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OPTION PRICING IN THE CRR MODEL
WITH PROPORTIONAL TRANSACTION COSTS:

A CONE TRANSFORMATION APPROACH

Abstract. Option pricing in the Cox–Ross–Rubinstein model with trans-
action costs is studied. Using a cone transformation approach a complete
characterization of perfectly hedged options is given.

1. Introduction. Let us consider a market with two assets: a risky
one called the stock and a riskless one called the bond, which are traded in
a discrete time. The price sn of the stock at time n is subject to random
changes. We shall assume that for n = 0, 1, 2, . . . ,

(1) sn+1 = (1 + %n)sn

where %n is a sequence of i.i.d. random variables which take as their values
with a positive probability only a and b, where a < b are given real numbers
greater than −1. The bond earns interest with a constant rate r such that
a < r < b. We also assume that both the stock and bond are infinitely
divisible, so that the possession of a part of share invested in the stock
or a part of the bond is allowed. At any time n = 0, 1, 2, . . . , we can
transfer an amount of money invested in stocks to bonds paying proportional
transaction costs with a rate µ > 0. We also admit a transfer in the opposite
direction, from bonds to stocks with proportional transaction costs with a
rate λ/(1 + λ), λ > 0. Let us denote by xn, yn the amounts of money
invested in bonds and stocks respectively, at time n. Let ln, mn be the
amounts of money for which we buy or sell respectively, shares of the stock
at time n. Clearly ln and mn depend on x0, . . . , xn, y0, . . . , yn, s0, . . . , sn

only.
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Taking into account transaction costs we have for n = 0, 1, 2, . . . ,

(2)
xn+1 = (1 + r)(xn − (1 + λ)ln + (1− µ)mn),
yn+1 = (1 + %n)(yn + ln −mn).

Consider now a financial instrument called a contingent claim that is a
pair (f1(sT ), f2(sT )) where f1, f2 are measurable functions and sT stands
for the price of the stock at a fixed time T called maturity. Given initial
investments (x0, y0) in bonds and stocks respectively we look for a trading
strategy (ln,mn)n=0,1,...,T−1 for which after possible transfers at time T ,
the amounts of money invested in bonds and in stocks exceed respectively
f1(sT ) and f2(sT ). In that case we say that (ln,mn) is a hedging strategy
against the contingent claim (f1(sT ), f2(sT )) at maturity T .

Let

C =
{

(x, y) ∈ R2 : y ≥ max
{
− 1

1 + λ
x,− 1

1− µ
x

}}
and

(3) GT (s) = (f1(s), f2(s)) + C

where the above sum means that (f1(s), f2(s)) is added to each element of
C. Clearly C and GT (s) are cones. The hedging requirement can now be
written as

(4) (xT , yT ) ∈ GT (sT ).

We can easily show that

(5) GT (s) =
{

(x, y) : y ≥ max
{
− 1

1 + λ
x + c1(s),−

1
1− µ

x + c2(s)
}}

where

(6) c1(s) =
f1(s)
1 + λ

+ f2(s), c2(s) =
f1(s)
1− µ

+ f2(s).

Therefore we have a hedging when the system of inequalities

(7)
yT ≥ − 1

1 + λ
xT + c1(sT ),

yT ≥ − 1
1− µ

xT + c2(sT ),

is satisfied.
We say that a trading strategy (ln,mn) is replicating if (xT , yT ) lies

on the boundary of GT (sT ), or equivalently (7) holds and either yT =
− 1

1+λxT + c1(sT ) or yT = − 1
1−µxT + c2(sT ).

The price for the contingent claim (option) (f1(s), f2(s)) is the minimal
value of x0 + (1 − µ)y0 for which there exists a hedging strategy against
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(f1(s), f2(s)) with initial investments (x0, y0) in bonds and stocks respec-
tively. The price for (f1(s), f2(s)) is called a perfect hedging or a replicating
cost if a hedging strategy against (f1(s), f2(s)) corresponding to the mini-
mal value of x0 + (1 − µ)y0 is replicating. The problem is to determine all
cases for which perfect hedging is possible and then characterize replicating
strategies.

Let GT−1(s) denote the set of all investments in bonds and stocks re-
spectively at time T − 1 such that given the stock price at T − 1 equal to s,
there is a strategy (l, m) for which we have a hedging at time T . Then

(8) GT−1(s) =
{

(x, y) : ∃l,m≥0∀%∈{a,b}

(1 + %)(y + l −m) ≥ − 1
1 + λ

(1 + r)(x− (1 + λ)l + (1− µ)m)

+ c1((1 + %)s),

(1 + %)(y + l −m) ≥ − 1
1− µ

(1 + r)(x− (1 + λ)l + (1− µ)m)

+ c2((1 + %)s)
}

.

Clearly GT−1(s) is a polyhedron, but it may not be a cone. We show that if
GT−1(s) is a cone then it is of the form (5) with suitably chosen functions
c1(s), c2(s) and it corresponds to a perfect hedging in one step.

By backward induction we can define the polyhedrons GT−i(s) for i =
1, . . . , T (s) as follows:

(9) GT−i(s) := {(x, y) : ∃l,m∀%∈{a,b} ((1 + r)(x− (1 + λ)l + (1− µ)m),
(1 + %)(y + l −m)) ∈ GT−i+1((1 + %)s)}.

If for a given initial price s0 of the stock the polyhedrons G0(s0), G1(s1),
. . . , GT−1(sT−1) are cones, then, as we show below, there exists a perfect
hedging, and a replicating strategy that corresponds to that hedging is to
buy or sell shares of the stock at time i so as to reach the vertex of the cone
Gi(si).

The option pricing model based on the binomial distribution of the price
(1) of the stock was introduced first without transaction costs in [CRR].
The model was then considered in a number of papers (see [SKKM], [TZ],
[MS] for more recent references). A version of this model with transac-
tion costs was studied in various papers usually in the context of European
call or put options (see [BV], [BLPS], [ENU], [MV], [R]), and sufficient
conditions for perfect hedging were shown. In this paper we present com-
plete characterizations of option pricing models with transaction costs for
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which contingent claims are functions of the price of the stock at maturity.
Namely, by a detailed analysis of the behaviour of a certain system of con-
trolled linear equations we obtain neccessary and sufficient conditions for
perfect hedging. Our approach is based on a cone transformation that was
considered in the case of diffusion models in [CK] and [SSC]. The study of
discrete time models with transaction costs is particularly important be-
cause it was shown in [SSC], confirming the conjecture of Davis and Clark
(see [DC]), that there is no nontrivial perfect hedging strategy for a contin-
uous time lognormal model with proportional transaction costs.

2. Basic lemmas and notation. For simplicity of presentation we
first introduce two sequences of equations of lines in R2. The first one,
(E1), (E2), (E3), (E4), appears in the definition (8) of GT−1(s). In what
follows for simplicity of notation we shall identify lines with their equations.
Setting

z := z(l,m) = (1 + λ)l − (1− µ)m
we have

y = − 1 + r

(1− µ)(1 + a)
x +

(
1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z(E1)

+ m
λ + µ

1 + λ
+

1
1 + a

c2((1 + a)s),

y = − 1 + r

(1 + λ)(1 + a)
x +

(
1 + r

(1 + λ)(1 + a)
− 1

1 + λ

)
z(E2)

+ m
λ + µ

1 + λ
+

1
1 + a

c1((1 + a)s),

y = − 1 + r

(1− µ)(1 + b)
x +

(
1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z(E3)

+ m
λ + µ

1 + λ
+

1
1 + b

c2((1 + b)s),

y = − 1 + r

(1 + λ)(1 + b)
x +

(
1 + r

(1 + λ)(1 + b)
− 1

+λ

)
z(E4)

+ m
λ + µ

1 + λ
+

1
1 + b

c1((1 + b)s).

It will be convenient later to have the sequence (F1), (F2), (F3), (F4) of
equations of lines in R2 which are obtained from (E1)–(E4) by the substi-
tution m = −z/(1− µ). We have

y = − 1 + r

(1− µ)(1 + a)
x +

(
1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z(F1)

+
1

1 + a
c2((1 + a)s),
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y = − 1 + r

(1 + λ)(1 + a)
x +

(
1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z(F2)

+
1

1 + a
c1((1 + a)s),

y = − 1 + r

(1− µ)(1 + b)
x +

(
1 + r

(1− µ)(1 + b)
− 1

1− µ

)
z(F3)

+
1

1 + b
c2((1 + b)s),

y = − 1 + r

(1 + λ)(1 + b)
x +

(
1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z(F4)

+
1

1 + b
c1((1 + b)s).

The following values z1(s), . . . , z6(s) depending on the stock price s will be
important in the construction of GT−1(s):

z1(s) =
(1− µ)(1 + λ)[(1 + b)c2((1 + a)s)− (1 + a)c1((1 + b)s)]

(1 + r)[(1 + λ)(1 + b)− (1− µ)(1 + a)]
,

z2(s) =
1− µ

(1 + r)(b− a)
[(1 + b)c2((1 + a)s)− (1 + a)c2((1 + b)s)],

z3(s) =
(1− µ)(1 + λ)
(1 + r)(µ + λ)

[c2((1 + a)s)− c1((1 + a)s)],

z4(s) =
1 + λ

(1 + r)(b− a)
[(1 + b)c1((1 + a)s)− (1 + a)c1((1 + b)s)],

z5(s) =
(1− µ)(1 + λ)
(1 + r)(λ + µ)

[c2((1 + b)s)− c1((1 + b)s)],

z6(s) =
(1− µ)(1 + λ)[(1 + a)c2((1 + b)s)− (1 + b)c1((1 + a)s)]

(1 + r)[(1 + λ)(1 + a)− (1− µ)(1 + b)]
.

Notice that whenever both transaction costs (i.e. from stocks to bonds
and from bonds to stocks) are equal, we have 1 − µ = 1/(1 + λ), which
simplifies the formulae for z1(s), z3(s), z5(s), z6(s).

Using the notation (Ei) ≥ (Ek) when the graph of the line (Ei) is above
(Ek) in the coordinate plane (x, y), by a trivial verification we obtain

Lemma 1. We have

(E1) ≥ (E4) iff x ≤ z + z1,

(E1) ≥ (E3) iff x ≤ z + z2,

(E1) ≥ (E2) iff x ≤ z + z3,

(E4) ≥ (E2) iff x ≥ z + z4,

(E4) ≥ (E3) iff x ≥ z + z5.
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Moreover ,

• if
1 + a

1 + b
>

1− µ

1 + λ
, then (E2) ≥ (E3) iff x ≥ z + z6,

• if
1 + a

1 + b
<

1− µ

1 + λ
, then (E2) ≥ (E3) iff x ≤ z + z6,

• if
1 + a

1 + b
=

1− µ

1 + λ
, then (E2) ≥ (E3) iff

1
1 + a

c1((1 + a)s)

≥ 1
1 + b

c2((1 + b)s).

