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A bound for the discrepancy of digital nets and its
application to the analysis of certain
pseudo-random number generators
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Gerhard Larcher (Salzburg)

1. Introduction. The concept of digital nets is at the moment the
most effective method for the construction of low-discrepancy point sets
in the s-dimensional unit cube. Furthermore, by recent work it turned
out that digital nets also play an important role in the analysis of certain
pseudo-random number generators.

Until now the discrepancy of digital nets essentially was estimated by
using discrepancy bounds valid for arbitrary nets. In this paper we give
a more sensible—in some sense—discrepancy bound, especially for digital
nets generated over a finite field of prime order, and we apply this bound for
improving some results concerning the serial test of certain pseudo-random
number generators.

The serial test is a test for the statistical independence of successive
pseudo-random numbers. For a pseudo-random number sequence x0, x1, . . .
. . . , xN−1 in [0, 1) and a fixed dimension s ≥ 2 let the serial set (xn)n≥0

of dimension s be defined by xn := (xn, xn+1, . . . , xn+s−1) ∈ [0, 1)s for
n = 0, 1, . . . , N − 1. (Here we consider the sequence (xn)n≥0 to be periodic
with period N .) We then consider the usual star-discrepancy D∗

N of this
sequence in [0, 1)s. D∗

N is defined by

D∗
N = sup

B

∣∣∣∣AN (B)
N

− λ(B)
∣∣∣∣,

where the supremum is over all subintervals B in [0, 1)s with one vertex at
the origin, AN (B) denotes the number of elements of the sequence belonging
to B, and λ(B) is the s-dimensional volume of B.

Small discrepancy guarantees good statistical independence properties
of the successive elements of the pseudo-random sequence.
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K. F. Roth [11] has shown that for every dimension s ≥ 2 there exists a
constant cs > 0 such that for every N ≥ 2 and each sequence y0, y1, . . . , yN−1

in [0, 1)s, for the corresponding star-discrepancy D∗
N of the sequence we have

D∗
N ≥ cs

(log N)(s−1)/2

N
.

It is a famous conjecture that this still holds if the exponent (s − 1)/2 of
the logarithm is replaced by s − 1. Until now this was only proved for the
dimensions s = 1 and s = 2 (see [12]). So by “small discrepancy” we mean
a discrepancy of an order (log N)A/N with A not much larger than s− 1.

In this paper we consider three widely used pseudo-random number gen-
eration methods: the recursive matrix method (combined with the p-adic
digit method), the digital multistep method, and the generalized feedback
shift-register method. These methods have the property that their serial
sets show in some sense a “net property” and even a “digital net property”.
For the theory of nets and for more details and a discussion concerning the
serial test see the excellent monograph [4] of Niederreiter, and the various
references given there.

For all these generation methods we show the existence of parameters
which provide pseudo-random number sequences with large period and with
an extremely small discrepancy for its serial sets. We thereby improve results
which are given in, or can be deduced from, [6], [3] and [2].

Note that it is not the intention of this paper to discuss or to evaluate
different pseudo-random number generation methods or to give comments
on advantages and disadvantages of various pseudo-random number tests.

2. A discrepancy bound for digital nets. The concept of digital
nets over a certain ring is at the moment the most effective method for the
construction of low-discrepancy sequences in an s-dimensional unit cube.
We just mention the powerful construction methods given by Niederreiter
and Xing for example in [8]–[10] which are based on the digital construction
concept over a finite field. In this section we recall the notion of digital nets
and we give the new discrepancy bound in Proposition 1.

Let p be a prime, let Fp be the finite field of order p and use the natural
identification between the elements of the field and the digits between 0 and
p− 1.

For integers s ≥ 2, m ≥ 2 and N = pm the sequence x0, . . . ,xN−1 ∈
[0, 1)s with xn := (xn(1), . . . , xn(s)) is called a digital net over Fp if there
exist s m×m matrices A1, . . . , As over Fp such that for all n = 0, . . . , N −1
and i = 1, . . . , s we have

xn(i) =
1
N

τ(Ai · τ−1(n)).
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Here we denote by τ the following bijection between Fm
p and {0, . . . , pm−1}:

τ((a0, . . . , am−1)) := a0 + a1p + . . . + am−1p
m−1.

The quality of the distribution of a digital net of course essentially de-
pends on the properties of the defining matrices Ai (see for example Theo-
rem 4.28 of [4]).

