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STATISTICAL ESTIMATION

OF HIGHER-ORDER SPECTRAL DENSITIES

BY MEANS OF GENERAL TAPERING

Abstract. Given a realization on a finite interval of a continuous-time sta-
tionary process, we construct estimators for higher order spectral densities.
Tapering and shift-in-time methods are used to build estimators which are
asymptotically unbiased and consistent for all admissible values of the argu-
ment. Asymptotic results for the fourth-order densities are given. Detailed
attention is paid to the nth order case.

1. Introduction. Higher-order spectra are of importance in many
applications: geophysics, astronomy, turbulence, plasmas and other topics
(see [3], [7], [12], [21], [22]). Estimation of higher-order spectral densities
is also of considerable interest in resolving problems about stochastic pro-
cesses. To realize such an estimation, we need more general processes (e.g.,
nongaussian, nonlinear) than second order processes (see [2], [5], [8], [25]).
A large class of statistics have been proposed for this estimation in [2], [5],
[8], [14], [16], [20], [27]. The statistics in [8] have an essential shortcoming:
they do not allow us to construct estimators of higher-order spectral densi-
ties of all (admissible) values of the arguments λ = (λ1, . . . , λn) such that
λ1 + . . .+ λn = 0. These statistics do not give any answer on subsets where
certain subgroups of arguments satisfy the same relation λk1

+ . . .+λkp
= 0,

1 ≤ ki ≤ n, i = 1, . . . , p, p = 1, . . . , n. On these manifolds, estimation of
higher-order spectral densities is disturbed because the cumulant spectral
densities and Fourier transforms of product moments of the same order do
not agree. Such a problem does not appear when the cumulant spectral
density and the moment spectral density are the same, as is the case for
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order two and three spectra for zero mean stationary processes (see [6], [13],
[23], [24], [26]).

In the present work, we construct a statistic for higher-order spectral
densities of zero mean continuous-time stationary processes. To this end
we first estimate the product moment spectral densities and then use an
identity between cumulant and product moment spectral densities.

This statistic does not have the inconveniences previously indicated;
we use general tapering and shift-in-time methods. The tapering method
consists in multiplying the observation X(t) by a suitably chosen function
hT (t) and in studying statistical properties by means of the tapered process
hT (t)X(t). This method was suggested in Cooley and Tukey [9]; it reduces
considerably the impact of dependence on remote frequencies, but leads to
a noticeable increase in the variance level and the mean-square deviation
for large size observations. Another application of this method is to reduce
leakage when the spectrum has strong peaks (see [4], [23]) and it is used in
situations of missing observations; here hT (t) is taken to be 0 or 1 (see [4],
[11], [15]). To reduce the difficulty caused by the tapering method, we use
moreover the shift-in-time method. We show that tapering allows us not
only to reduce the bias but also to reduce the estimator variance (see, for
example, [2], [6], [10], [17], [23] for further discussion of tapering).

In Zhurbenko [27, Chapter VI] a statistic for higher-order spectral den-
sities is constructed and studied when the process is discrete, and a shift in
time is used; that statistic avoids the preceding defects of [8]. Isakova [14]
studied the same statistic as in [27] and in addition used gaussian tapering
of a continuous-time process without restricting the set of admissible argu-
ments; however, her estimator seems difficult to compute effectively, for it
requires the observation of the process on R and we must know X(t) for all
t, even when gaussian tapering allows eliminating large values of t.

In this paper we avoid this problem by using tapering functions with
finite support. In Section 2, we give definitions and notations. In Section 3,
we define the estimators and explain the method used. In Section 4, exam-
ples of processes and tapering functions are given; in Sections 5 and 6, we
study the asymptotic mean and variance of our estimators. First we give
asymptotic results for the fourth-order case, and then we completely study
the nth order case.

2. Definitions and notations. As explained in the introduction, we
consider a class of processes which is more general than the class of second-
order processes. We use a class ∆ which is similar to ∆(k) proposed by
Kolmogorov (see [25]). Brillinger [5] proposed a class ψ(k) generalizing the
class ∆(k) and showed that this class is suitable for higher-order spectra.
Before defining the class ∆, we give some definitions and notations.
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1. x = (x1, . . . , xn) represents a point or vector in a Euclidean space Rn

of dimension n, with canonical scalar product, x · y = x1y1 + . . .+ xnyn.

2. Let x1, . . . , xp be a partition of the set of coordinates of the vector
x into unordered subsets xk = (xk1

, . . . , xknk
), k = 1, . . . , p, xk ∈ Rnk ; xk

stands for the projection of x ∈ Rn onto Rnk , with n1+ . . .+np = n. In that
case we write Rn = Rn1 × . . . ×Rnp and x = x1 +̇ . . . +̇ xp. By λ′, λ′′ ∈ R2n

we shall denote vectors whose first, or respectively last, n coordinates coin-
cide with λ ∈ Rn while the others are zero, i.e., λ′ = (λ1, . . . , λn, 0, . . . , 0)
and λ′′ = (0, . . . , 0, λ1, . . . , λn).

3. For x ∈ Rn, |x| = x1 + . . .+ xn, dx = dx1 . . . dxn, dx̆ = dx1 . . . dxn−1

and δ|x| = δx1+...+xn=0, where δ is the Dirac function.

Let us notice that some of these definitions were used in [27, Chapter VI].

4. X = {X(t),−∞ < t < ∞} stands for a complex- or real-valued
stochastic process.

5. The product moment m(t) = m(t1, . . . , tk) of order k is given by

(1) m(t) = EX(t1) . . . X(tk).

6. The cumulant c(t) = c(t1, . . . , tn) of order n is defined through prod-
uct moments by

(2) c(t) =
∑

(−1)p−1(p− 1)!m(t1) . . . m(tp),

where the summation is over all partitions of (t1, . . . , tn) into unordered
subsets tk = (tk1

, . . . , tknk
), 1 ≤ kj ≤ n, j = 1, . . . , nk, k = 1, . . . , p.

We now define the class ∆. It contains the real-valued, continuous-time
stochastic processes of zero mean satisfying the following conditions.

(a) The product moments m(t), for every t ∈ Rk, exist up to order n.

(b) For u ∈ R, k = 2, . . . , n and (t1, . . . , tk) ∈ Rk,

m(t1 + u, . . . , tk + u) = m(t1, . . . , tk).

(c) For k = 2, . . . , n there exists a measure δ|λ|F (dλ) absolutely continu-
ous with respect to the Lebesgue measure on the manifolds λ1 + . . .+λk = 0
such that

(3) c(t) =
\

Rk−1

δ|λ| exp{i(t1λ1 + . . .+ tkλk)}F (dλ),

where t = (t1, . . . , tk) ∈ Rk.

Throughout this work, X is a stochastic process belonging to the class
∆. A number of comments may be made about ∆.
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(i) In view of (c), there exist functions f(λ) such that δ|λ|F (dλ) =
δ|λ|f(λ)dλ for λ = (λ1, . . . , λk) such that |λ| = 0. The function f(λ) is
called the cumulant spectral density .

(ii) In the same manner, we can define the moment spectral density g,
as a Fourier transform of the product moment m. The cumulant and the
moment spectral densities are connected with each other by the relations

(4)
δ|x| f(x) =

∑
(−1)p−1(p− 1)! δ|x1| g(x1) . . . δ|xp| g(xp),

δ|x| g(x) =
∑

δ|x1| f(x1) . . . δ|xp| f(xp),

where the summation is over all partitions of (x1, . . . , xn) into unordered
subsets xk = (xk1

, . . . , xknk
), 1 ≤ kj ≤ n, j = 1, . . . , nk.