Define the indicators (I1)(s), (I2)(s), . . . , (I5)(s) by

(I1)(s) := c2((1 + a)s)(1− µ)(b− a) + c1((1 + a)s)[(1− µ)(1 + a)
− (1 + λ)(1 + b)] + (1 + a)(µ + λ)c1((1 + b)s),

(I2)(s) := c1((1 + b)s)(1 + λ)(b− a) + c2((1 + b)s)[(1− µ)(1 + a)
− (1 + λ)(1 + b)] + (1 + b)(µ + λ)c2((1 + a)s),

(I3)(s) := c1((1 + a)s)(1 + λ)(b− a) + c2((1 + a)s)[(1 + λ)(1 + a)
− (1− µ)(1 + b)]− (1 + a)(µ + λ)c2((1 + b)s),

(I4)(s) := c2((1 + b)s)(1− µ)(b− a) + c1((1 + b)s)[(1 + λ)(1 + a)
− (1− µ)(1 + b)]− (1 + b)(µ + λ)c1((1 + a)s),

(I5)(s) := [(1 + λ)(1 + a)− (1− µ)(1 + b)][(1 + b)c2((1 + a)s)
− (1 + a)c1((1 + b)s)]− [(1 + λ)(1 + b)− (1− µ)(1 + a)]
× [(1 + a)c2((1 + b)s)− (1 + b)c1((1 + a)s)].

Let

(10) ∆(s) := c2((1 + a)s) + c1((1 + b)s)− c1((1 + a)s)− c2((1 + b)s).

Adding or subtracting suitable indicators, we obtain

Lemma 2.

(i) (I1)(s) + (I2)(s) = [(1 + λ)(1 + b)− (1− µ)(1 + a)]∆(s),
(ii) (I2)(s) + (I4)(s) = (1 + b)(µ + λ)∆(s),
(iii) (I3)(s) + (I4)(s) = [(1 + λ)(1 + a)− (1− µ)(1 + b)]∆(s),
(iv) (I1)(s) + (I3)(s) = (1 + a)(µ + λ)∆(s),
(v) (I1)(s)− (I4)(s) = (1− µ)(b− a)∆(s),
(vi) (I2)(s)− (I3)(s) = (1 + λ)(b− a)∆(s),
(vii) (1 + b)(I3)(s)− (1 + a)(I4)(s) = (I5)(s),
(viii) (1 + a)(I2)(s)− (1 + b)(I1)(s) = (I5)(s).

Using the indicators (I1)(s)–(I5)(s) we can determine the allocation of
the values z1(s), . . . , z6(s).
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Lemma 3. We have

z1(s) ≤ z2(s) iff (I2)(s) ≥ 0,

z1(s) ≤ z3(s) iff (I1)(s) ≥ 0,

z1(s) ≥ z4(s) iff (I1)(s) ≥ 0,

z1(s) ≥ z5(s) iff (I2)(s) ≥ 0,

z2(s) ≥ z3(s) iff (I3)(s) ≥ 0,

z4(s) ≤ z5(s) iff (I4)(s) ≥ 0,

z3(s) = z4(s) iff (I1)(s) = 0,

z2(s) = z5(s) iff (I2)(s) = 0.

Moreover ,

z1(s) ≥ z6(s) iff (I5)(s) ≥ 0 and
1 + a

1 + b
>

1− µ

1 + λ
, or

(I5)(s) ≤ 0 and
1 + a

1 + b
<

1− µ

1 + λ
,

z1(s) ≤ z6(s) iff (I5)(s) ≥ 0 and
1 + a

1 + b
<

1− µ

1 + λ
, or

(I5)(s) ≤ 0 and
1 + a

1 + b
>

1− µ

1 + λ
,

z2(s) ≤ z6(s) iff (I3)(s) ≥ 0 and
1 + a

1 + b
<

1− µ

1 + λ
, or

(I3)(s) ≤ 0 and
1 + a

1 + b
>

1− µ

1 + λ
,

z2(s) ≥ z6(s) iff (I3)(s) ≥ 0 and
1 + a

1 + b
>

1− µ

1 + λ
, or

(I3)(s) ≤ 0 and
1 + a

1 + b
<

1− µ

1 + λ
,

z3(s) ≥ z6(s) iff (I3)(s) ≥ 0 and
1 + a

1 + b
>

1− µ

1 + λ
, or

(I3)(s) ≤ 0 and
1 + a

1 + b
<

1− µ

1 + λ
,

z3(s) ≤ z6(s) iff (I3)(s) ≥ 0 and
1 + a

1 + b
<

1− µ

1 + λ
or

(I3)(s) ≤ 0 and
1 + a

1 + b
>

1− µ

1 + λ
,

z4(s) ≥ z6(s) iff (I4)(s) ≥ 0 and
1 + a

1 + b
<

1− µ

1 + λ
, or

(I4)(s) ≤ 0 and
1 + a

1 + b
>

1− µ

1 + λ
,
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z4(s) ≤ z6(s) iff (I4)(s) ≥ 0 and
1 + a

1 + b
>

1− µ

1 + λ
, or

(I4)(s) ≤ 0 and
1 + a

1 + b
<

1− µ

1 + λ
,

z5(s) ≥ z6(s) iff (I4)(s) ≥ 0 and
1 + a

1 + b
<

1− µ

1 + λ
, or

(I4)(s) ≤ 0 and
1 + a

1 + b
>

1− µ

1 + λ
,

z5(s) ≤ z6(s) iff (I4)(s) ≥ 0 and
1 + a

1 + b
>

1− µ

1 + λ
, or

(I4)(s) ≤ 0 and
1 + a

1 + b
<

1− µ

1 + λ
.

Finally, for a real number h we define a transformation Th of the real
line as follows:

(11) Thx = (1 + h)x for x ∈ R,

and then an operator Th on R2 by

(12) Th(x, y) = (Trx, Thy).

3. Construction of the cones GT−1 with the use of the indicators
(I1) and (I2). In this section we study the cases (I1)(s) ≥ 0 and (I2)(s) ≥
0, (I1)(s) ≤ 0 and (I2)(s) ≥ 0, (I1)(s) ≥ 0 and (I2)(s) ≤ 0. The remaining
case (I1)(s) ≤ 0 and (I2)(s) ≤ 0 has to be split up into subcases in which
other indicators are needed.

3(a) Case (I1)(s) ≥ 0, (I2)(s) ≥ 0. Various versions of European long
call and put options are covered by the above case. We start with four
examples.

Example 1 (European long call option with delivery). A holder of the
option is entitled to buy one share of stock at a price q. We then have

f1(s) = −q 1s≥q, f2(s) = s 1s≥q,

and consequently (see (6))

c1(s) =
(

s− q

1 + λ

)
1s≥q, c2(s) =

(
s− q

1− µ

)
1s≥q.

Example 2 (European long call option with delivery and cash settle-
ment). As in Example 1 a holder is entitled to buy one share of stock at the
price q, but his decision to exercise the option is made when the possible
cash settlement is nonnegative. We have

f1(s) = −q 1s≥q/(1−µ), f2(s) = s 1s≥q/(1−µ),
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and by (6),

c1(s) =
(

s− q

1 + λ

)
1s≥q/(1−µ), c2(s) =

(
s− q

1− µ

)+

.

Example 3 (European long call option with delivery and settlement in
shares of stock). The only change compared to Examples 1 and 2 is in the
decision to exercise the option. The holder of the option is eager to owe the
stock, and therefore he makes the decision to exercise the option when the
settlement in shares of stock is nonnegative. In this case we have

f1(s) = −q 1s≥q/(1+λ), f2(s) = s 1s≥q/(1+λ),

and (see (6))

c1(s) =
(

s− q

1 + λ

)+

, c2(s) =
(

s− q

1− µ

)
1s≥q/(1+λ).

Example 4 (European long put option). A holder of the option is enti-
tled to sell one share of stock at a price q. Then we can have the contingent
claim functions

f1(s) = q 1s≤q, f2(s) = −s 1s≤q,

and

c1(s) =
(
− s +

q

1 + λ

)
1s≤q, c2(s) =

(
− s +

q

1− µ

)
1s≤q.

One can show that for the contingent claims defined in Examples 1–4
we have (I1)(s) ≥ 0 and (I2)(s) ≥ 0. Furthermore, for s sufficiently large,
(I1)(s) = (I2)(s) = 0. Moreover, in the examples considered above the
contingent claim was considered from the so-called long position, i.e. the
position of the buyer of an option. Consequently, the price of the option
was the minimal one that compensated the seller’s loss.

The main result of the section can be formulated as follows:

Theorem 1. Under (I1)(s) ≥ 0, (I2)(s) ≥ 0 we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1 + λ

x + c
(1)
1 (s) for x ≥ z1(s),

y ≥ − 1
1− µ

x + c
(1)
2 (s) for x ≤ z1(s)

}
= (z1(s),H1z1(s)) + C
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where

(13)
c
(1)
1 (s) = −

(
1 + r

(1 + λ)(1 + b)
− 1

1 + λ

)
z1(s) +

1
1 + b

c1((1 + b)s),

c
(1)
2 (s) = −

(
1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z1(s) +

1
1 + a

c2((1 + a)s),

and

H1z1(s) = − 1 + r

(1 + λ)(1 + b)
z1(s) +

1
1 + b

c1((1 + b)s)(14)

= − 1 + r

(1− µ)(1 + a)
z1(s) +

1
1 + a

c2((1 + a)s).

Moreover , we have a perfect hedging in one step with replicating trading
strategies

l =
1

1 + λ
(x− z1(s)), m = 0 for x ≥ z1(s),

l = 0, m = − 1
1− µ

(x− z1(s)) for x ≤ z1(s).

In addition, if (I1)((1+a)s) ≥ 0, (I1)((1+ b)s) ≥ 0, (I2)((1+a)s) ≥ 0,
(I2)((1 + b)s) ≥ 0, then (I(1)1)(s) ≥ 0 and (I(1)2)(s) ≥ 0 where (I(1)1) and
(I(1)2) are (I1), (I2) with c1, c2 replaced by c

(1)
1 , c

(1)
2 .

Furthermore, if for a given initial price s0 of the stock we have

(15) (I1)(s0(1 + a)i(1 + b)j) ≥ 0, (I2)(s0(1 + a)i(1 + b)j) ≥ 0

for nonnegative integers i, j such that i + j = T − 1, then we have a perfect
hedging with replicating strategy (ln,mn) that at each time n shifts (xn, yn)
to the vertex of the cone Gn(sn).

