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A NOTE ON THE FUNCTIONAL LAW OF THE

ITERATED LOGARITHM FOR LÉVY’S AREA PROCESS

Abstract. By using large deviation techniques, we prove a Strassen type
law of the iterated logarithm, in Hölder norm, for Lévy’s area process.

1. Introduction. In the last years there have been several attempts to
study the Brownian motion and diffusion processes by endowing the path-
space with stronger topologies than the uniform one. For example, Baldi,
Ben Arous and Kerkyacharian [2] showed that the large deviations principle
for the Brownian motion still holds under the topology induced by any
Hölder norm with exponent α < 1/2. As a consequence of this result they
deduced Strassen’s law, in Hölder norm, for the Brownian motion.

The aim of this short note is to prove an analogue of this law for Lévy’s
area process which is the stochastic analogue of the area contained in a
lens-shaped domain. More precisely, let ξ = {(ξ1(t), ξ2(t)) : t ≥ 0} be
a 2-dimensional Gaussian process with independent components. Lévy’s
stochastic area process L = {L(t) : t ≥ 0} associated with ξ is defined by

L(t) =
1

2

( t\
0

ξ1(u) ξ2(du) −
t\
0

ξ2(u) ξ1(du)
)
, t ≥ 0.

This process has been thoroughly studied in recent years (see e.g. Ikeda,
Kusuoka and Manabe [7] and Chan et al . [4]) and plays an important
role in the study of various problems in analysis, geometry, mathematical
physics and statistics. For example, let B = {(B1(t), B2(t)) : t ≥ 0} be a 2-
dimensional Brownian motion and let ξ be the stationary Gaussian process
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defined by the stochastic differential equation

ξ(dt) = Aξ(t)dt + B(dt)

and such that ξ(0) is independent of B, where

A =

(
−θ1 −θ2

θ2 −θ1

)
,

θ1 > 0 and −∞ < θ2 < ∞ being some unknown parameters to be estimated
from the observations {ξ(t) : 0 ≤ t ≤ T} of ξ until time T ≥ 0.

Liptser and Shiryaev [9, p. 212] have proved that ξ has independent com-

ponents and that the maximum likelihood estimates θ̂1(T, ξ) and θ̂2(ξ, T ) of
θ1 and θ2 respectively are given by the equations

1

θ̂1(T, ξ)
− θ̂1(T, ξ)

T\
0

(ξ2
1(t) + ξ2

2(t)) dt =

T\
0

ξ1(t) ξ1(dt) +

T\
0

ξ2 (t) ξ2(dt),

θ̂2(T, ξ) =

TT
0

ξ1(t) ξ2(dt) −
TT
0

ξ2(t) ξ1(dt)TT
0
(ξ2

1(t) + ξ2
2(t))dt

.

Here, we study the asymptotic behaviour of Lévy’s area associated with
a Brownian motion B. We shall use a recent result of Ben Arous and Ledoux
[3] on large deviations, in Hölder norm, for diffusion processes.

The paper is organized as follows: in Section 2 we state the results and
in Section 3 we give the proofs. Before closing this section, let us note that
the asymptotic behaviour of Lévy’s area process via the law of the iterated
logarithm can be found in Helmes, Rémillard and Theodorescu [5], N’zi,
Rémillard and Theodorescu [10] and Rémillard [11].

2. Strassen’s law in Hölder norm for the area process. Let us
denote by C (resp. Cα) the space of all continuous functions f : [0, 1] → R

2

(resp. f : [0, 1] → R) such that f(0) = 0 endowed with the uniform (resp.
α-Hölder) norm

‖f‖ = sup
t∈[0,1]

|f(t)|,

(
resp. ‖f‖α = sup

0≤s,t≤1

|f(t) − f(s)|

|t − s|α

)
.

For every h in the Cameron–Martin space H, i.e. the space of all absolutely
continuous functions null at the origin with square integrable derivatives,
we put

|h|2H =

1\
0

|ḣ|2 ds,

where ḣ denotes the derivative of h.
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For every A ∈ Cα, we put

Λ(A) =

{
inf

{
1
2
|h|2H : h ∈ H, F (h) ∈ A

}
if F−1(A) 6= ∅,

∞ otherwise,

where

F (h)(t) =
1

2

( t\
0

h1(u)ḣ2(u) du −
t\
0

h2(u)ḣ1(u) du
)
, h = (h1, h2).