(iii) Conditions (a) and (b) imply the stationarity of the process X.
(iv) Moreover, if the cumulant function c(·) and the cumulant spectral

density f(·) are absolutely integrable, for a process X satisfying conditions
(a) and (b) above, then X belongs to the class ∆. In that case, the inverse
Fourier transform of (3) exists and is uniformly continuous.

For more details, see [5] and [2, Chapter 1].

3. Estimation. To construct estimators of the higher-order spectral
density f(λ), and to eliminate the difficulties caused by lower order moment
spectral densities, we first estimate the moment spectral densities g(λk)
by means of suitable estimators ĝ(λk), for all elements λk in the set of
admissible arguments: λk = (λk1

, . . . , λknk
) ∈ Rnk , |λk| = 0, for the vector

λ = (λ1, . . . , λn), and then in (4) we set ĝ(λk) in place of g(λk) to obtain

the estimator f̂(λ) of f(λ), given by

(5) f̂(λ) =
∑0

(−1)p−1(p− 1)! ĝ(λ1) . . . ĝ(λp),

where the summation is over all unordered partitions of coordinates of λ ∈
Rn, with |λ| = 0, n ≥ 2, λk = (λk1

, . . . , λknk
), |λk| = 0, k = 1, . . . , p,

1 ≤ p ≤ m, 1 ≤ m ≤ n and λ1 +̇ . . . +̇ λp = λ. The integer m = m(λ)
is called the characteristic number of the vector λ and was introduced by
Zhurbenko [27]:

Definition 3.1. The characteristic number m = m(λ) > 0 of the vector
λ such that |λ| = 0 is the maximum integer for which the equations

λ = λ1 +̇ . . . +̇ λm, |λk| = 0, k = 1, . . . ,m, 1 ≤ m ≤ n,

are satisfied and the coordinate spaces of the vectors λk, k = 1, . . . ,m, have
nonzero dimension.

In the case m = 1, the statistics f̂(λ) and ĝ(λ) are the same; and for

m > 1, the statistic f̂(λ) will have, according to the definition, nonzero
complementary terms.
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3.1. Moment density estimates. We construct the estimator after ob-
serving the process X on an interval [−T, T + LU ], T,L,U > 0. The esti-
mation method used here is based upon tapering and shift in time simul-
taneously: first smoothing the observed path with a suitable function hT ,
then making calculations over shifted intervals, and averaging the result.

For any subset λk of λ in (5), we consider the following statistic (the
existence of which is supposed):

(6) I(u)(λk) =
1

(2π)nk(n−1)/n(HT
n )nk/n

\
R

nk

X(tk)hT (tk − Lu)e−itk·λk dtk,

where λk = (λk1
, . . . , λknk

), tk = (tk1
, . . . , tknk

), u = (u, . . . , u) are in Rnk ,

k = 1, . . . , p, 1 ≤ p ≤ m, 1 ≤ m ≤ n, L > 0 and HT
n (= HT

n (0)) is the
Fourier transform of hn

T (·) at the origin and is assumed to be nonzero.

We shall construct the estimate of the moment spectral density g(λk) by

(7) ĝ(λk) =
1

U

U\
0

I(u)(λk) du.

Let us note that Le Fe Do [18] proved, in the nontapered case, that the
statistic (6) with nk = n = 4 is strongly consistent.

One further approximation is possible when the tapering function can
be written in the form hT (t) = h(t/T ); this definition holds for most of the
taper functions considered in practice. We choose h(·) to be a real, positive,
even function, which is zero outside the interval [−1, 1]. These hypotheses
about h(·) are referred to as H0 in the sequel.

Let H(·) and HT (·) denote the Fourier transform of h(·) and hT (·) re-
spectively. The precise relationship between HT (·) and H(·) is given by

(8) HT (x) = TH(Tx).

For every nonzero integer k and every real x, we define

Hk(x) =

1\
−1

hk(t)eitx dt.

In the same way we define HT
k (·) as the Fourier transform of hk

T (·) and we
have a relation similar to (8), i.e.,

(9) HT
k (x) = THk(Tx).

In the sequel we write Hk for Hk(0), Hj
k for (Hk(0))j for every integer j, k

and HT
k for HT

k (0). For every x ∈ R and k = 1, we have H1(x) = H(x) and
HT

1 (x) = HT (x).
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For every u ∈ R+, we define

(10) uHk(x) =

Lu+1\
Lu−1

hk(t− Lu)eitx dt.

Let us write Hk(x) for 0Hk(x); it is evident that uHk(x) = Hk(x)eiLux.

If t = (t1, . . . , tn) ∈ Rn, we choose h(·) such that h(t) = h(t1) . . . h(tn).
The following properties are immediate:

(a) The functions HT
k (x), x ∈ Rn, n ≥ 1, are uniformly continuous for

every T > 0, k ≥ 1.

(b) supx∈R
|Hk(x)| ≤ Hk ≤ 2 supt h

k(t) <∞, k ≥ 1.

(c) For all k, l ∈ N and α, γ ∈ R, we get

(11)
\
R

HT
k (α− β)HT

l (β − γ) dβ = 2πHk+l(α− γ).

(d) For every λ = (λ1, . . . , λn) ∈ Rn, n ≥ 2, we get

(12)
\

Rn−1

δ|x|HT (x) dx̆ = (2π)n−1HT
n (−|λ|),

and

(13)
\

R2n−1

δ|x|HT (x− λ′ + λ′′) dx̆ = (2π)2n−1HT
2n,

where dx̆, λ′ and λ′′ are defined in Section 2.

Let us note that property (c) follows from the convolution theorem, and
property (d) comes from (c).

3.2. Assumptions. Throughout this work, we suppose that the following
conditions are satisfied.

• The cumulant spectral densities f(λ), λ ∈ Rk, k ≥ 2, exist for X up
to order n and satisfy the following hypothesis. There exists α such that,
for every λ ∈ Rk, every x ∈ Rk, 2 ≤ k ≤ n, and some C0 > 0,

(14)

|f(x+ λ) − f(λ)| ≤ C0‖x‖
α if 0 < α ≤ 1,

∣∣∣∣f(x+ λ) − f(λ) −

n∑

i=1

∂

∂λi
f(λ)xi

∣∣∣∣ ≤ C0‖x‖
α if 1 < α ≤ 2.

• h(·) satisfies condition H0 and its Fourier transform H(·) satisfies the
following conditions:

H1. THk(Tx), k ≥ 1, converges to zero as T → ∞, uniformly on the set
{x ∈ R : |x| > η > 0} (here |x| is the absolute value of the real x).

H2.
T
Rk−1 δ|x| |H(x)|2 dx̆ <∞, 2 ≤ k ≤ n.
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H3.
T
Rk−1 δ|x| ‖x‖

α|H(x)|q dx̆ < ∞, 2 ≤ k ≤ n, q = 1, 2, for some
α ∈ ]0, 2], where ‖ · ‖ is the uniform norm.

Note that in this work we require H3 to be valid only for α (∈ ]0, 2])
defined by condition (14). In the following section we give some examples
of functions h(·) that satisfy condition H0 and have Fourier transforms sat-
isfying H1–H3 for every α ∈ ]0, 2].