P r o o f. We first find the form of the polyhedron GT−1(s). By Lemma
3 we have

(16) max{z4(s), z5(s)} ≤ z1(s) ≤ min{z2(s), z3(s)}.
Therefore, by Lemma 1,

(17)
for x ≤ z1(s) + z, (E1) ≥ max{(E2), (E3), (E4)},
for x ≥ z1(s) + z, (E4) ≥ max{(E1), (E2), (E3)}.

Since according to the definition of GT−1(s) we are looking for points
(x, y) ∈ R2 which for some l, m ≥ 0 dominate the lines (E1)–(E4), to
determine the boundary of GT−1(s) we shall consider only the cases when
one of the control values l or m is 0.

Consider first the case when x ≤ z1(s). If moreover x ≤ z1(s) + z, then
either z ∈ [x− z1(s), 0] and m = −z/(1−µ), l = 0, or z ∈ [0,∞) and m = 0
(recall that z := (1 + λ)l − (1− µ)m).
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If z ∈ [x − z1(s), 0] and m = −z/(1 − µ), then the line (E1) is above
(E2), (E3), (E4) and is of the form (F1). Since we then have a family of
lines (F1) parametrized by z ∈ [x − z1(s), 0] and 1+r

(1−µ)(1+a) −
1

1−µ > 0,
the lowest line in this family corresponds to z = x − z1(s), and its equa-
tion is

(α1) y = − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z1(s) +

1
1 + a

c2((1 + a)s).

If z ∈ [0,∞) and m = 0, then the line (E1) which is still above
(E2), (E3), (E4) takes its lowest position for z = 0

(
since 1+r

(1−µ)(1+a) > 1
1+λ

)
,

and therefore does not lie below (α1). If additionally to x ≤ z1(s) we have
x ≥ z1(s)+z, then clearly z ≤ x−z1(s) ≤ 0 and so m = −z/(1−µ). In this
case (E4) dominates (E1), (E2), (E3) and is of the form (F4). The lowest
line (F4) for the range z ≤ x− z1(s) corresponds to z = x− z1(s) and is of
the form

(α2) y = − 1
1− µ

−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z1(s) +

1
1 + b

c1((1 + b)s).

It follows from the definition of z1(s) that the lines (α1) and (α2) coin-
cide. Therefore for x ≤ z1(s) the line (α1) = (α2) forms the boundary of
GT−1(s).

Let now x ≥ z1(s). We again have two cases: either x ≤ z1(s) + z, i.e.
z ∈ [x−z1(s),∞), and m = 0, or x ≥ z1(s)+z, and then for z ∈ [0, x−z1(s)]
we put m = 0, while for z ∈ (−∞, 0] we let m = −z/(1− µ).

If x ≤ z1(s) + z, i.e. z ∈ [x − z1(s),∞), then m = 0, the line (E1) lies
above (E2), (E3), (E4) and its lowest position corresponds to z = x− z1(s),
and is of the form

(β1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z1(s) +

1
1 + a

c2((1 + a)s).

If x ≥ z1(s) + z and z ∈ [0, x − z1(s)], then m = 0 and the line (E4)
dominates (E1), (E2), (E3). The lowest position of (E4) corresponds then
to the value z = x− z1(s), and that line is of the form

(β2) y = − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1 + λ

)
z1(s) +

1
1 + b

c1((1 + b)s).

If x ≥ z1(s) + z and z ∈ (−∞, 0], then m = −z/(1 − µ) and the line
(E4) which is again above (E1), (E2), (E3) is of the form (F4) with the
lowest position for z = 0. Since the parameter z = 0 was considered in
the minimization problem for which the minimal line was (β2), we conclude
that the line (β2) is minimal for x ≥ z1(s) + z.

By the definition of z1(s) we know that (β1) and (β2) coincide. Therefore
for x ≥ z1(s) the boundary of GT−1(s) is (β1) = (β2).
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Notice that by the construction of GT−1(s) to reach the boundary we
used the strategy l = 1

1+λ (x − z1(s)), m = 0 for x ≥ z1(s) and l = 0,
m = − 1

1−µ (x − z1(s)) for x ≤ z1(s). In other words, we shifted the pair
(x, y) to the vertex of GT−1(s), which has coordinates (z1(s),H1z1(s)).

Since

TaH1z1(s) = − 1
1− µ

Trz1(s) + c2(Tas)

and

TbH1z1(s) = − 1
1 + λ

Trz1(s) + c1(Tbs).

after the transformations Ta, Tb the point (z1(s),H1z1(s)) lies on the bound-
ary of GT (Tas), GT (Tbs) respectively, and we have a perfect hedging in one
step.

A direct algebraic calculation shows that (I(1)1)(s) ≥ 0 and (I(1)2)c(s)
≥ 0 provided (I1)((1 + a)s) ≥ 0, (I1)((1 + b)s) ≥ 0, (I2)((1 + a)s) ≥ 0 and
(I2)((1 + b)s) ≥ 0.

Therefore under (15) the polyhedrons Gn(sn) are cones of the form (5)
with suitably chosen functions c1 and c2 and the strategy to shift (xn, yn) to
the vertex of Gn(sn) for n = 0, 1, . . . , T − 1 guarantees a perfect hedging.

3(b) Case (I1)(s) ≤ 0, (I2)(s) ≥ 0. Under the above assumptions we
obtain a perfect hedging in one step only in particular cases. We have

Theorem 2. If (I1)(s) ≤ 0 and (I2)(s) ≥ 0, then in the case when

(a)
1 + r

1 + a
<

1 + λ

1− µ

we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z3(s)

+
1

1 + a
c2((1 + a)s) for x ≤ z3(s),

y ≥ −1 + r ≤ (1 + λ)(1 + a)x +
1

1 + a
c1((1 + a)s)

for z3(s) ≤ x ≤ z4(s),

y ≥ − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1 + λ

)
z4(s)

+
1

1 + b
c1((1 + b)s) for x ≤ z4(s)

}
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=
{

(x, y) : z3(s) ≤ x ≤ z4(s),

y = − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s)
}

+ C

with hedging strategies

l = 0, m =
z3(s)− x

1− µ
for x ≤ z3(s),

m = l = 0 for z3(s) ≤ x ≤ z4(s),

l =
x− z4(s)

1 + λ
, m = 0 for x ≥ z4(s),

and unless z3(s) = z4(s) we do not have a perfect hedging ; while if

(b)
1 + r

1 + a
≥ 1 + λ

1− µ

we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z4(s)

+
1

1 + b
c1((1 + b)s) for x ≤ z4(s),

y ≥ − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1 + λ

)
z4(s)

+
1

1 + a
c1((1 + a)s) for x ≥ z4(s)

}
= (z4(s),H2z4(s)) + C

with

H2z4(s) = − 1 + r

(1 + λ)(1 + b)
z4(s) +

1
1 + b

c1((1 + b)s)(18)

= − 1 + r

(1 + λ)(1 + a)
z4(s) +

1
1 + a

c1((1 + a)s)

and we have a perfect hedging in one step with replicating strategies

l = 0, m =
z4(s)− x

1− µ
for x ≤ z4(s),

l =
x− z4(s)

1 + λ
, m = 0 for x ≥ z4(s).

P r o o f. By Lemma 3 we have

(19) max{z3(s), z5(s)} ≤ z1(s) ≤ min{z2(s), z4(s)}.
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Therefore from Lemma 1,

(20)
(E1) ≥ max{(E2), (E3), (E4)} for x ≤ z3(s) + z,

(E2) ≥ max{(E1), (E3), (E4)} for z3(s) + z ≤ x ≤ z4(s) + z,

(E4) ≥ max{(E1), (E2), (E3)} for x ≥ z4(s) + z.

The construction of GT−1(s) is split into three steps. Note that the
labels (α1), (β1) etc. have other meanings than in Theorem 1.

S t e p I: x ≤ z3(s). We have the following subcases:

1. Suppose x ≤ z3(s)+z. If z ∈ [x−z3(s), 0] we let m = −z/(1−µ) and
(E1) which dominates (E2), (E3), (E4) is of the form (F1) and the lowest
line corresponds to z = x− z3(s):

(α1) y = − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z3 +

1
1 + a

c2((1 + a)s).

If z ∈ [0,∞) we have m = 0; therefore (α1) is the minimal line.
2. If z3(s) + z ≤ x ≤ z4(s) + z, i.e. z ∈ [x − z4(s), x − z3(s)], then

m = −z/(1 − µ) and (E2) which is above (E1), (E2), (E4) has the form
(F2) and attains its lowest position if 1+r

1+a ≤
1+λ
1−µ for z = x− z3(s), i.e.

(α21) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z3(s)+

1
1 + a

c1((1+a)s),

and if 1+r
1+a ≥

1+λ
1−µ for z = x− z4(s), i.e.

(α22) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z4(s)+

1
1 + a

c1((1+a)s).

3. If z4(s) + z ≤ x, then z ≤ x − z4(s) < 0, m = −z/(1 − µ) and (E4)
dominates (E1), (E2), (E3) and is of the form (F4); the lowest position is
attained for z = x− z4(s), i.e.

(α3) y = − 1
1− µ

x +
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z4(s) +

1
1 + b

c1((1 + b)s).

By the definitions of z3(s) and z4(s) we conclude that the lines (α1),
(α21) and (α3), (α22) respectively coincide. Using the fact that (I1)(s) ≤ 0
we also see that (α1) ≤ (α3) for 1+r

1+a ≤ 1+λ
1−µ , while (α3) ≥ (α1) for 1+r

1+a ≥
1+λ
1−µ .

S t e p II: z3(s) ≤ x ≤ z4(s). We again have three subcases:

1. If x ≤ z3(s) + z, then z ≥ x − z3(s) > 0, m = 0, and (E1) that is
above (E2), (E3), (E4) is in its lowest position for z = x−z3(s) and is then
of the form

(β1) y = − 1
1 + λ

x +
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z3(s) +

1
1 + a

c2((1 + a)s).
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2. Suppose z3(s) + z ≤ x ≤ z4(s) + z. If z ∈ [x − z4(s), 0], then
m = −z/(1− µ) and (E2) has the form (F2) and the lowest position in the
case when 1+r

1+a ≤
1+λ
1−µ is attained for z = 0 with

(β21) y = − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s),

and when 1+r
1+a ≥

1+λ
1−µ for z = x− z4(s) with

(β22) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z4(s)+

1
1 + a

c1((1+a)s).

If z ∈ [0, x − z3(s)] then m = 0 and the lowest position of the line (E2)
corresponds to z = 0 and this line either coincides with or lies above (β21),
(β22).

3. If z4(s) + z ≤ x, then m = −z/(1 − µ), (E4) has the form (F4) and
attains the lowest position for z = x− z4(s), which is

(β3) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z4(s) +

1
1 + b

c1((1 + b)s).