In particular, for every g ∈ Cα, we denote Λ({g}) by λ(g). We also set
K = {g ∈ Cα : λ(g) ≤ 1}.

For every u ≥ 0, let us put

φ(u) =

{
log log u if u ≥ 3,
1 if 0 < u < 3,

and

Zu =
L(u ·)

uφ(u)
.

Now, we state the main result of this paper. From now on, we assume
that 0 < α < 1/2.

Theorem 2.1. The process {Zu : u > 0} is P -a.s. relatively compact

and has K as set of limit points in the Hölder topology.

The proof of Theorem 2.1 follows the classical lines in Baldi [1], which
consists in proving the two propositions below:

Proposition 2.2. For every ε > 0, there exists u0 > 0 P -a.s. such that

if u > u0 then d(Zu,K) < ε, where

d(g,K) = inf
h∈K

‖g − h‖α.

Proposition 2.3. Let g ∈ K. Then, for every ε > 0, there exists

c = cε ∈ (1,∞) such that

P (‖Zcj − g‖α ≤ ε i .o.) = 1.

3. Proofs of Propositions 2.2 and 2.3. Let us first state a large
deviations principle, in Hölder norm, for L, which is an immediate conse-
quence of the main theorem in Ben Arous and Ledoux [3] and the scaling
property of L in Helmes and Schwane [6].
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Theorem 3.1. For every A ∈ Cα, we have

−Λ(A
◦

) ≤ lim inf
ε→0

ε2 log P (ε2L ∈ A) ≤ lim sup
ε→0

ε2 log P (ε2L ∈ A) ≤ −Λ(A)

where A
◦

and A are respectively the interior and the closure of A in the

Hölder topology.

P r o o f o f P r o p o s i t i o n 2.2. We divide the proof in three steps.
S t e p 1. We first prove that for every c ∈ (1,∞) and every ε > 0, there

exists j0 ∈ N such that if j ≥ j0 then d(Zcj ,K) < ε.

Let Kε = {g ∈ Cα : d(g,K) ≥ ε}. In view of the Borel–Cantelli Lemma,
we only have to check

∑

j

P (Zcj ∈ Kε) < ∞.

By virtue of the scaling property of L, we have

(3.1) P (Zcj ∈ Kε) = P

(
L

φ(cj)
∈ Kε

)
.

Now, let us prove that Λ(Kε) > 1. Since K is compact and λ is lower
semicontinuous, there exists g0 ∈ Kε such that λ(g0) = infg∈Kε

λ(g). If
Λ(Kε) ≤ 1 then λ(g0) ≤ 1. Therefore, g0 ∈ K, which contradicts g0 ∈ Kε.

Let δ > 0 be such that Λ(Kε) > 1+ 2δ. In view of Theorem 3.1, we have
for j large

P

(
L

φ(cj)
∈ Kε

)
≤ exp(−(1 + δ)φ(cj)) =

cte

j1+δ
,

which leads to the conclusion by virtue of (3.1).

S t e p 2. Now, we want to prove that for every ε > 0, there exists cε > 1
such that for every 1 < c < cε there exists j0 = j0(ω) such that Yj(ω) ≤ ε
for every j ≥ j0, where

Yj = sup
cj≤u≤cj+1

1

cjφ(cj)
‖L(u·) − L(cj ·)‖α.

By virtue of the Borel–Cantelli Lemma, we only have to show that
∑

j

P (Yj > ε) < ∞.

By using the scaling property of L we obtain

P (Yj ≥ ε) = P

(
sup

cj≤u≤cj+1

u

cjφ(cj)
‖L − L(cj/u ·)‖α ≥ ε

)

≤ P

(
sup

cj≤u≤cj+1

1

φ(cj)
‖L − L(cj/u ·)‖α ≥ ε/c

)
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= P

(
sup

1≤v≤c

1

φ(cj)
‖L − L(·/v)‖α ≥ ε/c

)
= P

(
1

φ(cj)
L ∈ A

)

where

A = {g ∈ Cα : sup
1≤v≤c

‖g − g(·/v)‖α ≥ ε/c}.

By virtue of Theorem 3.1 and since A is closed, for every δ > 0 and j
sufficiently large, we have

P

(
1

φ(cj)
L ∈ A

)
≤ exp(−(Λ(A) − δ)φ(cj)).