4. Examples

4.1. Example of a process X. Let

X(t) =
\
v(s)Y (t− s) ds,

where v is a smooth real function and

Y (t) = e2(t) − 1,

where {e(t)} are independent, identically distributed normal variables of
zero mean and variance one. The theoretical nth order spectral density
f(λ) is given by

(15) f(λ1, . . . , λn) = 2n−1(n− 1)!V (λ1) . . . V (λn),

where V is the Fourier transform of v and λ1 + . . .+λn = 0. Now it suffices
to choose v such that the right hand side in (14) satisfies condition (15).
This example may be used for simulation.

4.2. Example of a tapering function h. First we consider the tapering
functions which are differentiable up to order r ≥ 1.

Example 1 (Polynomial tapering). The function

hr(t) = (1 − t)r(1 + t)r1{|t|≤1}

satisfies condition H0 and it is of class Cr−1 on [−1, 1], and of class Cr+1

on ]−1, 1[. Furthermore, from successive integrations by parts, we get for
x 6= 0,

(16) |HT
k,r(x)| ≤ KT−kr|x|−kr−1,

where HT
k,r(x) is the Fourier transform of hk

r (t); this proves condition H1.
The proof of the other conditions requires integral calculus and the in-
equality

(17)
( n−1∑

i=1

|xi|
)α

≤





n−1∑

i=1

|xi|
α if 0 < α ≤ 1,

n−2∑

i=1

2iα|xi|
α + 2(n−2)α|xn−1|

α if 1 < α.
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In the following example, we consider the tapering functions which are
not necessarily differentiable.

Example 2 (Bartlett’s tapering). The function h(t) = (1 − |t|)1{|t|≤1}

satisfies condition H0, and using successive integrations by parts we obtain

|HT
k (x)| ≤ 4k!

k+1∑

j=2

T−j+1|x|−j .

For example, if k = 1, then we have

HT (x) =
1

T

(
sin(Tx/2)

x/2

)2

,

which implies |HT (x)| ≤ 4T−1|x|−2; this proves condition H1. The other
conditions require integral calculus and inequality (17) (see [2] for more
details).

5. Fourth-order estimation. In the expression of f̂(λ), we use the

set of admissible arguments of the vector λ on which the summation
∑0 is

carried out. To write completely the fourth-order spectral estimate f̂(λ) for
λ = (λ1, λ2, λ3, λ4) we shall state the possible values of the characteristic
number m and the set of admissible arguments according to the value of
m. Since univariate spectral densities equal zero, the possible values of the
characteristic number are 1 and 2. The case m = 1 gives us one admissible
argument Λ1 = {(λ1, λ2, λ3, λ4)}; for m = 2 we get three sets of admissible
arguments: Λ2 = {(λ1, λ2), (λ3, λ4)}, Λ3 = {(λ1, λ3), (λ2, λ4)} and Λ4 =
{(λ1, λ4), (λ2, λ3)}. Note that the term in Λ1 is always admissible; we call it
the principal argument of λ, in order to distinguish it from other admissible
arguments.

Now, we write completely the expression of f̂(λ) according to the value
of m.

(i) Case m = 1, only the principal argument occurs for f̂(λ); in this case
we have

(18) f̂(λ) = ĝ(λ).

(ii) Case m = 2; we distinguish three cases.

(a) The six terms of Λ2, Λ3 and Λ4 are admissible for f̂(λ), i.e., λi = −λj ,
i 6= j and i, j = 1, . . . , 4. It follows that λ = (0, 0, 0, 0), from the definition

of f̂(λ), we get

(19) f̂(λ) = ĝ(λ) − 3(ĝ(0, 0))2.

(b) The terms of two sets Λi, Λj , i 6= j, i, j = 2, 3, 4, are admissible for

f̂(λ). Let for instance i = 2, j = 3 (for the other cases the expression of
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f̂(λ) remains the same). In this case we have λ = (λ1,−λ1,−λ1, λ1), and

from the definition of f̂(λ) we get

(20) f̂(λ) = ĝ(λ) − 2ĝ(λ1,−λ1)ĝ(−λ1, λ1).

(c) The terms of one set Λi, i = 2, 3, 4, are admissible for f̂(λ). For
example, let i = 2; the other cases are similar. In this case we have λ =
(λ1,−λ1, λ2,−λ2), and from the definition of f̂(λ) we get

(21) f̂(λ) = ĝ(λ) − ĝ(λ1,−λ1)ĝ(−λ2, λ2).

5.1. Preliminary results. Consider the kernel

(22) KM (y) =
1

2πM
·
sin2(My/2)

(y/2)2
, y ∈ R, M > 0.

This kernel has the following properties:

(i)
T
R
KM (y) dy = 1 for every M > 0,

(ii) limM→∞

T
|y|>η

KM (y) dy = 0 for every η > 0.

Let φ : Rn × R→ Rn be a continuous function; we write φ(x) for φ(x, 0).
The function φ will be called the coordinate function. We state the following
lemmas whose proofs are given in the appendix.

Lemma 5.1. Let ψ be a function defined on Rn such that ψ ◦ φ is inte-

grable, and choose positive T and N such that T → ∞, N → ∞, T/N → 0;
then for n ≥ 1 we get the asymptotic equality\

Rn×R

ψ ◦ φ(x, z)KN/T (z) dx dz =
\

Rn

ψ ◦ φ(x) dx+O(1/T ) +O(T/N),

where x = (x1, . . . , xn).

Lemma 5.2. Let ξ be a bounded , continuous function on R. For all

positive T , N such that T → ∞, N → ∞, T/N → 0, we get\
R

KN/T (x)ξ(y − x) dx = ξ(y) +O(1/T ) +O(T/N ).

Lemma 5.3. Suppose that the cumulant spectral densities of the process

X exist up to order 4 and that condition (14) with 0 < α ≤ 2 is satisfied ;
moreover , suppose that the function H(·) satisfies conditions H1–H3. Then

for the statistic ĝ defined by (7), for every λ = (λ,−λ), µ = (µ,−µ) in R2

and for T , N (= LU) such that N → ∞, T → ∞ and T/N → 0, we can

write

Eĝ(λ)ĝ(µ) = Eĝ(λ)Eĝ(µ) + o(T 3−α/N) + o(T 3/N).
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5.2. Asymptotic results. We will now state asymptotic results for the
mean and variance of fourth-order cumulant spectral estimates given by
(18)–(21); their proofs are based on Lemmas 5.1–5.3 (see [1] for more de-
tails).

5.2.1. Fourth-order mean estimate

Theorem 5.1. Suppose that the cumulant spectral densities of the process

X exist up to order 4, and satisfy condition (14) with 0 < α ≤ 2, and that

the function H(·) satisfies conditions H1–H3. Then for the statistic f̂(λ)
defined by (5), for every λ ∈ R4 with m(λ) = 1, 2 and for T , N (= LU) such

that T → ∞, N → ∞ and T/N → 0, we get

Ef̂(λ) = f(λ) +O(T−α) + o(T 3/N) + o(T 3−α/N).

5.2.2. Fourth-order variance estimate

Theorem 5.2. Suppose that the cumulant spectral densities of the process

X exist up to order 8, and satisfy condition (14) with 0 < α ≤ 2, and that

the function H(·) satisfies conditions H1–H3. Then for the statistic f̂(λ)
defined by (5), for every λ ∈ R4 with m(λ) = 1, 2 and for T , N (= LU) such

that T → ∞, N → ∞ and T/N → 0 we get

var f̂(λ) =
Γ ∗

4 (λ)f(λ1) . . . f(λ4)

(2π)5H2
4

·
T 3

N

\
R3

dx̆ δ|x|H2(x) +O(T 3−α/N),

where Γ ∗
4 (λ) is the number of partitions of the set of 8 coordinates of the

vectors λ and −λ into pairs (λi, λj) such that λi = λj and λi ∈ {λ}, λj ∈
{−λ}.