Clearly (β3) = (β22) = (α3), moreover (β21) intersects (β1) and (α1) for
x = z3(s), and therefore lies below (β1) for x ∈ [z3(s), z4(s)]. Furthermore,
(β3) intersects (β21) for x = z4(s). Therefore for x ∈ [z3(s), z4(s)], the
boundary of GT−1(s) is formed by the line (β21) when 1+r

1+a < 1+λ
1−µ and by

(β3) = (α3) when 1+r
1+a ≥

1+λ
1−µ .

S t e p III: z4(s) ≤ x. We consider three subcases:

1. If x ≤ z3(s) + z, then z ≥ x− z3(s) > 0, m = 0 and (E1) attains its
lowest position for z = x− z3(s) and has the form

(γ1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z3(s) +

1
1 + a

c2((1 + a)s).

2. If z3(s)+ z ≤ x ≤ z4(s)+ z, i.e. z ∈ [x− z4(s), x− z3(s)], then m = 0,
and (E2) is minimal for z = x− z4(s) with the equation

(γ2) y = − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1 + λ

)
z4(s) +

1
1 + a

c1((1 + a)s).

3. Suppose z4(s) + z ≤ x, i.e. z ∈ (−∞, x − z4(s)]. If z ∈ (−∞, 0] we
have m = −z/(1 − µ) and (E4) attains its lowest position for z = 0, while
if z ∈ [0, x − z4(s)], we have m = 0, and (E4) is minimal for z = x − z4(s)
and of the form

(γ3) y = − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1 + λ

)
z4(s) +

1
1 + b

c1((1 + b)s).
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Clearly for z = 0, (E4) is above (γ3). Since (γ2) = (γ3) and (γ1) = (β1)
and (β21) intersects (γ3) for x = z4(s) we conclude that for x ≥ z4(s) the
boundary of GT−1(s) is (γ3).

This way we determined the form of GT−1(s). It remains to study the
aspect of perfect hedging in one step.

In the case when 1+r
1+a < 1+λ

1−µ the boundary of GT−1(s) for z3(s) ≤ x ≤
z4(s) is formed by the line segment

y = − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s).

Therefore
Tay = − 1

1 + λ
Trx + c1(Tas)

and (Trx, Tay) lies on the boundary of GT (Tas). On the other hand, when
z3(s) < z4(s),

Tby = − 1 + b

(1 + a)(1 + λ)
Trx +

1 + b

1 + a
c1((1 + a)s)

and the point (Trx, Tby) is on the boundary of GT (Tbs) only when
1 + b

(1 + a)(1 + λ)
=

1
1− µ

and
1 + b

1 + a
c1((1 + a)s) = c2((1 + b)s),

which implies (I5)(s) = 0 and by Lemma 2(viii), (I2)(s) = (I1)(s) = 0 and
consequently z3(s) = z4(s) by Lemma 3.

In the case when z3(s) = z4(s) we have

Tay = − 1
1− µ

Trz3(s) + c2(Tas),

Tby = − 1
1 + λ

Trz3(s) + c1(Tbs),

and therefore a perfect hedging holds.
It remains to consider the case 1+r

1+a ≥
1+λ
1−µ . By (18),

TaH2z4(s) = − 1
1 + λ

Trz4(s) + c1(Tas),

TbH2z4(s) = − 1
1 + λ

Trz4(s) + c1(Tbs),

and we have a perfect hedging in one step.
The proof of Theorem is therefore complete.

3(c) Case (I1)(s) ≥ 0, (I2)(s) ≤ 0. We now consider the case opposite
to 3(b). A perfect hedging can again be obtained in a particular case only.

Theorem 3. Under (I1)(s) ≥ 0, (I2)(s) ≤ 0, if

(a)
1 + r

1 + b
≤ 1− µ

1 + λ
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we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z2(s)

+
1

1 + a
c2((1 + a)s) for x ≤ z2(s),

y ≥ −1 ≤ 1 + λx−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z2(s)

+
1

1 + b
c2((1 + b)s) for x ≥ z2(s)

}
= (z2(s),H3z2(s)) + C

with

(21)
H3z2(s) = − 1 + r

(1− µ)(1 + a)
z2(s) +

1
1 + a

c2((1 + a)s)

= − 1 + r

(1− µ)(1 + b)
z2(s) +

1
1 + b

c2((1 + b)s),

and for the replicating strategies

l = 0, m =
z2(s)− x

1− µ
if x ≤ z2(s),

l =
x− z2(s)

1 + λ
, m = 0 if x ≥ z2(s),

a perfect hedging in one step is attained ; while if

(b)
1 + r

1 + b
>

1− µ

1 + λ

we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z2(s)

+
1

1 + a
c2((1 + a)s) for x ≤ z2(s),

y ≥ −
(

1 + r

(1− µ)(1 + b)
x

)
+

1
1 + b

c2((1 + b)s)

for z2(s) ≤ x ≤ z5(s),

y ≥ − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1 + λ

)
z5(s)

+
1

1 + b
c2((1 + b)s) for x ≥ z5(s)

}
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=
{

(x, y) : z2(s) ≤ x ≤ z5(s),

y = − 1 + r

(1− µ)(1 + b)
x +

1
1 + b

c2((1 + b)s)
}

+ C

with hedging strategies

l = 0, m =
z2(s)− x

1− µ
for x ≤ z2(s),

l = m = 0 for z2(s) ≤ x ≤ z5(s),

l =
x− z5(s)

1 + λ
, m = 0 for x ≥ z5(s),

and unless z2(s) = z5(s) we do not have a perfect hedging in one step.

P r o o f. Since the proof is similar to that of Theorem 1 or Theorem 2
we point out the main steps only.

By Lemma 3 we have

(22) max{z2(s), z4(s)} ≤ z1(s) ≤ min{z3(s), z5(s)}
and therefore by Lemma 1 the line dominating other lines is

(23)
(E1) for x ≤ z2(s) + z,

(E3) for z2(s) + z ≤ x ≤ z5(s) + z,

(E4) for x ≥ z5(s) + z.

S t e p I: x ≤ z2(s).

1. Suppose x ≤ z2(s)+ z. If z ∈ [x− z2(s), 0], then m = −z/(1−µ), the
lowest position of (E1) corresponds to z = x− z2(s) and has the form

(α1) y = − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z2(s) +

1
1 + a

c2((1 + a)s).

The case z ≥ 0, m = 0 leads to a line above (α1).
2. If z2(s)+ z ≤ x ≤ z5(s)+ z, then m = −z/(1−µ), the lowest position

of (E3) corresponds to z = x− z2(s) and is of the form

(α2) y = − 1
1− µ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1− µ

)
z2(s) +

1
1 + b

c2((1 + b)s).

3. If x ≥ z5(s) + z, then m = −z/(1 − µ) and the minimal location of
(E4) is for z = x− z5(s) and has the equation

(α3) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z5(s) +

1
1 + b

c1((1 + b)s).

We clearly have (α1) = (α2). Moreover, since (I2)(s) ≤ 0 we can show
that (α2) ≤ (α3).
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S t e p II: z2(s) ≤ x ≤ z5(s).

1. If x ≤ z2(s) + z, then m = 0, the lowest position of (E1) is for
z = x− z2(s) and has the form

(β1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z2(s) +

1
1 + a

c2((1 + a)s).

2. Suppose z2(s)+z ≤ x ≤ z5(s)+z. If z ∈ [0, x−z2(s)], then m = 0 and
in the case when 1+r

1+b ≤
1−µ
1+λ the minimal position of (E3) is for z = x−z2(s)

and has the form

(β21) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z2(s)+

1
1 + b

c2((1+ b)s);

when 1+r
1+b ≥

1−µ
1+λ the lowest position of (E3) is for z = 0 and

(β22) y = − 1 + r

(1− µ)(1 + b)
x +

1
1 + b

c2((1 + b)s).

If z ∈ [x− z5(s), 0], then m = −z/(1− µ) and the minimal location of (E3)
corresponds to z = 0 and coincides with (β22).

3. If z5(s) + z ≤ x, then m = −z/(1− µ), the lowest location of (E4) is
for z = x− z5(s) and is of the form

(β3) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z5(s) +

1
1 + b

c1((1 + b)s).

We now easily see that (α3) = (β3), (β21) = (β1), and (β21) intersects
(β22) and (β3) at points with first coordinates z2(s) and z5(s) respectively.
Therefore if 1+r

1+b > 1−µ
1+λ then the boundary of GT−1(s) is (β22), while for

1+r
1+b ≤

1−µ
1+λ the boundary of GT−1(s) is (β21).

S t e p III: x ≥ z5(s).

1. If x ≤ z2(s) + z, then m = 0, the minimal location of (E1) is for
z = x− z2(s) and is of the form

(γ1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z2(s) +

1
1 + a

c2((1 + a)s).

2. If z2(s) + z ≤ x ≤ z5(s) + z, then m = 0, the lowest position of (E3)
is in the case 1+r

1+b ≤
1−µ
1+λ for z = x− z2(s) with

(γ21) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z2(s) +

1
1 + b

c2((1 + b)s).

and in the case 1+r
1+b > 1−µ

1+λ for z = x− z5(s) with

(γ22) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z5(s) +

1
1 + b

c2((1 + b)s).
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3. Suppose x ≥ z5(s) + z. If z ∈ [0, x− z5], then m = 0, and the lowest
position of (E4) is for z = x− z5(s) with

(γ3) y = − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1 + λ

)
z5(s) +

1
1 + b

c1((1 + b)s).

If z ∈ (−∞, 0], then m = −z/(1− µ), and therefore (E4) is above (γ3).

Notice now that (γ1) = (γ21), (γ22) = (γ3), (β21) = (γ1) and under
(I2) ≤ 0 for 1+r

1+b ≥
1−µ
1+λ we have (γ1) ≥ (γ3) while for 1+r

1+b ≤
1−µ
1+λ , (γ3) ≥

(γ1). The form of GT−1(S) is thus established.
If 1+r

1+b ≤
1−µ
1+λ we have

TaH3z2(s) = − 1
1− µ

Trz2(s) + c2(Tas),

TbH3z2(s) = − 1
1− µ

Trz2(s) + c2(Tbs),

from which a perfect hedging follows.
If 1+r

1+b > 1−µ
1+λ then by a consideration similar to that of Theorem 2 we

see that we have a perfect hedging only when z2(s) = z5(s). The proof is
complete.

4. Construction of the cone GT−1(s) under (I1)(s) ≤ 0 and
(I2)(s) ≤ 0. The study of the case (I1)(s) ≤ 0 and (I2)(s) ≤ 0 requires the
additional indicators (I3)(s) and (I4)(s). Taking into account all possible
signs of (I3)(s) and (I4)(s) we consider four subcases.

