatrix} 1 - (1-\pi)\varrho_n & (1-\pi)\varrho_n \\ (1-\pi)(1-\varrho_n) & (1-\pi)\varrho_n + \pi \end{bmatrix}$$

where $0 \leq \varrho_n \leq 1$ and $0 \leq \pi \leq 1$, and initial probabilities

$$P(Y_{n,1} = 1) = 1 - P(Y_{n,1} = 0) = \varrho_n.$$

If

$$\lim_{n \to \infty} n \varrho_n = \lambda, \quad \lambda > 0$$

then for $k = 0, 1, 2, \ldots$,

$$\lim_{n \to \infty} P\left(\sum_{j=1}^n Y_{n,j} = k\right) = T(k, (1-\pi)\lambda, 1-\pi),$$

where

(8)
$$T(k,\lambda,r) = \begin{cases} e^{-\lambda} & \text{for } k = 0, \\ \sum_{m=1}^{k} C_{k-1}^{m-1} (1-r)^{k-m} r^m \frac{\lambda^m}{m!} e^{-\lambda} & \text{for } k = 1, 2, \dots \end{cases}$$

Therefore, the limit law for $\sum_{j=1}^{n} Y_{n,j}$ is of the compound Poisson type.

Consider now, for some $\tau > 0$, the sequence of Markov chains

(9)
$$Y_{n,j} = Z_j(u_n(\tau)), \quad j = 1, ..., n.$$

The transition matrices for the sequence (9) are of the form (7) with

$$\pi = p, \quad \varrho_n = \frac{1}{1 + \psi(u_n(\tau))}$$

Note that, by the condition (6), we have

(10)
$$\lim_{n \to \infty} n \varrho_n = \lim_{n \to \infty} n \overline{F}_X(u_n(\tau)) = \tau > 0.$$

Finally, it follows from Theorem 1 that

(11)
$$\lim_{n \to \infty} P(S_n(\tau) = k) = T(k, (1-p)\tau, 1-p), \quad k = 0, 1, 2, \dots$$

We shall use the results (11) to study the limit laws for the kth order statistics of semi-Pareto processes.

THEOREM 2. Let $\{X_n, n \ge 1\}$ be a strictly stationary ARSP(1) process. Suppose that, for $\tau > 0$, there exists a sequence $\{u_n(\tau), n \ge 1\}$ such that

(12)
$$\lim_{n \to \infty} \frac{1}{n} \psi(u_n(\tau)) = \frac{1}{\tau},$$

where ψ is given by (1). Then, for each $k = 0, 1, 2, \ldots$,

(13)
$$\lim_{n \to \infty} P(M_n^{(k)} \le u_n(\tau)) = \sum_{j=0}^{k-1} T(j, (1-p)\tau, 1-p),$$

where the function $T(k, \lambda, r)$ is defined by (8).

Proof. From (5) we have

$$P(M_n^{(k)} \le u_n(\tau)) = P\Big(\sum_{j=1}^n Z_j(u_n(\tau)) < k\Big), \quad k = 1, \dots, n,$$

where $Z_j(x)$ are defined by (4). Thus, by (10)–(12), we obtain the desired result.

The case k = 1 of Theorem 2 shows that

(14)
$$\lim_{n \to \infty} P(M_n^{(1)} \le u_n(\tau)) = \exp(-(1-p)\tau).$$

In particular, if $\{X_n, n \geq 1\}$ is a strictly stationary Pareto process with \overline{F}_{X_n} given by (3), then we have $\psi(x) = (x/\sigma)^{1/\gamma}$, and hence (12) holds with $u_n(\tau) = \sigma n^{\gamma} x, \ \tau = x^{-1/\gamma}, \ x > 0$. Thus, from (14) we obtain the result which is due to Yeh *et al.* ([7], Equation (3.8)):

$$P(M_n^{(1)} \le \sigma n^{\gamma} x) = \begin{cases} \exp(-(1-p)x^{-1/\gamma}) & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

References

- [1] B. C. Arnold and J. T. Hallett, A characterization of the Pareto process among stationary stochastic processes of the form $X_n = c \min(X_{n-1}, Y_n)$, Statist. Probab. Lett. 8 (1989), 377–380.
- [2] J. Gani, On the probability generating function of the sum of Markov Bernoulli random variables, J. Appl. Probab. 19A (1982), 321-326.
- [3] M. R. Leadbetter, G. Lindgren and H. Rootzén, *Extremes and Related Properties of Random Sequences and Processes*, Springer, New York, 1983.
- [4] J. Pawłowski, Poisson theorem for non-homogeneous Markov chains, J. Appl. Probab. 26 (1989), 637-642.
- [5] R. N. Pillai, Semi-Pareto processes, ibid. 28 (1991), 461–465.
- Y. H. Wang, On the limit of the Markov binomial distribution, ibid. 18 (1981), 937-942.

[7] H. C. Yeh, B. C. Arnold and C. A. Robertson, Pareto processes, ibid. 25 (1988), 291-301.

Magdalena Chrapek Institute of Mathematics Pedagogical University ul. M. Konopnickiej 21 25-406 Kielce, Poland

Wiesław Dziubdziela Faculty of Civil and Environment Engineering Department of Building Constructions Częstochowa Technical University ul. Akademicka 3 42-200 Częstochowa, Poland Jadwiga Dudkiewicz Department of Mathematics Kielce University of Technology Al. Tysiąclecia Państwa Polskiego 7 25-314 Kielce, Poland

Received on 30.10.1995; revised version on 18.1.1996