6. nth order estimation. The asymptotic results on the mean and
variance of nth order estimates for n ≥ 2 and 1 ≤ m(λ) ≤ n are based on
the following lemma whose proof is given in the appendix.

Lemma 6.1. Suppose that the cumulant spectral densities of the process

X exist up to order n, and satisfy condition (14) with 0 < α ≤ 2; moreover ,
suppose that the function H(·) satisfies conditions H1–H3. Then for each

term of the statistic f̂(λ), λ ∈ Rn, λ1 + . . . + λn = 0, for N (= LU) → ∞,
T → ∞, T/N → 0, we have

Eĝ(λ1) . . . ĝ(λp) = Eĝ(λ1) . . .Eĝ(λp) + o(Tn−1/N ) + o(Tn−1−α/N).

Theorem 6.1. Suppose that the cumulant spectral densities of the process

X exist up to order n, and condition (14) is satisfied with 0 < α ≤ 2;
moreover , suppose that the function H(·) satisfies conditions H1–H3. Then
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for the statistic f̂(λ) defined by (5), for every λ = (λ1, . . . , λn), T , N(= LU)
such that |λ| = 0, T → ∞, N → ∞ and T/N → 0, we can write

Ef̂(λ) = f(λ) +O(T−α) + o(Tn−1/N) + o(Tn−1−α/N).

P r o o f. The definition of f̂(λ) and Lemma 6.1 yield the relation

Ef̂(λ) =
∑0

(−1)(p−1)(p− 1)!Eĝ(λ1) . . .Eĝ(λp)

+ o(Tn−1/N ) + o(Tn−1−α/N),

where the summation is over the same sets of coordinate subspaces as in the
definition of the statistic f̂(λ).

From the definition of ĝ(λk) and HT (·) and taking into account the fact
that |λk| = 0, k = 1, . . . , p, it follows that

Ef̂(λ) =
1

(2π)n−1HT
n

\
Rn

dxHT (x− λ)

×
[∑0

(−1)p−1(p− 1)!g(x1)δ|x1| . . . g(xp)δ|xp|
]

+O(Tn−1/N ) + o(Tn−1−α/N),

where λ = λ1+̇. . .+̇λp, x = x1+̇. . .+̇xp and xk, λk have the same coordinate
space Rnk with dimension nk.

Expressing moment spectral densities via cumulant spectral densities by
the second identity of (4) and reduction of similar terms, we transform the

sum
∑0

into the sum of f(x)δ|x| and
∑φ

which is taken over x̃1 ∈ Rn1 ,

. . . , x̃q ∈ Rnq in the coordinate subspaces of vectors λ̃1, . . . , λ̃q such that

λ̃1 +̇ . . . +̇ λ̃q = λ, |λ̃j | 6= 0, j = 1, . . . , q, 1 < q ≤ n. We have

Ef̂(λ) =
1

(2π)n−1HT
n

\
Rn

HT (x− λ)(23)

×
{
f(x)δ|x| +

∑φ
f(x̃1)δ|x̃1| . . . f(x̃q)δ|x̃q |

}
dx

+ o(Tn−1/N ) + o(Tn−1−α/N).

In fact, the summand of
∑φ

corresponding to the collection λ̃1, . . . ,

λ̃q can be obtained by applying (4) to the product g(λ1)δ|λ1| . . . g(λp)δ|λp|.
Substitution of the second identity of (4) for the identical partition into∑0

gives the identity f(λ)δ|λ| = f(λ)δ|λ|. Then after reduction of similar
terms the sum comprises the summands involved in the decomposition of
g(λ) by formulae (4) and not occurring in further decompositions, all of

these making up
∑φ

. Let us write (23) as
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Ef̂(λ) =
1

(2π)n−1HT
n

{ \
Rn−1

dx̆ f(x)HT (x− λ) δ|x|(24)

+
∑φ

q∏

j=1

\
R

nj−1

dx̆j δ|x̃j | f(x̃j)H
T (x̃j − λ̃j)

}

+ o(Tn−1/N) + o(Tn−1−α/N ).

Let I1 denote the first term on the right hand side of (24) and write it as a
sum of two integrals

I1 =
1

(2π)n−1HT
n

f(λ)
\

Rn−1

dx̆ δ|x|HT (x− λ)(25)

+
1

(2π)n−1HT
n

\
Rn−1

dx̆ δ|x| (f(x) − f(λ))HT (x− λ).

It follows from (12), (9), (14), H3 and |λ| = 0 that

I1 = f(λ) +O(T−α).

For the evaluation of the second term on the right hand side of (24), denoted

by I2, we use (14), (12), H1 and the fact that |λ̃j | 6= 0, j = 1, . . . , q. Hence
we get

I2 = o(T−1) + o(T−α).

The theorem is proved.

Theorem 6.2. Suppose that all cumulant spectral densities of the process

X exist up to order 2n, and satisfy condition (14) with 0 < α ≤ 2; moreover ,
suppose that the function H(·) satisfies conditions H1–H3. Then for the

statistic f̂(λ) defined by (5), for every λ ∈ Rn, T , N (= LU) such that

|λ| = 0, T → ∞, N → ∞ and T/N → 0, we can write

var f̂(λ) =
Γ ∗

n(λ)f(λ1) . . . f(λn)

(2π)2n−3H2
n

·
Tn−1

N

\
Rn−1

dx̆ δ|x| (H(x))2+O(Tn−1−α/N),

where Γ ∗
n(λ) is the number of partitions of the set of 2n coordinates of

the vectors λ and −λ into pairs (λi, λj) such that λi = λj and λi ∈ {λ},
λj ∈ {−λ}.

P r o o f. It follows from the definition of f̂(λ) that

var f̂(λ) =
∑0

(−1)p+q−2(p− 1)!(q − 1)!(26)

× cov{ĝ(λ′1) . . . ĝ(λ
′
p), ĝ(λ

′′
1) . . . ĝ(λ′′q )},

where the sum
∑0

is over all decompositions λ′1, . . . , λ
′
p, λ

′′
1 , . . . , λ

′′
q , |λ′j | = 0,

j = 1, . . . , p, |λ′′k| = 0, k = 1, . . . , q, λ′1 +̇ . . . +̇ λ′p = λ′, λ′′1 +̇ . . . +̇ λ′′q = λ′′,
λ′ and λ′′ are defined in Section 2.
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Using the definition of the statistic ĝ(·), Lemma A.2 and the spectral
representation of cumulants, we obtain

var f̂(λ) =
∑0 (−1)p+q(p − 1)!(q − 1)!