4(a) Case (I1)(s) ≤ 0, (I2)(s) ≤ 0, (I3)(s) ≤ 0, (I4)(s) ≤ 0. Our main
result in this case can be stated as follows:

Theorem 4. Under (I1)(s) ≤ 0, (I2)(s) ≤ 0, (I3)(s) ≤ 0, (I4)(s) ≤ 0,
in the case

(a)
1 + a

1 + b
>

1− µ

1 + λ

we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z2(s)

+
1

1 + a
c2((1 + a)s) for x ≤ z2(s),

y ≥ − 1 + r

(1− µ)(1 + b)
x +

1
1 + b

c2((1 + b)s)

for z2(s) ≤ x ≤ z6(s),
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y ≥ − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

+ c1((1 + a)s)

for z6(s) ≤ x ≤ z4(s),

y ≥ − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1 + λ

)
z4(s)

+
1

1 + b
c1((1 + b)s) for x ≥ z4(s)

}
with hedging strategies

l = 0, m =
z2(s)− x

1− µ
for x ≤ z2(s),

l = m = 0 for z2(s) ≤ x ≤ z4(s),

l =
x− z4(s)

1 + λ
, m = 0 for x ≥ z4(s),

and unless z2(s) = z6(s) = z4(s) which is equivalent to (I1)(s) = (I2)(s) =
(I3)(s) = (I4)(s) = 0, we do not have a perfect hedging.

In the case

(b)
1 + a

1 + b
=

1− µ

1 + λ

we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z2(s)

+
1

1 + a
c2((1 + a)s) for x ≤ z2(s),

y ≥ − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s)

for z2(s) ≤ x ≤ z4(s),

y ≥ − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1 + λ

)
z4(s)

+
1

1 + b
c1((1 + b)s) for x ≥ z4(s)

}
=

{
(x, y) : z2(s) ≤ x ≤ z4(s),

y = − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s)
}

+ C

and under the trading strategies
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l = 0, m =
z2(s)− x

1− µ
for x ≤ z2(s),

m = l = 0 for z2(s) ≤ x ≤ z4(s),

l =
x− z4(s)

1 + λ
, m = 0 for x ≥ z4(s)

we obtain a perfect hedging.
Moreover , the case 1+a

1+b < 1−µ
1+λ is impossible.

P r o o f. By Lemma 2(ii), (I2)(s) + (I4)(s) = (1 + b)(µ + λ)∆(s) ≤ 0.
Therefore ∆(s) ≤ 0. Since (I3)(s) + (I4)(s) ≤ 0 by Lemma 2(iii) we have
(1 + λ)(1 + a) ≥ (1− µ)(1 + b). Therefore the case 1+a

1+b < 1−µ
1+λ is excluded.

Using Lemma 3 we have

(24) z2(s) ≤ z3(s) ≤ z1(s) ≤ z5(s) ≤ z4(s)

and under 1+a
1+b > 1−µ

1+λ , if (I5)(s) ≥ 0 then z6(s) ∈ [z3(s), z1(s)] while if
(I5)(s) ≤ 0 then z6(s) ∈ [z1(s), z5(s)]. By Lemma 1 we can determine the
dominating lines for 1+a

1+b > 1−µ
1+λ , namely they are

(E1) for x ≤ z2(s) + z,

(E3) for z2(s) + z ≤ x ≤ z6(s) + z,

(E2) for z6(s) + z ≤ x ≤ z4(s) + z,

(E4) for x ≥ z4(s) + z.

In the case when 1+a
1+b = 1−µ

1+λ by Lemma 2(iii) we obtain (I3)(s) +
(I4)(s) = 0 and therefore (I3)(s) = (I4)(s) = 0. Consequently, (I5)(s) = 0
and

(26)
1

1 + a
c1((1 + a)s) =

1
1 + b

c2((1 + b)s),

which implies that (E2) = (E3). Hence, the polyhedron GT−1(s) is deter-
mined by the following lines:

(27)
(E1) for x ≤ z2(s) + z,

(E2) = (E3) for z2(s) + z ≤ x ≤ z4(s) + z,

(E4) for x ≥ z4(s) + z.

Consider now the case 1+a
1+b > 1−µ

1+λ . Since we follow similar arguments to
the proofs of Theorems 1, 2 and 3, we only list below the values m, z and
the equations of the lowest lines

S t e p I: x ≤ z2(s).
1. x ≤ z2(s) + z.

(a) z ∈ [x− z2(s), 0], m = −z/(1− µ); z = x− z2(s),
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(α1) y = − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z2(s) +

1
1 + a

c2((1 + a)s).

(b) z ∈ [0,∞), m = 0; z = 0 and the line is above (α1).

2. z2(s) + z ≤ x ≤ z6(s) + z, m = −z/(1− µ); z = x− z2(s),

(α2) y = − 1
1− µ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1− µ

)
z2(s) +

1
1 + b

c2((1 + b)s).

3. z6(s) + z ≤ x ≤ z4(s) + z, m = −z/(1− µ); z = x− z6(s),

(α3) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z6(s) +

1
1 + a

c1((1 + a)s).

4. x ≥ z2(s) + z, m = −z/(1− µ); z = x− z4(s),

(α4) y − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z4(s) +

1
1 + b

c1((1 + b)s).

Clearly (α1) = (α2). Moreover, one can show that if (I3)(s) ≤ 0 we
have (α1) ≤ (α3), while if (I4)(s) ≤ 0 we have (α3) ≤ (α4). Therefore (α1)
is the boundary of GT−1(s).

S t e p II: z2(s) ≤ x ≤ z6(s).

1. x ≤ z2(s) + z, m = 0; z = x− z2(s),

(β1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z2(s) +

1
1 + a

c2((1 + a)s).

2. z2(s) + z ≤ x ≤ z6(s) + z.

(a) z ∈ [x− z6(s), 0], m = −z/(1− µ); z = 0,

(β2) y = − 1 + r

(1− µ)(1 + b)
x +

1
1 + b

c2((1 + b)s).

(b) z ∈ [0, x− z2(s)], m = 0; z = 0 and the line coincides with (β2).

3. z6(s) + z ≤ x ≤ z4(s) + z, m = −z/(1− µ); z = x− z6(s),

(β3) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z6(s) +

1
1 + a

c1((1 + a)s).

4. x ≥ z4(s) + z, m = −z/(1− µ); z = x− z4(s),

(β4) y − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z4(s) +

1
1 + b

c1((1 + b)s).

Notice that (α3) = (β3) and (α4) = (β4). Moreover, (β1) intersects (α1)
and (β2) for x = z2(s). Since for x = z6(s) the line (α3) intersects (β2) we
conclude that (β2) forms the boundary of GT−1(s).
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S t e p III: z6(s) ≤ x ≤ z4(s).

1. x ≤ z2(s) + z, m = 0; z = x− z2(s),

(γ1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z2(s) +

1
1 + a

c2((1 + a)s).

2. z2(s) + z ≤ x ≤ z6(s) + z, m = 0; z = x− z6(s),

(γ2) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z6(s) +

1
1 + b

c2((1 + b)s).

3. z6(s) + z ≤ x ≤ z4(s) + z.

(a) z ∈ [x− z4(s), 0], m = −z/(1− µ); z = 0,

(γ3) y = − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s).

(b) z ∈ [0, x− z6(s)], m = 0; z = 0 and the line coincides with (γ3).

4. x ≥ z4(s) + z, m = −z/(1− µ); z = x− z4(s),

(γ4) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z4(s) +

1
1 + b

c1((1 + b)s).

Clearly (β4) = (γ4) and (β1) = (γ1). Moreover, the line (γ3) intersects
(β2), (β3) and (γ2), (γ4) at points with first coordinate z6(s) and z4(s)
respectively. Therefore the line (γ3) is the boundary of GT−1(s).

S t e p IV: x ≥ z4(s).

1. x ≤ z2(s) + z, m = 0; z = x− z2(s),

(δ1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z2(s) +

1
1 + a

c2((1 + a)s).

2. z2(s) + z ≤ x ≤ z6(s) + z, m = 0; z = x− z6(s),

(δ2) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z6(s) +

1
1 + b

c2((1 + b)s).

3. z6(s) + z ≤ x ≤ z4(s) + z, m = 0; z = x− z4(s),

(δ3) y = − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1 + λ

)
z4(s) +

1
1 + a

c1((1 + a)s).

4. x ≥ z4(s) + z.

(a) z ∈ [0, x− z4(s)], m = 0; z = x− z4(s),

(δ 4) y = − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1 + λ

)
z4(s) +

1
1 + b

c1((1 + b)s).

(b) z ∈ (−∞, 0], m = −z/(1− µ); z = 0 and the line is above (δ4).
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Since (δ1) = (β1) = (γ1), (δ2) = (γ2), (δ3) = (δ4) and (γ3) inter-
sects (δ3) for x = z4(s), we see that the boundary of GT−1(s) is the line
(δ3) = (δ4).

As in Theorems 2 and 3 unless z2(s) = z6(s) = z4(s) we do not have
a perfect hedging. If z2(s) = z6(s) = z4(s), then by Lemma 3, (I3)(s) =
(I4)(s) = 0. Then from (iii) of Lemma 2 we have ∆(s) = 0. Consequently,
(I1)(s) = (I2)(s) = 0 and we have a perfect hedging as shown in Theorem 1.

Let now 1+a
1+b = 1−µ

1+λ . By (27) we have three steps. As before we only list
the values of m, z and the equations of the lines that are minimal.

S t e p I: x ≤ z2(s).

1. x ≤ z2(s) + z, m = −z/(1− µ); z = x− z2(s), (α1).
2. z2(s) + z ≤ x ≤ z4(s) + z, m = −z/(1− µ); z = x− z2(s), (α1) .
3. x ≥ z4(s) + z, m = −z/(1− µ); z = x− z4(s), (α1).

The line (α1) forms the boundary of GT−1(s).

S t e p I: z2(s) ≤ x ≤ z4(s).

1. x ≤ z2(s) + z, m = 0; z = x− z2(s), (β1).
2. z2(s) + z ≤ x ≤ z4(s) + z, m = −z/(1− µ); z = 0. (γ3)
3. x ≥ z4(s) + z, m = −z/(1− µ); z = x− z4(s), (γ4).

Since at a point with first coordinate z2(s) we have (γ 3) = (β2) = (α1)
and for x = z4(s), (α4) = (γ4) = (γ3), we see that the boundary of GT−1(s)
is (γ3).

S t e p III: x ≥ z4(s).

1. x ≤ z2(s) + z, m = 0; z = x− z2(s), (δ1).
2. z2(s) + z ≤ x ≤ z4(s) + z, m = 0; z = x− z4(s), (δ3).
3. x ≥ z4(s) + z, m = 0; z = x− z4(s), (δ4).

Clearly as before (δ3) = (δ4) and (δ1) = (β1). Since for x = z4(s) we
have (δ3) = (γ3), the boundary of GT−1(s) is formed by (δ3) = (δ4).