It remains to show that we can choose δ such that for c small, Λ(A) >
1 + δ. Let g ∈ A be such that λ(g) < ∞. There exist 1 ≤ v ≤ c and
(s, t) ∈ [0, 1]2 such that

ε

c
|t − s|α ≤ |(g(t) − g(t/v)) − (g(s) − g(s/v))|(3.2)

=
∣∣∣

t\
s∨(t/v)

ġ(u) du −

s∧(t/v)\
s/v

ġ(u) du
∣∣∣

≤ (|t − s ∨ (t/v)|1/2 + |s ∧ (t/v) − s/v|1/2)‖ġ‖L2

where ġ is the derivative of g.

Now, let f ∈ H be such that λ(g) = 1
2 |f |

2
H and F (f) = g. Since it is

easy to prove that ‖ġ‖L2 ≤ |f |2H, we deduce from (3.2) that

λ(g) ≥
ε

2c

(
|t − s|α

(|t − s ∨ (t/v)|1/2 + |s ∧ (t/v) − s/v|1/2

)
.

By virtue of Lemma 3.4 in Baldi [1], we obtain

λ(g) ≥
ε

4c
(c − 1)α−1/2.

Therefore, we have Λ(A) ≥ ε
4c (c − 1)α−1/2.

Since α < 1/2, it follows that for c small we have Λ(A) > 1, which ends
Step 2.

S t e p 3. For every cj ≤ u ≤ cj+1 we have

d(Zu,K) ≤

∥∥∥∥Zu −
cjφ(cj)

uφ(u)
Zcj

∥∥∥∥
α

(3.3)

+

∣∣∣∣1 −
cjφ(cj)

uφ(u)

∣∣∣∣‖Zcj‖α + d(Zcj ,K).

Let us deal with the right member of (3.3). In view of Step 2, the first term
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is ≤ 1
3ε. Now, Step 1 implies that ‖Zcj‖α is bounded for j large. Since

lim
j→∞

∣∣∣∣1 −
cjφ(cj)

uφ(u)

∣∣∣∣ =
c − 1

c
,

for c close to 1 and j large we see that the second term is ≤ 1
3ε. Step 1 also

implies that the third term is ≤ 1
3ε. The assertion of Proposition 2.2 follows

immediately.

P r o o f o f P r o p o s i t i o n 2.3. Let g ∈ K and f ∈ H be such that
1
2 |f |

2
H = λ(g) and F (f) = g. By virtue of the Proposition in Ben Arous and

Ledoux [3] and the scaling property of L, for δ small and j large, we have

P

(
‖Zcj − g‖α > ε,

∥∥∥∥
B(cj ·)√
cjφ(cj)

− f

∥∥∥∥ ≤ δ

)
≤ exp(−2φ(cj)).

It follows that
∑

j

P

(
‖Zcj − g‖α > ε,

∥∥∥∥
B(cj ·)√
cjφ(cj)

− f

∥∥∥∥ ≤ δ

)
< ∞.

Now, since there exists c = cε such that

P

(∥∥∥∥
B(cj ·)√
cjφ(cj)

− f

∥∥∥∥ ≤ δ i.o.

)
= 1,

we deduce that P (‖Zcj − g‖α ≤ ε i.o.) = 1 for c = cε.

R e m a r k s. (i) Theorem 3.1 gives a stronger result than the law of the
iterated logarithm obtained by Helmes, Rémillard and Theodorescu [5].

(ii) Theorem 3.1 can be easily generalized to Brownian functionals F (B)
satisfying the following conditions:

(H1) For every a ≥ 0 the restriction of F to Ka =
{
f ∈ H : 1

2
|f |2H ≤ a

}

is continuous;

(H2) For every R > 0, ̺ > 0, a > 0 there exist ε0 > 0, β > 0 such that for
every f ∈ Ka,

P (‖F (εB) − F (f)‖α > ̺, ‖εB − f‖ ≤ β) ≤ exp(−R/ε2);

(H3) There exists δ > 0 such that for every ε > 0 and every (u, t) ∈
[0,∞)2,

F (εB(u·))(t) = εδF (B)(ut);

(H4) For every ε > 0, there exists cε > 1 such that for every 1 < c ≤ cε,
we have Λ(A) > 1, where

A = {g ∈ Cα : sup
1≤v≤c

‖g − g(·/v)‖α ≥ ε/c}.
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Let us note that the class of Brownian functionals satisfying (H1)–(H4)
contains the iterated stochastic integrals considered by Baldi [1] and the
stochastic integrals in Rémillard [11].
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