(2π)2n−2(HT
n )2Up+q

×
∑∗

U\
. . .
\

0

du′ du′′
\

R4n−l

dx̃ dt δ|x̃1| f(x̃1) . . . δ|x̃l| f(x̃l)

×

p∏

j=1

hT (t′j − Lu′j)

q∏

k=1

hT (t′′k − Lu′′k) exp{it · (x̃+ λ′ − λ′′)},

where the sum
∑∗

is over all indecomposable partitions relative to the vector
t = t′ +̇ t′′ and u′ = u′1 +̇ . . . +̇ u′p, u

′′ = u′′1 +̇ . . . +̇ u′′p , t′ = t′1 +̇ . . . +̇ t′p,

t′′ = t′′1+̇ . . . +̇ t′′p , x̃ = x̃1 +̇ . . . +̇ x̃l, u
′
j , t

′
j (resp. u′′j , t′′j ) have the same

coordinate space Rn′

j (resp. Rn′′

j ) and x̃j is in the coordinate space Rñj with
n′

1 +̇ . . . +̇ n′
p = n′′

1 +̇ . . . +̇ n′′
p = ñ1 + . . . + ñl = 2n, 1 ≤ l ≤ 2n.

By definition of HT (·), the above expression becomes

var f̂(λ) =
∑0 ∑∗ (−1)p+q(p− 1)!(q − 1)!

(2π)2n−2(HT
n )2Up+q

×
\

R2n−l

dx̃ δ|x̃1| f(x̃1) . . . δ|x̃l| f(x̃l)H
T (x̃1 − λ̃1) . . . H

T (x̃l − λ̃l)

×

U\
. . .
\

0

du′ du′′ exp
{
iL

l∑

k=1

ũk · (x̃k − λ̃k)
}
,

where ũ1 +̇ . . . +̇ ũl = u′ +̇ u′′ and λ̃1 +̇ . . . +̇ λ̃l = λ′ +̇ (−λ′′).

It is suitable to consider the indecomposable partitions {(ũ1, λ̃1), . . .

. . . , (ũl, λ̃l)} relative to (u′, λ)+̇(u′′, λ) where (u′, λ) and (u′′, λ) are the vec-
tors of coordinates of the pairs (u′ik

, λjk
) and (u′′ik

, λjk
), respectively, with

u′ik
∈ {u′1 +̇ . . . +̇ u′p}, u

′′
ik

∈ {u′′1 +̇ . . . +̇ u′′q } and λjk
∈ {λ}; these partitions

can be classified into the following categories:

• P1 = {(2, . . . , 2), n pairs} with Γn(λ) terms.
• Ps = P \P1 (i.e., Ps is the complement of P1 in P ), where P is the set

of all indecomposable partitions.

First we can see that all terms in Ps contribute a smaller order of mag-
nitude to var f̂(λ); this can be derived from evaluation of (33). Thus in

∑∗

we can leave only those terms having coordinate spaces of the vector x̃k of
dimension 2. In view of (13) the coordinate subspaces must contain a vector

λ̃k = (λik
, λjk

), k = 1, . . . , n, lying in

• A = {λ̃k : λik
= λjk

, λik
∈ {λ′}, λjk

∈ {λ′′}}, or
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• B = {λ̃k : λik
= −λjk

, λik
, λjk

are in the same set {λ′} or {λ′′}}.

Thus the maximum order comes from the terms {(ũ1, λ̃1), . . . , (ũn, λ̃n)}

having the maximum number of (ũk, λ̃k) such that u′i1 = . . . = u′in
and

u′′i1 = . . . = u′′in
, where ũk = (u′ik

, u′′ik
) and {i1, . . . , in} is an arbitrary

permutation of the indices (1, . . . , n) and λ̃k ∈ A; such properties hold for

p = q = 1 and λ̃k ∈ A, k = 1, . . . , n. Let Γ ∗
n(λ) be the number of such

terms. A typical term involving the maximum order is

A =
1

(2π)2n−3(HT
n )2N

\
Rn

dx1 . . . dxnKN (x1 + . . .+ xn)(27)

× f(x1 + λ1) . . . f(xn + λn)|HT (x1)|
2 . . . |HT (xn)|2.

Let us write

(28) f(x1 + λ1) . . . f(xn + λn)

= f(λ1) . . . f(λn)

+
n−1∑

k=1

f(x1 + λ1) . . . f(xk−1 + λk−1)

× f(λk+1) . . . f(λn)(f(xk + λk) − f(λk))

+ f(x1 + λ1) . . . f(xn−1 + λn−1)(f(xn + λn) − f(λn)),

with the convention that f(λk+1) = 1 for k ≥ n. Combining (28) with (27)
and using Lemma 5.3 and condition H3, we obtain

A =
f(λ1) . . . f(λn)

(2π)2n−3(Hn)2
·
Tn−1

N

\
Rn−1

dx̆ δ|x| (H(x))2 +O(Tn−1−α/N).

The theorem is proved.

Let b̂(λ) (= Ef̂(λ) − f(λ)) denote the bias of the nth order spectral
estimate given by (5). We have the following results.

Corollary 6.1. If the conditions of Theorem 6.1 are satisfied and if

moreover Tn−1/N → 0, then the nth order spectral estimate f̂(λ) defined by

(5) is asymptotically unbiased , and more precisely ,

b̂(λ) = O(T−α) + o(Tn−1/N ) + o(Tn−1−α/N).

Corollary 6.2. If the conditions of Theorem 6.2 are satisfied , and

moreover Tn−1/N → 0, then the nth order spectral estimate f̂(λ) defined

by (5) is consistent , and more precisely ,

varf̂(λ) = O(Tn−1/N) +O(Tn−1−α/N).
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7. Conclusion. Under the conditions of Theorems 6.1 and 6.2, and for
every λ ∈ Rn, |λ| = 0, n ≥ 2, T → ∞, N (= LU) → ∞, and Tn−1/N → 0,

the statistic f̂(λ) defined by (5) is asymptotically unbiased and consistent
as an estimator of the cumulant spectral density f(λ). Thus, this statistic
can be used for constructing efficient estimators of higher-order cumulant
spectral densities, and is valid for all admissible values of λ.

Appendix

A.1. Cumulants. We introduce some definitions and results on the joint
cumulants of a number of nonelementary random variables.

Let t1, . . . , tr be a collection of vectors with tj = (t
(j)
1 , . . . , t

(j)
nj ) ∈ Rnj ,

j = 1, . . . , r, and t1, . . . , tp a partition of the set of coordinates of the vector
t1 +̇ . . . +̇ tr, according to Section 2.

(α) We shall say that the sets of coordinates of the vectors tν and tµ,
1 ≤ ν, µ ≤ p, of the partition, are hooked if there exist tik

and tjl
belonging

to the sets of coordinates of tν and tµ respectively such that ik = jl.
(β) We shall say that those sets communicate if there exists a subcollec-

tion of vectors tν = tν1
, . . . , tνs

= tµ such that, for k = 1, . . . , s− 1, tνk
and

tνk+1
are hooked.

Definition A.1. The partition t1, . . . , tp is said to be indecomposable

relative to (t1, . . . , tr) if all sets of coordinates of t1, . . . , tp communicate.

Lemma A.1 (see [19]). The partition t1, . . . , tp is indecomposable relative

to (t1, . . . , tr) if there are no sets {k1, . . . , ka}, a < p, and {j1, . . . , jb}, b < r,
such that tk1

+̇ . . . +̇ tka
= tj1 +̇ . . . +̇ tjb

.

The following lemma allows us to represent the cumulant as a sum of
products of cumulants. The proof is given in [6, Theorem 2.3.2].

Lemma A.2. Let X(t1), . . . ,X(tr) be random variables with X(tj) =

X(t
(j)
1 ) . . . X(t

(j)
nj ), for j = 1, . . . , r. Then the cumulant cum{X(t1), . . .