Having constructed the set GT−1(s) we now consider the aspect of hedg-
ing.

Under 1+a
1+b = 1−µ

1+λ we have by Lemma 2, (I3)(s) + (I4)(s) = 0 and
(I3)(s) = (I4)(s) = 0. Consequently, (I5)(s) = 0 and

(28) (1 + b)c1((1 + a)s) = (1 + a)c2((1 + b)s).

The boundary of GT−1(s) for z2(s) ≤ x ≤ z4(s) is the line satisfying the
following equivalent equations (see (28)):

y = − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s),

y = − 1 + r

(1− µ)(1 + b)
x +

1
1 + b

c2((1 + b)s).
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Therefore

Tay = − 1
1 + λ

Trx + c1(Tas), Tby = − 1
1− µ

Trx + c2(Tbs),

and we have a perfect hedging.
4(b) Case (I1)(s) ≤ 0, (I2)(s) ≤ 0, (I3)(s) ≤ 0, (I4)(s) ≥ 0. This

case is similar to that of (I1)(s) ≥ 0, (I2)(s) ≤ 0, and the statements of
Theorems 3 and 5 below are almost identical.

Theorem 5. Under (I1)(s) ≤ 0, (I2)(s) ≤ 0, (I3)(s) ≤ 0, (I4)(s) ≥ 0
the form of the set GT−1(s) is the same as in Theorem 3.

In the cases
1 + r

1 + b
≤ 1− µ

1 + λ
or

1 + r

1 + b
>

1− µ

1 + λ
with z2(s) = z5(s),

which is equivalent to (I1)(s) = (I2)(s) = (I3)(s) = (I4)(s) = 0, we have a
perfect hedging with the same replicating strategies as in Theorem 3.

If
1 + r

1 + b
>

1− µ

1 + λ
6= 1 + a

1 + b
and z2(s) 6= z5(s)

we do not have a perfect hedging , but for a hedging strategy one can choose
the one defined in Theorem 3.

Finally , when
1 + r

1 + b
>

1− µ

1 + λ
=

1 + a

1 + b
and z2(s) 6= z5(s)

we have a perfect hedging only when
1

1 + a
c1((1 + a)s) =

1
1 + b

c2((1 + b)s)

and consequently (I3)(s) = (I4)(s) = (I5)(s) = 0, with replicating strategies

l = 0, m =
z2(s)− x

1− µ
for x ≤ z2(s),

l = m = 0 for z2(s) ≤ z ≤ z5(s),

l =
x− z5(s)

1 + λ
, m = 0 for x ≥ z5(s).

P r o o f. By Lemma 2(vii) we have (I5)(s)≤0. Using Lemma 3 we obtain

(29) z2(s) ≤ z3(s) ≤ z1(s) ≤ z4(s) ≤ z5(s)

and if 1+a
1+b < 1−µ

1+λ we have z6(s) ≤ z2(s) while if 1+a
1+b > 1−µ

1+λ it follows that
z6(s) ≥ z5(s).

The case 1+a
1+b = 1−µ

1+λ holds only when (since then (I5)(s) ≤ 0)

1
1 + a

c1((1 + a)s) ≤ 1
1 + b

c2((1 + b)s).
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Therefore by Lemma 1 the following lines dominate in the respective inter-
vals:

(30)
(E1) for x ≤ z2(s) + z,

(E3) for z2(s) + z ≤ x ≤ z5(s) + z,

(E4) for x ≥ z5(s) + z.

Notice that (30) is the same as (23). Since in the proof of Steps I–II in
Theorem 3 to determine a minimal location of the lines we used the fact
that (I2)(s) ≤ 0, which is satisfied in our case, the construction of the set
GT−1(s) both in the case when 1+r

1+b ≤
1−µ
1+λ and 1+r

1+b > 1−µ
1+λ is identical to that

of Theorem 3. We can also repeat the arguments concerning hedging for the
cases 1+r

1+b ≤
1−µ
1+λ and 1+r

1+b > 1−µ
1+λ with z2(s) = z5(s). Notice, however, that

if z2(s) = z5(s), then by Lemma 3, (I2)(s) = 0, and then since (I5)(s) ≤ 0,
by Lemma 2(viii) we have (I1)(s) = 0. Therefore (I5)(s) = 0 and also
(I5)(s) = (I4)(s) = 0 (by Lemma 2(vii)). In the case 1+r

1+b > 1−µ
1+λ with

z2(s) 6= z5(s) to have a perfect hedging the following equalities should be
satisfied:

1− µ

1 + λ
=

1 + a

1 + b
and

1
1 + a

c1((1 + a)s) =
1

1 + b
c2((1 + b)s).

Then (I5)(s) = 0 and consequently (I3)(s) = (I4)(s) = 0.
The proof of Theorem is thus complete.

4(c) Case (I1)(s) ≤ 0, (I2)(s) ≤ 0, (I3)(s) ≥ 0, (I4)(s) ≤ 0. This case
is very similar to that when (I1)(s) ≤ 0, (I2)(s) ≥ 0. We show below that
in both cases the sets GT−1(s) are identical.

Theorem 6. Under (I1)(s) ≤ 0, (I2)(s) ≤ 0, (I3)(s) ≥ 0, (I4)(s) ≤ 0
the set GT−1(s) is of the identical form as in Theorem 2.

If

1 + r

1 + a
<

1 + λ

1− µ
6= 1 + b

1 + a
and z3(s) 6= z4(s)

we do not have a perfect hedging. We have the same hedging strategy as in
Theorem 2.

If

1 + r

1 + a
<

1 + λ

1− µ
=

1 + b

1 + a

we have a perfect hedging only when

1 + b

1 + a
c1((1 + a)s) = c2((1 + b)s)
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and then (I3)(s) = (I4)(s) = (I5)(s) = 0, and the replicating strategies are

l = 0, m =
z3(s)− x

1− µ
for x ≤ z3(s),

m = l = 0 for z3(s) ≤ x ≤ z4(s),

l =
x− z4(s)

1 + λ
, m = 0 for x ≥ z4(s).

If
1 + r

1 + a
<

1 + λ

1− µ
and z3(s) = z4(s)

(equivalent to (I1)(s) = (I2)(s) = (I3)(s) = (I4)(s) = 0), or

1 + r

1 + a
≥ 1 + λ

1− µ
,

then GT−1(s) is a cone and we have a perfect hedging with replicating strate-
gies

l = 0, m =
z4(s)− x

1− µ
for x ≤ z4(s),

l =
x− z4(s)

1 + λ
, m = 0 for x ≥ z4(s).

P r o o f. By Lemma 2 we obtain (I5)(s) ≥ 0. Then from Lemma 3,

(31) z3(s) ≤ z2(s) ≤ z1(s) ≤ z5(s) ≤ z4(s)

and when 1+a
1+b < 1−µ

1+λ we have z6(s) ≥ z4(s), while if 1+a
1+b > 1−µ

1+λ , then
z6(s) ≤ z2(s). In the case when 1+a

1+b = 1−µ
1+λ since (I5)(s) ≥ 0 we have

(1 + b)c1((1 + a)s) ≥ (1 + a)c2((1 + b)s) and consequently (E2) ≥ (E3)
(by Lemma 1).

Therefore we have the following dominating lines:

(32)
(E1) for x ≤ z3(s) + z,

(E2) for z3(s) + z ≤ x ≤ z4(s) + z,

(E4) for x ≥ z4(s) + z.

Notice now that (32) and (20) are identical. Since in the study of the
location of the lines that formed the polyhedron GT−1(s), in the proof of
Theorem 2, we used the fact that (I1)(s) ≤ 0 only, we can repeat the
considerations of the proof of Theorem 2 to obtain the set GT−1(s).

The problem of perfect hedging can then be studied as in the proofs of
Theorems 2 and 5 and therefore is left to the reader. Notice only that if
1+r
1+a < 1+λ

1−µ and z3(s) = z4(s), then by Lemma 3, (I1)(s) = 0, and then by
Lemma 2(iv), ∆(s) ≥ 0. Hence from Lemma 2(vi) we obtain ∆(s) = 0 and
consequently (I1)(s) = (I2)(s) = (I3)(s) = (I4)(s) = 0.
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4(d) Case (I1)(s) ≤ 0, (I2)(s) ≤ 0, (I3)(s) ≥ 0, (I4)(s) ≥ 0. This case
is the most complicated; we have to split it into several subcases.

Theorem 7. Suppose (I1)(s) ≤ 0, (I2)(s) ≤ 0, (I3)(s) ≥ 0, (I4)(s) ≥ 0.
If

1 + a

1 + b
<

1− µ

1 + λ
then in the case

(a)
1 + a

1 + r
≥ 1− µ

1 + λ
and

1 + r

1 + b
≥ 1− µ

1 + λ
we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z3(s)

+
1

1 + a
c2((1 + a)s) for x ≤ z3(s),

y ≥ − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s)

for z3(s) ≤ x ≤ z6(s),

y ≥ − 1 + r

(1− µ)(1 + b)
x +

1
1 + b

c2((1 + b)s)

for z6(s) ≤ x ≤ z5(s),

y ≥ − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z5(s)

+
1

1 + b
c2((1 + b)s) for x ≥ z5(s)

}
with a perfect hedging only when z3(s) = z6(s) = z5(s), which implies
(I1)(s) = (I2)(s) = (I3)(s) = (I4)(s) = 0, and with a hedging strategy

l = 0, m =
z3(s)− x

1− µ
for x ≤ z3(s),

m = l = 0 for z3(s) ≤ x ≤ z5(s),

l =
x− z5(s)

1 + λ
, m = 0 for x ≥ z5(s);

in the case

(b)
1 + a

1 + r
≥ 1− µ

1 + λ
and

1 + r

1 + b
≤ 1− µ

1 + λ
we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z3(s)

+
1

1 + a
c2((1 + a)s) for x ≤ z3(s),
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y ≥ − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s)

for z3(s) ≤ x ≤ z6(s),

y ≥ − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1 + λ

)
z6(s)

+
1

1 + a
c1((1 + a)s) for x ≥ z6(s)

}
with a perfect hedging only when z3(s) = z6(s), and a hedging strategy

l = 0, m =
z3(s)− x

1− µ
for x ≤ z3(s),

l = m = 0 for z3(s) ≤ x ≤ z6(s),

l =
x− z6(s)

1 + λ
, m = 0 for x ≥ z6(s);

in the case

(c)
1 + a

1 + r
≤ 1− µ

1 + λ
and

1 + r

1 + b
≥ 1− µ

1 + λ
we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1− µ

)
z6(s)

+
1

1 + b
c2((1 + b)s) for x ≤ z6(s),

y ≥ − 1 + r

(1− µ)(1 + b)
x +

1
1 + b

c2((1 + b)s)

for z6(s) ≤ x ≤ z5(s),

y ≥ − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z5(s)

+
1

1 + b
c2((1 + b)s) for x ≥ z5(s)

}
with a perfect hedging only when z5(s) = z6(s), and a hedging strategy

l = 0, m =
z6(s)− x

1− µ
for x ≤ z6(s),

m = l = 0 for z6(s) ≤ x ≤ z5(s),

l =
x− z5(s)

1 + λ
, m = 0 for x ≥ z5(s);

and in the case

(d)
1 + a

1 + r
≤ 1− µ

1 + λ
and

1 + r

1 + b
≤ 1− µ

1 + λ
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we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1− µ

)
z6(s)

+
1

1 + b
c2((1 + b)s) for x ≤ z6(s),

y ≥ −1 ≤ 1 + λx−
(

1 + r

(1 + λ)(1 + a)
− 1

1 + λ

)
z6(s)

+
1

1 + a
c1((1 + b)s) for x ≥ z6(s)

}
= (z6(s),H4z6(s)) + C

with

H4z6(s) = − 1 + r

(1− µ)(1 + b)
z6(s) +

1
1 + b

c2((1 + b)s)

= − 1 + r

(1 + λ)(1 + a)
z6(s) +

1
1 + a

c1((1 + a)s)

and we have a perfect hedging in one step with replicating strategies

l = 0, m =
z6(s)− x

1− µ
for x ≤ z6(s),

l =
x− z6(s)

1 + λ
, m = 0 for x ≥ z6(s).