. . . ,X(tr)} is given by

cum{X(t1), . . . ,X(tr)} =
∑∗

c(t1) . . . c(tp),

where the summation is over all indecomposable partitions t1, . . . , tp rela-

tive to (t1, . . . , tr) and c(tk) = cum{X(tk1
), . . . ,X(tknk

)} for tk = (tk1
, . . .

. . . , tknk
) and k = 1, . . . , p.

A.2. Proof of the lemmas

P r o o f o f L e m m a 5.1. Let

I =
\

Rn×R

ψ ◦ φ(x, z)KM (z) dx dz −
\

Rn

ψ ◦ φ(x) dx,
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with M = N/T . Using property (i) of KM , I becomes

I =
\
R

KM (z)
{ \

Rn

[ψ ◦ φ(x, z) − ψ ◦ φ(x)] dx
}
dz.

The set of continuous functions on Rn with compact support is dense in
L1(Rn); hence suppose, first, that ψ◦φ is a continuous function with compact
support. We write the integral I as a sum I = I1 + I2 of integrals over
{|z| ≤ η} and {|z| > η}, for arbitrary positive η. For every ε > 0, since
ψ ◦ φ is continuous with compact support, we can choose η such that |ψ ◦
φ(x, z)−ψ ◦φ(x)| < ε for |z| ≤ η and all x in Rn. Since ψ ◦φ has a compact
support, the L1-norm of ψ ◦ φ(x, z) − ψ ◦ φ(x) is arbitrarily small; then I1
is smaller than ε. We keep the same notation “ε” for small values. Now it
is evident that I2 is less than

2‖ψ ◦ φ‖1

\
|z|>η

KM (z) dz,

where ‖ · ‖1 is the L1-norm. Now with Mz = y, it is obvious that\
|z|>η

KM (z)dz ≤
4

π

∞\
ηM

1

y2
dy =

4

πηM
.

Choosing ε = T−1, we obtain I = O(T−1) +O(TN−1).
Coming back to the general case, choose a continuous function ϕ with

compact support such that ‖ψ ◦ φ− ϕ‖1 ≤ ε. Then

I =
\
R

KM (z)
{ \

Rn

[ψ ◦ φ(x, z) − ϕ(x, z)] dx

+
\

Rn

[ϕ(x, z) − ϕ(x)] dx +
\

Rn

[ϕ(x) − ψ ◦ φ(x)] dx
}
.

In the same manner we get |I| ≤ 3ε+ 4/(πηM). The lemma is proved.

Lemma 5.2 follows immediately from Lemma 5.1. Notice that Lem-
mas 5.1 and 5.2 remain true if we replace KM by any kernel (satisfying (i)
and (ii)).

P r o o f o f L e m m a 5.3. We have the equality

1

U2

U\\
0

du dv exp{iL(u − v)β} =
2π

N
KN (β),

where KN is defined by (22). From (6), (7), (9) and Lemma A.2, we obtain

cov{ĝ(λ), ĝ(µ)} =
1

(2π)2HT
4 N

{ \
R3

dx̆ δ|x|KN (x1 + x2)f(x)HT (x1 − λ)(29)

×HT (x2 + λ)HT (x3 + µ)HT (x4 − µ)
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+
\

R2

dx dyKN (x+ y)f(x)f(y)HT (x− λ)HT (x− µ)

×HT (y + λ)HT (y + µ)

+
\

R2

dx dyKN (x+ y)f(x)f(y)HT (x− λ)HT (x+ µ)

×HT (y + λ)HT (y − µ)
}
.

To prove the lemma, we evaluate each of the three summands in the above
expression. Represent the first summand I1 as a sum I1 = I11 + I12, with

I11 =
1

(2π)2HT
4 N

f(λ .− µ)
\

R3

dx̆ δ|x|KN (x1 + x2)H
T (x1 − λ)HT (x2 + λ)

×HT (x3 + µ)HT (x4 − µ),

I12 =
1

(2π)2HT
4 N

\
R3

dx̆ δ|x| (f(x) − f(λ .− µ))KN (x1 + x2)H
T (x1 − λ)

×HT (x2 + λ)HT (x3 + µ)HT (x4 − µ),

where λ .−µ = (λ,−λ,−µ, µ) and x = (x1, . . . , x4). Using the definition of δ,
(10), (11) and an appropriate change of variables, we get

I11 =
T

H4N
f(λ .− µ)

\
R

duKN/T (u)|H2(u)|
2.

By Lemma 5.2, we get

I11 =
TH2

2

H4N
f(λ .− µ) +O(1/N ) = O(T/N ) +O(1/N ).

In the same manner, but applying conditions (14), H3 and Lemma 5.1
instead of Lemma 5.2, we get

I12 = O(T 1−α/N ) +O(T/N ).

To evaluate the second summand I2 in (29), we put the expression

f2(λ) + f(x)[f(y) − f(λ)] + f(λ)[f(x) − f(λ)],

in place of f(x)f(y), in order to write the second summand I2 as a sum of
four integrals similar to I11 and I12. By similar arguments and since I2 and
the third summand I3 in (29) are of the same type, we obtain

I2 + I3 = O(T 2−α/N ) +O(T 2/N).

Lemma 5.3 then follows by using the known identity

Eĝ(λ)ĝ(µ) − Eĝ(λ)Eĝ(µ) = cov{ĝ(λ), ĝ(µ)},

and the fact that

O(T 2−α/N) = o(T 3−α/N) and O(T 2/N) = o(T 3/N).
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P r o o f o f L e m m a 6.1. The following identity is obvious:

(30) Eĝ(λ1) . . . ĝ(λp)

= Eĝ(λ1) . . .Eĝ(λp) +

p−1∑

j=1

cov{ĝ(λ1) . . . ĝ(λj), ĝ(λj+1)}Eĝ(λj+2) . . .Eĝ(λp),

with the convention that Eĝ(λj) = 1 for j > p.

Let us evaluate Ij = cov{ĝ(λ1) . . . ĝ(λj), ĝ(λj+1)}. From the definition
of the statistic ĝ(λ), it follows that

Ij = K(T,Nj)U
−j−1(31)

×

U\
. . .
\

0

du1 . . . duj+1

\
R

Nj

dt cov{X(t1) . . . X(tj),X(tj+1)}

× hT (t1 − Lu1) . . . hT (tj+1 − Luj+1)

× exp{−i(t1 · λ1 + . . . + tj · λj − tj+1 · λj+1)},

whereK(T,Nj) = (2π)−(n−1)/nNj (HT
n )−Nj/n, Nj = n1+. . .+nj+1 and nk is

the dimension of the coordinate space Rnk for the vector tk, k = 1, . . . , j+1,
with t1 +̇ . . . +̇ tj+1 = t.

We use the representation of the covariance as a sum of product cumu-
lants and the spectral representation of cumulants; the covariance in the
above expression becomes

(32) cov{X(t1) . . . X(tj), X(tj+1)}

=
∑∗ \

R
ñ1+...+ñl−l

dx̃ f(x̃1)δ|x̃1| . . . f(x̃l) δ|x̃l|

× exp{i(t̃1 · x̃1 + . . .+ t̃l · x̃l)},

where x̃1 + . . .+ x̃l = x̃, x̃k = (x
(k)
1 , . . . , x

(k)
nk

), k = 1, . . . , l, and the sum
∑∗

is over all indecomposable partitions t̃1, . . . , t̃l relative to the pair (t1 +̇ . . . +̇
tj , tj+1), 1 ≤ l ≤ Nj ; R

ñk is the coordinate space of the vectors x̃k, t̃k with
dimension ñk, with ñ1 + . . .+ ñl = Nj . Substituting (32) to (31) and using
the definition of HT (·), we obtain

Ij = K(T,Nj)
∑∗ \

R
Nj−l

dx̃ f(x̃1) δ|x̃1| . . . f(x̃l) δ|x̃l|(33)

×
1

U j+1

U\
. . .
\

0

dũj+1H
T (x̃1 − λ̃1) . . . H

T (x̃l − λ̃l)

× exp{iL[ũ1(x̃1 − λ̃1) + . . .+ ũl(x̃l − λ̃l)]},
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where λ̃k (resp. ũk), k = 1, . . . , l, are the projections of the vector λ1 +̇ . . .
. . . +̇λj+1 (resp. u1 +̇ . . . +̇uj+1) on the coordinate spaces Rñk , k = 1, . . . , l,
and dũj+1 = du1 . . . duj+1.

R e m a r k A.1. 1. {λ̃1, . . . , λ̃l : l = 1, . . . ,Nj} is the set of indecompos-
able partitions relative to the pair (λ1 +̇ . . . +̇ λj , λj+1).

2. In f̂(λ), the decomposition λ1, . . . , λp of the vector λ = (λ1, . . . , λn)
is the maximal decomposition satisfying |λk| = 0, k = 1, . . . , p; hence, the

decomposition λ̃1, . . . , λ̃l of (λ1 +̇ . . . +̇ λj , λj+1) is not an indecomposable

partition; this means that there is at least one k = 1, . . . , l such that |λ̃k|
6= 0.

3. In the sequel, we consider the projection of the vector x̃1 +̇ . . . +̇ x̃l on
the coordinate space Rnk of the admissible arguments λk, k = 1, . . . , j + 1;
let xk be this projection. Then

(i) x̃1 +̇ . . . +̇ x̃l = x1 +̇ . . . +̇ xj+1, l = 1, . . . ,Nj ,

(ii) {x̃1, . . . , x̃l} ∩ {x1, . . . , xj+1}  {x1, . . . , xj+1} ,

(iii)

l∑

i=1

ũi · (x̃i − λ̃i) =

j+1∑

i=1

ui(xi − λi) =

j+1∑

i=1

ui|xi|.

By (iii) the expression (33) becomes

Ij = K(T,Nj)
∑∗ \

R
Nj−l

dx̃ f(x̃1)H
T (x̃1 − λ̃1) δ|x̃1| . . .(34)

. . . f(x̃l)H
T (x̃l − λ̃l) δ|x̃l|

×
1

U j+1

U\
. . .
\

0

dũj+1 exp{iL[u1|x1| + . . .+ uj+1|xj+1|]}.

Let ν be the number of vectors in the set {x̃1, . . . , x̃l} ∩ {x1, . . . , xj+1}.
Then 0 ≤ ν ≤ min(l, j + 1). Without loss of generality, suppose that x̃1 =

x1, . . . , x̃ν = xν and write ñ1 + . . .+ ñν = Ñν , ñν+1 + . . .+ ñl = nν+1 + . . .+
nj+1 = Nl−ν , x̃1 +̇ . . . +̇ x̃ν = x̃′, x̃ν+1 + . . . + x̃l = x̃′′, x1 +̇ . . . +̇ xν = x′

and xν+1 + . . .+ xl = x′′. Then

Ij = K(T,Nj , N)
∑∗

ν∏

k=1

\
R

ñk−1

dxk f(xk) δ|xk|H
T (xk − λk)

×
\

R
Nl−ν−(l−ν)

dx̃′′
l∏

k=ν+1

f(x̃k) δ|x̃k|H
T (x̃k − λ̃k)

×BN (|xν+1|) . . . BN (|xj+1|),
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whereK(Nj , T,N) =K(Nj , T )Nν−j−1,N = LU , BN (y) = sin(Ny/2)/(y/2)
for y 6= 0, and BN (0) = 1. Denote by J1(k), J2(k) the two integrals in the
above expression:

J1(k) =
\

R
ñk−1

dxk f(xk) δ|xk|H
T (xk − λk),

J2(k) =
\

R
Nl−ν−(l−ν)

dx̃′′
l∏

k=ν+1

f(x̃k) δ|x̃k|H
T (x̃k − λ̃k)

×BN (|xν+1|) . . . BN (|xj+1|).

Evaluation of J1. We write J1(k) as a sum

J1(k) = f(λk)
\

R
ñk−1

dxk δ|xk|H
T (xk − λk)

+
\

R
ñk−1

dxk (f(xk) − f(λk)) δ|xk |H
T (xk − λk),

= J11(k) + J12(k).

Using (12), (10) and the fact that λk, k = 1, . . . , ν, are admissible arguments,
we obtain

J11(k) = (2π)ñk−1f(λk)THñk
.

Therefore J11(k) = O(T ). Using condition (14), for some |θ| < 1 we get

J12(k) = C0θ
\

R
ñk−1

dxk ‖xk‖
αHT (xk) δ|xk − λk|,

where C0, α are given by condition (14). In view of (10) and λk being an
admissible argument, we get

J12(k) = C0θT
1−α

\
R

ñk−1

dxk ‖xk‖
αH(xk) δ|xk |.

Therefore, by condition H3, we get J12(k) = O(T 1−α). It follows that

(35) J1(k) = O(T ) +O(T 1−α).

Evaluation of J2(k). Let us write J2(k) as a sum J21(k) + J22(k), with

J21(k) =

l∏

k=ν+1

f(λ̃k)
\

R
Nl−ν−(l−ν)

dx̃′′
l∏

k=ν+1

δ|x̃k|H
T (x̃k − λ̃k)

×BN (|xν+1|) . . . BN(|xj+1|),
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J22(k) =
\

R
Nl−ν−(l−ν)

dx̃′′
l∏

k=ν+1

δ|x̃k| (f(λ̃k) − f(x̃k))HT (x̃k − λ̃k)

×BN (|xν+1|) . . . BN(|xj+1|).

From condition (14), and for some |θ| < 1, J22(k) becomes

J22(k) = C0θ
\

R
Nl−ν−(l−ν)

dx̃′′
l∏

k=ν+1

δ|x̃k| (f(λ̃k) − f(x̃k))HT (x̃k − λ̃k)(36)

×BN (|xν+1|) . . . BN (|xj+1|).

Let us evaluate first J21(k). By definition of δ, we get

J21(k) = K
\

R
Nl−ν−(l−ν)

dx̃′′
l∏

k=ν+1

HT (x
(k)
1 − λ

(k)
1 ) . . .(37)

×HT (x
(k)
ñk−1 − λ

(k)
ñk−1)H

T (−x
(k)
1 − . . . − x

(k)
ñk−1 − λ

(k)
ñk

)

×BN (|x̂ν+1|) . . . BN (|x̂j+1|),

where K =
∏l

k=ν+1 f(λ̃k), x̂k = (xk1, . . . , xkn̂k
) and |x̂k| is the sum of the

remaining coordinates of the vector xk, after using the definition of δ(·).
Note that {x̂ν+1 +̇ . . . +̇ x̂j+1} is included in {δ|x̃ν+1| x̃ν+1 +̇ . . . +̇ δ|x̃l| x̃l}
(where {x} denotes the set of coordinates of the vector x), therefore for
k = ν + 1, . . . , j + 1, there exist i1, . . . , is in {ν + 1, . . . , l} such that {x̂k} ⊆
{δ|x̃i1 | x̃i1} ∪ . . . ∪ {δ|x̃is

| x̃is
}. Suppose without loss of generality that the

union
⋃

i1,...,is
is only one set. Three cases are to be considered j + 1 < l,

j + 1 = l and j + 1 > l. Let us evaluate J21(k) for j + 1 < l; the other cases
are similar (see [2] for more details).