If
1 + a

1 + b
=

1− µ

1 + λ

we have

GT−1(s) =
{

(x, y) : y ≥ − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z3(s)

+
1

1 + a
c2((1 + a)s) for x ≤ z3(s),

y ≥− 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s)

for z3(s) ≤ x ≤ z5(s),

y ≥− 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z5(s)

+
1

1 + b
c2((1 + b)s) for x ≥ z5(s)

}
with a perfect hedging and a replicating strategy
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l = 0, m =
z3(s)− x

1− µ
for x ≤ z3(s),

l = m = 0 for z3(s) ≤ x ≤ z5(s),

l =
x− z5(s)

1 + λ
, m = 0 for x ≥ z5(s).

The case
1 + a

1 + b
>

1− µ

1 + λ
is impossible.

P r o o f. By Lemma 2(i), (iii), ∆(s) ≤ 0 and consequently we have
1+a
1+b ≤ 1−µ

1+λ . If 1+a
1+b = 1−µ

1+λ then (I3)(s) = (I4)(s) = 0 and therefore
(I5)(s) = 0,

1
1 + a

c1((1 + a)s) =
1

1 + b
c2((1 + b)s)

and (E2) = (E3).
From Lemma 3 we then have

(33) z3(s) ≤ z2(s) ≤ z1(s) ≤ z4(s) ≤ z5(s)

and if 1+a
1+b < 1−µ

1+λ , then z1(s) ≥ z6(s) for (I5)(s) ≤ 0 and z1(s) ≤ z6(s) for
(I5)(s) ≥ 0.

Therefore using Lemma 1 we obtain the following dominating lines for
1+a
1+b < 1−µ

1+λ :

(34)

(E1) for x ≤ z3(s) + z,

(E2) for z3(s) + z ≤ x ≤ z6(s) + z,

(E3) for z6(s) + z ≤ x ≤ z5(s) + z,

(E4) for x ≥ z5(s) + z,

and for 1+a
1+b = 1−µ

1+λ :

(35)
(E1) for x ≤ z3(s) + z,

(E2) for z3(s) + z ≤ x ≤ z5(s) + z,

(E4) for x ≥ z5(s) + z.

We list below the values of m, z and the equations of the lowest lines for
the case 1+a

1+b < 1−µ
1+λ .

S t e p I: x ≤ z3(s).

1. x ≤ z3(s) + z.

(a) z ∈ [x− z3(s), 0], m = −z/(1− µ); z = x− z3,

(α1) y = − 1
1− µ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1− µ

)
z3(s) +

1
1 + a

c2((1 + a)s).
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(b) z ≥ 0, m = 0; z = 0 and the line is above (α1).

2. z3(s) + z ≤ x ≤ z6(s) + z, m = −z/(1− µ).

(a) If 1+a
1+r ≤

1−µ
1+λ , then z = x− z6(s),

(α21) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z6(s)+

1
1 + a

c1((1+a)s).

(b) If 1+a
1+r ≥

1−µ
1+λ , then z = x− z3(s),

(α22) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z3(s)+

1
1 + a

c1((1+a)s).

3. z6(s) + z ≤ x ≤ z5(s) + z, m = −z/(1− µ); z = x− z6(s),

(α3) y = − 1
1− µ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1− µ

)
z6(s) +

1
1 + b

c2((1 + b)s).

4. x ≥ z5(s) + z, m = −z/(1− µ); z = x− z5(s),

(α4) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z5(s) +

1
1 + b

c1((1 + b)s).

As (I4)(s) ≥ 0 we obtain (α3) ≤ (α4). Similarly from (I3)(s) ≥ 0 we
see that (α1) ≥ (α3) for 1+a

1+r ≤ 1−µ
1+λ , while (α1) ≤ (α3) for 1+a

1+r ≥ 1−µ
1+λ .

Therefore the lowest lines are (α3) if 1+a
1+r ≤

1−µ
1+λ , and (α1) if 1+a

1+r ≥
1−µ
1+λ .

S t e p II: z3(s) ≤ x ≤ z6(s).

1. x ≤ z3(s) + z, m = 0; z = x− z3(s),

(β1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z3(s) +

1
1 + a

c2((1 + a)s).

2. z3(s) + z ≤ x ≤ z6(s) + z.

(a) z ∈ [x − z6(s), 0], m = −z/(1 − µ); and if 1+a
1+r ≤ 1−µ

1+λ , then
z = x− z6(s),

(β21) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1− µ

)
z6(s)+

1
1 + a

c1((1+a)s),

while if 1+a
1+r ≥

1−µ
1+λ , then z = 0,

(β22) y = − 1 + r

(1 + λ)(1 + a)
x +

1
1 + a

c1((1 + a)s).

(b) z ∈ [0, x− z3(s)], m = 0; z = 0 and the line coincides with (β22).

3. z6(s) + z ≤ x ≤ z5(s) + z, m = −z/(1− µ); z = x− z6(s),

(β3) y = − 1
1− µ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1− µ

)
z6(s) +

1
1 + b

c2((1 + b)s).
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4. x ≥ z5(s) + z, m = −z/(1− µ); z = x− z5,

(β4) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z5(s) +

1
1 + b

c1((1 + b)s).

Notice that (α3) = (β3) = (β21) and (α4) = (β4). Moreover, for x =
z3(s) we have (α1) = (β1), while for x = z6(s), (α3) = (β22). In addition,
from (I3)(s) ≥ 0 we obtain (α3) ≤ (β1) for x = z6(s). Therefore if 1+a

1+r ≥
1−µ
1+λ then the lowest line is (β22) and if 1+a

1+r ≤ 1−µ
1+λ then the lowest line is

(α3) = (β3).

S t e p III: z6(s) ≤ x ≤ z5(s).

1. x ≤ z3(s) + z, m = 0; z = x− z3(s),

(γ1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z3(s) +

1
1 + a

c2((1 + a)s).

2. z3(s) + z ≤ x ≤ z6(s) + z, m = 0; z = x− z6(s),

(γ2) y = − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1 + λ

)
z6(s) +

1
1 + a

c1((1 + a)s).

3. z6(s) + z ≤ x ≤ z5(s) + z.

(a) z ∈ [x− z5(s), 0], m = −z/(1− µ); z = 0,

(γ31) y = − 1 + r

(1− µ)(1 + b)
x +

1
1 + b

c2((1 + b)s).

(b) z ∈ [0, x − z6(s)], m = 0; if 1+r
1+b ≥

1−µ
1+λ , then z = 0 and the line

coincides with (γ31), and if 1+r
1+b ≤

1−µ
1+λ , then z = x− z6(s),

(γ32) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z6(s) +

1
1 + b

c2((1 + b)s).

4. x ≥ z5(s) + z, m = −z/(1− µ); z = x− z5(s),

(γ4) y = − 1
1− µ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1− µ

)
z5(s) +

1
1 + b

c1((1 + b)s).

We have (γ4) = (β4), (γ1) = (β1), (γ2) = (γ32) and since (I3)(s) ≥ 0,
(γ32) ≤ (γ1).

Moreover, for x = z6(s), (γ31) = (γ2) = (β22), and (γ31) = (γ4) for
x = z5(s). Therefore the boundary of GT−1(s) is (γ31) if 1+r

1+b ≥
1−µ
1+λ and

(γ32) when 1+r
1+b ≤

1−µ
1+λ .

S t e p IV: x ≥ z5(s).

1. x ≤ z3(s) + z, m = 0; z = x− z3(s),

(δ1) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + a)
− 1

1 + λ

)
z3(s) +

1
1 + a

c2((1 + a)s).
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2. z3(s) + z ≤ x ≤ z6(s) + z, m = 0; z = x− z6(s),

(δ2) y = − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + a)
− 1

1 + λ

)
z6(s) +

1
1 + a

c1((1 + a)s).

3. z6(s) + z ≤ x ≤ z5(s) + z, m = 0; if 1+r
1+b ≥

1−µ
1+λ , then z = x− z5(s),

(δ31) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z5(s) +

1
1 + b

c2((1 + b)s),

while if 1+r
1+b ≤

1−µ
1+λ , then z = x− z6(s),

(δ32) y = − 1
1 + λ

x−
(

1 + r

(1− µ)(1 + b)
− 1

1 + λ

)
z6(s) +

1
1 + b

c2((1 + b)s).

4. x ≥ z5(s) + z.

(a) z ∈ (−∞, 0], m = −z/(1 − µ); z = 0 so that the line is also
considered in the case (b).

(b) z ∈ [0, x− z5(s)], m = 0; z = x− z5(s),

(δ4) y = − 1
1 + λ

x−
(

1 + r

(1 + λ)(1 + b)
− 1

1 + λ

)
z5(s) +

1
1 + b

c1((1 + b)s).

Notice that (δ1) = (β1) = (γ1), (δ31) = (δ4) and (δ32) = (δ2) = (γ2).
Since (I4)(s) ≥ 0, if 1+r

1+b ≥ 1−µ
1+λ we have (δ32) ≥ (δ31) while if 1+r

1+b ≤
1−µ
1+λ then (δ32) ≤ (δ31). Moreover, for x = z5(s) we have (γ31) = (δ31).
Therefore the line (δ31) if 1+r

1+b ≥
1−µ
1+λ and the line (δ32) if 1+r

1+b ≤
1−µ
1+λ each

form the boundary of GT−1(s).
The construction of GT−1(s) when 1+a

1+b < 1−µ
1+λ is thus completed.

We list below the results necessary to find GT−1(s) when 1+a
1+b = 1−µ

1+λ .

S t e p I: x ≤ z3(s).

1. x ≤ z3(s) + z; (α1).
2. z3(s) + z ≤ x ≤ z5(s) + z, m = −z/(1− µ); z = x− z3(s) and (α22).
3. x ≥ z5(s) + z; (α4).

We have (α1) = (α22) ≤ (α4).

S t e p II: z3(s) ≤ x ≤ z5(s).

1. x ≤ z3(s) + z; (β1).
2. z3(s) + z ≤ x ≤ z5(s) + z.

(a) z ∈ [x− z5(s), 0], m = −z/(1− µ); z = 0 and (β22).
(b) z ∈ [0, x− z3(s)], m = 0; z = 0 and (β22).

3. x ≥ z5(s) + z and (β4).

Clearly the line (β22) forms the boundary for GT−1(s).
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S t e p III: x ≥ z5(s).

1. x ≤ z3(s) + z; (δ1).
2. z3(s) + z ≤ x ≤ z5(s) + z, m = 0; z = x− z5(s) and (δ31).
3. x ≥ z5(s) + z, m = 0; z = x− z5(s) and (δ4).

Since (δ4) = (δ31) ≤ (δ1), (δ31) is the boundary of GT−1(s).

The aspect of perfect hedging can be studied as in the previous theorems.
We only point out that under 1+a

1+b < 1−µ
1+λ , z3(s) = z6(s) = z5(s) if and only

if (I3)(s) = (I4)(s) = 0. Then using Lemma 2, we have ∆(s) = 0 and
consequently (I1)(s) = (I2)(s) = 0.

The remaining part of the proof is left to the reader.

5. Conclusions and examples. We are now in a position to combine
Theorems 1–7. Notice first that a perfect hedging in one step usually occurs
when GT−1(s) is a cone. The only exception to this rule is when 1+a

1+b = 1−µ
1+λ .

Excluding this case under the assumption that 1+r
1+a = 1+b

1+r we easily obtain
the following necessary and sufficient condition for a perfect hedging.

Theorem 8. Let

(36)
1 + r

1 + a
=

1 + b

1 + r

and

(37)
1 + a

1 + b
6= 1− µ

1 + λ
.

We have a perfect hedging in one step if and only if either (I1)(s) ≥ 0 and
(I2)(s) ≥ 0, or

(38)
1− µ

1 + λ
≥ 1 + a

1 + r
.

Moreover , under (38) all polyhedrons Gt(s), t = 0, 1, . . . , T − 1, s ≥ 0, are
cones.

If we drop the assumption (36) we still obtain a sufficient condition for
hedging that generalizes Theorem 4 of [B-V].

Theorem 9. Under (37) and

(39) min
{

1 + r

1 + a
,
1 + b

1 + r

}
≥ 1 + λ

1− µ

we have a perfect hedging.

Notice that in Theorem 9 no assumptions on the contingent claim
(f1(sT ), f2(sT )) are imposed.

From Theorem 9 we obtain Theorem 3.2 of [BLPS]:
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Corollary 1. Under (36) and (38) we have a perfect hedging.

P r o o f. It remains to notice that
1 + r

1 + a
· 1 + b

1 + r
=

1 + b

1 + a
≥

(
1 + λ

1− µ

)2

>
1 + λ

1− µ
,

from which (37) follows, and then use Theorem 9.

Before we formulate the next result we introduce the following condition:

(As) the polyhedrons G0(s), G1((1+a)i1(1+b)j1s), . . . , GT−1((1+a)iT−1

× (1 + b)jT−1s), with nonnegative integers ik, jk, k = 1, . . . , T − 1,
such that ik + jk = k, are cones.

Theorem 10. Under (37) for a given initial price s0 of the stock we have
a perfect hedging if and only if (As0) is satisfied.

Assuming (As0) only , the polyhedrons Gk(sk) for k = 0, 1, . . . , T − 1 are
cones and there is a perfect hedging with a replicating strategy (ln,mn) that
shifts (xn, yn) at time n to the vertex of the cone Gn(sn).

P r o o f. The proof is based on an analysis of Theorems 1–7 and the
definition (8), (9) of the polyhedrons Gn(sn).

It will be convenient to have the following equivalent conditions for the
signs of the indicators (I1)–(I4), which can be obtained by an easy verifi-
cation.

Lemma 4. (i) (I1)(s) ≥ 0 iff

f1((1+ a)s)− f1((1+ b)s) ≤ 1 + λ

1 + a
[(1+ a)f2((1+ b)s)− (1+ b)f2((1+ a)s)].

(ii) (I2)(s) ≥ 0 iff

f1((1+ a)s)− f1((1+ b)s) ≥ 1− µ

1 + b
[(1+ a)f2((1+ b)s)− (1+ b)f2((1+ a)s)].

(iii) (I3)(s) ≥ 0 iff

f1((1+ a)s)− f1((1+ b)s) ≥ 1− µ

1 + a
[(1+ a)f2((1+ b)s)− (1+ b)f2((1+ a)s)].

(iv) (I4)(s) ≥ 0 iff

f1((1+a)s)−f1((1+b)s) ≤ 1 + λ

1 + b
[(1+a)f2((1+b)s)−(1+b)f2((1+a)s)].

Combining (i) and (ii) we obtain

Corollary 2. If (I1)(s) ≥ 0 and (I2)(s) ≥ 0 then

(1 + a)f2((1 + b)s) ≥ (1 + b)f2((1 + a)s).

If (I1)(s) ≤ 0 and (I2)(s) ≤ 0 then

(1 + a)f2((1 + b)s) ≤ (1 + b)f2((1 + a)s).
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Consider now the following examples of options.

Example 5 (European call option with cash settlement). In contrast
to Example 2 we do not have delivery. We assume that f1(s) = (s − q)+

and f2(s) = 0. By Lemma 4(i), (ii) we easily see that (I1)(s) ≥ 0 and
(I2)(s) ≤ 0. Consequently, by Theorem 3 we have a perfect hedging in one
step, for each s ≥ 0, only when 1+r

1+b ≤
1−µ
1+λ .

Example 6 (European short call option). We consider the European
call option from the so-called short position, i.e. from the position of the
seller of the option. His contingent claim is then

f1(s) = q 1s≥q, f2(s) = −s 1s≥q.

It is easy to check (using e.g. Lemma 4) that

(I1)(s) ≤ 0, (I2)(s) ≤ 0, (I3)(s) ≥ 0 for s ≥ q

(1 + b)(1− µ)
,

(I3)(s) ≤ 0 for s ≤ q

(1 + b)(1− µ)
,

(I4)(s) ≥ 0 for s ≤ q

(1 + a)(1 + λ)
,

(I4)(s) ≤ 0 for s ≥ q

(1 + a)(1 + λ)
,

with a perfect hedging only in particular cases, e.g. when (37) and (39) are
satisfied.

Another family of examples come from exotic options:

Example 7 (Long collar). The collar is an example of so-called packages
which are combinations of options, assets and cash. Let q2 > q1. The payoff
for the long position in the collar is

f1(s) = q1 1s<q1 + q2 1s>q2 , f2(s) = s 1q1≤s≤q2 .

Using Lemma 4 one can verify that (I1)(s) < 0, (I2)(s) < 0 for s such that
q1

1 + a
≤ s ≤ q2

1 + a
and

q2

1 + b
< s

and for such s the signs of (I3)(s) and (I4)(s) are not uniquely determined.
For other s ≥ 0 we have (I1)(s) ≥ 0 and (I2)(s) ≥ 0. Consequently, we have
a perfect hedging independent of s only when (37) and (39) are satisfied.

Example 8 (Long spread). This option is the sum of long European call
and put options with various striking prices q1 and q2, where e.g. q1 ≤ q2.
The contingent claim is

f1(s) = −q1 1s≤q1 + q2 1s≤q2 , f2(s) = −s 1q1≤s≤q2 .
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By Lemma 4 we have (I1)(s) ≤ 0 and (I2)(s) ≥ 0 and consequently by
Theorem 2 we have a perfect hedging in one step only when 1+r

1+a ≥
1+λ
1−µ .

Example 9 (Binary options). A large family of contracts with payoff
depending in a discontinuous way on the price of the underlying asset at
maturity are called binary options. The simplest examples of such options
are cash or nothing and asset or nothing options. Considering the long
position of call options in the first case (long call cash or nothing) we have

f1(s) = X 1s>K , f2(s) = 0,

while in the second (long call asset or nothing)

f1(s) = 0, f2(s) = s 1s<K ,

with X and K being fixed constants. Using Lemma 4 again we find that
in the case of the long call cash or nothing option we have (I1)(s) ≥ 0 and
(I2)(s) ≤ 0 and by Theorem 3 there is a perfect hedging in one step when
1+r
1+b ≤

1−µ
1+λ , while in the case of the long call asset or nothing (I1)(s) ≤ 0

and (I2)(s) ≥ 0, so by Theorem 2 there is a perfect hedging in one step
independent of s ≥ 0 only when 1+r

1+a ≥
1+λ
1−µ .

R e m a r k. In the examples we were mainly interested in the so-called
long position, i.e. the position of the buyer of an option, and the price was
the one that guaranteed replication of the potential loss of the seller. One
can consider, similarly to Example 6, options from the short position, i.e. the
position of the seller, and then using the results of Sections 3–5 characterize
perfect hedging situations. Moreover, each option can have various forms of
realization: in assets or in cash (see Examples 1–3 and 5), according to the
preferences of the buyer.
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[BLPS] B. Bensa id, J. P. Lesne, H. Pag è s and J. Sche inkman, Derivative asset
pricing with transaction costs, Math. Finance 2 (1992), 63–83.

[BV] P. P. Boyle and T. Vorst, Option replication in discrete time with transaction
costs, J. Finance 47 (1992), 271–293.

[CRR] J. C. Cox, S. A. Ross and M. Rubinste in, Option pricing : A simplified
approach, J. Financial Econom. 7 (1979), 229–263.

[CK] J. Cvitan i ć and I. Karatzas, Hedging and portfolio optimization under trans-
action costs: A martingale approach, Math. Finance 6 (1996), 133–165.

[DC] M. H. A. Davis and J. M. C. Clark, A note on super-replicating strategies,
Philos. Trans. Roy. Soc. London Ser. A 347 (1994), 485–494.

[ENU] C. Edir i s inghe, V. Naik and R. Uppal, Optimal replication with transaction
costs and trading restrictions, J. Financial Quant. Anal. 28 (1993), 117–138.

[MV] F. Mercur io and T. C. F. Vorst, Option pricing and hedging in discrete time
with transaction costs and incomplete markets, preprint.



514  L. Stettner
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