Without loss of generality, we suppose that {x̂k} ⊂ {δ|x̃k| x̃k}, k =

ν + 1, . . . , j + 1 and xk1 = x
(k)
1 , . . . , xkn̂k

= x
(k)
n̂k

, with n̂k < ñ. Hence (37)
becomes

J21(k) ≤ K

j+1∏

k=ν+1

\
R

ñk−1

dx̂k BN |x̂k|H
T (xk1 − λ

(k)
1 ) . . . HT (xkn̂k

− λ
(k)
n̂k

)

×HT (x
(k)
n̂k+1 − λ

(k)
n̂k+1) . . . H

T (x
(k)
ñk−1 − λ

(k)
ñk−1)

×HT (−xk1 − . . .− xkn̂k−1 − xkn̂k+1 − . . .− xkñk−1 − λ
(k)
ñk

)

×
l∏

k=j+2

\
R

ñk−1

dx̃kH
T (x

(k)
1 − λ

(k)
1 ) . . . HT (x

(k)
ñk−1 − λ

(k)
ñk−1)

×HT (−x
(k)
1 − . . . − x

(k)
ñk−1 − λ

(k)
ñk

).

By (12), with xk1+ . . .+xkn̂k
= zk, k = ν+1, . . . , j+1, the above inequality
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becomes

J21(k) ≤ K
l∏

k=j+2

(2π)ñk−1HT
ñk

(|λ̃k|)

j+1∏

k=ν+1

\
R

dzk BN (zk)

×
\

R
ñk−2

dx̆k H
T (xk1 − λ

(k)
1 ) . . . HT (xkn̂k−1 − λ

(k)
n̂k−1)

×HT (zk − xk1 − . . . − xkn̂k−1 − λ
(k)
n̂k

)

×HT (x
(k)
n̂k+1 − λ

(k)
n̂k+1) . . . H

T (x
(k)
ñk−1 − λ

(k)
ñk−1)

×HT (zk − x
(k)
n̂k+1 − . . .− xkñk−1 − λ

(k)
ñk

),

where dx̆k = dxk1 . . . dxkn̂k−1dx
(k)
n̂k+1 . . . dx

(k)
ñk−1. In view of (12), we get

J21(k) ≤ K

l∏

k=j+2

(2π)ñk−1HT
ñk

(|λk|)

j+1∏

k=ν+1

(2π)ñk−2(38)

×

j+1∏

k=ν+1

\
R

dzkBN (zk)HT
n̂k

(zk − |λ
(k)
n̂k

|)HT
ñk−n̂k

(zk − |λ
(k)
ñk−n̂k

|),

with λ̃n̂k
and λ̃ñk−n̂k

being such that λ̃n̂ +̇ λ̃ñk−n̂k
= λ̃k. Let

D(k) =
\
R

dzk BN (zk)HT
n̂k

(zk − |λ
(k)
n̂k

|)HT
ñk−n̂k

(zk − |λ
(k)
ñk−n̂k

|).

Using (9) and with Nzk = uk, we obtain

D(k) = T 2
\
R

duk B1(uk)Hn̂k

(
T

N
uk − T |λ

(k)
n̂k

|

)
Hñk−n̂k

(
T

N
uk − T |λ

(k)
ñk−n̂k

|

)
.

It follows from the inequality |(sin uk)/uk| ≤ 1 and (11) that

(39) D(k) ≤ 2πT 2Hñk
(T |λ̃k|).

Hence (38) becomes

(40) J21(k) ≤ KT l+j−2ν+1
l∏

k=ν+1

(2π)ñk−1HT
ñk

(|λ̃k|).

By using condition (14) and by similar analysis we get

(41) J22(k) = O(T (l−ν)(1−α)).

From (35), (40) and (41), we get

(42) Ij ≤ Q(T, |λ̃ν+1|, . . . , |λ̃l|)T
−Nj/n+l+j−ν+1Nν−j−1,

where Q(T, |λ̃ν+1|, . . . , |λ̃l|) = K
∏l

k=ν+1Hñk
(T |λ̃k|) and K is a constant

independent of T . From Remarks A.1, there is at least one vector λ̃k, k = ν+
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1, . . . , l, such that |λ̃k| 6= 0; therefore by condition H1, Q(T, |λ̃ν+1|, . . . , |λ̃l|)
goes to zero as T → ∞, except for λ1 = . . . = λn = 0; obviously for j+1 > l,
we shall obtain Nν−l instead of Nν−j−1, hence

(43) Ij = O(T−Nj/n+2l−νN−β),

where β = min(l − ν, j + 1 − ν).
Now let us evaluate the order of

∏p
k=j+2 Eĝ(λk). By definition of ĝ(λk)

and HT (·), we get

Eĝ(λk) =
1

(2π)nk(n−1)/n(HT
n )nk/n

\
R

nk−1

dx̆k δ|xk| g(xk)HT (xk − λk).

Expressing the moment spectral density through the cumulant spectral den-
sities, we get

Eĝ(λk) =
1

(2π)nk(n−1)/n(HT
n )nk/n

∑ q∏

i=1

\
Rni−1

dx̆i δ|x̃i| f(x̃i)H
T (x̃i − λ̃i),

where x̃i, λ̃i , i = 1, . . . , q, have the same coordinate space and the sum is
over all unordered partitions of the set of coordinates of the vectors xk. Let
us represent the last expression as a sum I1 + I2 with

I1 =
1

(2π)nk(n−1)/n(HT
n )nk/n

∑ q∏

i=1

f(λ̃i)
\

Rni−1

dx̆i δ|x̃k|H
T (x̃i − λ̃i),

I2 =
1

(2π)nk(n−1)/n(HT
n )nk/n

×
∑ q∏

i=1

\
Rni−1

δ|x̃k| (f(x̃i) − f(λ̃i))H
T (x̃i − λ̃i) dx̆i.

It follows from (12) and (11) that

I1 ≤ KT q−nk/nHñi
(T |λ̃i|),

where K is a constant independent of T . To evaluate I2 we use conditions
(14) and H3 to obtain

I2 = KT q(1−α).

By definition of f̂(λ), the decomposition λ1, . . . , λp of the vector λ is
the maximal decomposition such that |λk| = 0; therefore by condition H1,

Hni
(T |λ̃i|) converges to zero except for q = 1, where it is Hnk

. This implies
that the maximal order is obtained for q = 1, hence

(44)

p∏

k=j+2

Eĝ(λk)

= O(T p−j−1−(nj+2+...+np)/n) + (T p−j−α−(nj+2+...+np)/n).
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From (43) and (44) we get

Eĝ(λ1) . . . ĝ(λp) − Eĝ(λ1) . . .Eĝ(λp) = o(Tn−1/N ) + o(Tn−1−α/N).

The o-terms depend on T and the maximal order is realized for l =
[(n1 + . . .+ nj+1)/2], j = p− 1 and ν = 0. The lemma is proved.
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János Bolyai 57, North-Holland, 1990, 365–405.

[21] K. S. L i i, M. Rosenb latt and C. W. Atta, Bispectral measurements in turbulence,
J. Fluid Mech. 77 (1976), 45–62.
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