Let A1, . . . , As be given and denote by a
(i)
j ∈ Fm

p with j = 1, . . . ,m the
rows of the matrix Ai for i = 1, . . . , s. For 0 ≤ w ≤ s, a w-tuple (d1, . . . , dw)
of non-negative integers is called admissible with respect to A1, . . . , As if
the system {a(i)

j : j = 1, . . . , di, i = 1, . . . , w} is linearly independent
over Fp. For w = 0 we define the “zero-tuple” () to be admissible. For
w ≤ s− 1 and (d1, . . . , dw) admissible we set h(d1, . . . , dw) := max{h ≥ 0 |
(d1, . . . , dw, h) is admissible}.

Then we have:

Proposition 1. Let D∗ denote the star-discrepancy of the digital net
x0, . . . ,xpm−1 over Fp defined by A1, . . . , As. Then

D∗ ≤
s−1∑
w=0

(p− 1)w
∑

(d1,...,dw) admissible
di>0

p−(d1+...+dw+h(d1,...,dw)).

P r o o f. By the definitions, if (d1, . . . , dw) is admissible and we let

B ⊆ [0, 1]s with B =
w∏

i=1

[
ai

pdi
,

bi

pdi

)
× [0, 1)s−w

with integers 0 ≤ ai < bi ≤ pdi (we call such an interval an admissible
interval), then B contains exactly

pm−(d1+...+dw)
w∏

i=1

(bi − ai)

of the net points.
Let M =

∏s
i=1[0, αi) ⊆ [0, 1)s with αi :=

∑∞
j=1 α

(i)
j /pj for i = 1, . . . , s

be taken arbitrarily. (If the representation of some αi is not unique then we
use an infinite representation.) Then on the one hand we have

M̃ :=
⋃

(d1,...,ds) admissible
di>0

s∏
i=1

[ di−1∑
j=1

α
(i)
j

pj
,

di∑
j=1

α
(i)
j

pj

)
⊆ M.

The intervals in the above union are pairwise disjoint and admissible. On
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the other hand, we will show by induction on s that

M ⊆ M̃ ∪
s−1⋃
w=0

⋃
(d1,...,dw) admissible

di>0

( w∏
i=1

[ di−1∑
j=1

α
(i)
j

pj
,

di∑
j=1

α
(i)
j

pj

)

×
[ h(d1,...,dw)∑

j=1

α
(w+1)
j

pj
,

h(d1,...,dw)∑
j=1

α
(w+1)
j

pj
+

1
ph(d1,...,dw)

)

× [0, 1)s−w−1

)
.

(Again all intervals in the second union above are admissible.) For s = 1
the right hand side above is

⋃
d1 admissible

[ d1−1∑
j=1

α
(1)
j

pj
,

d1∑
j=1

α
(1)
j

pj

)
∪

[ h()∑
j=1

α
(1)
j

pj
,

h()∑
j=1

α
(1)
j

pj
+

1
ph()

)

=
[
0,

h()∑
j=1

α
(1)
j

pj
+

1
ph()

)
,

which contains M = [0, α1). Assume the assertion is true up to dimension
s− 1 and consider

M =
s−1∏
i=1

[0, αi)× [0, αs).

By induction,
s−1∏
i=1

[0, αi) ⊆
⋃

(d1,...,ds−1) admissible
di>0

s−1∏
i=1

[ di−1∑
j=1

α
(i)
j

pj
,

di∑
j=1

α
(i)
j

pj

)

∪
s−2⋃
w=0

⋃
(d1,...,dw) admissible

di>0

( w∏
i=1

[ di−1∑
j=1

α
(i)
j

pj
,

di∑
j=1

α
(i)
j

pj

)

×
[ h(d1,...,dw)∑

j=1

α
(w+1)
j

pj
,

h(d1,...,dw)∑
j=1

α
(w+1)
j

pj
+

1
ph(d1,...,dw)

)

× [0, 1)s−w−2

)
.

We extend each of the (s−1)-dimensional intervals J on the right hand side
above to an s-dimensional interval J ′ such that M is contained in the union
of these extensions.
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If J is part of the first big union above, that is, if it is of the form
s−1∏
i=1

[ di−1∑
j=1

α
(i)
j

pj
,

di∑
j=1

α
(i)
j

pj

)
for some admissible (d1, . . . , ds−1), then we take

J ′ :=
s−1∏
i=1

[ di−1∑
j=1

α
(i)
j

pj
,

di∑
j=1

α
(i)
j

pj

)

×
( h(d1,...,ds−1)⋃

k=1

[ k−1∑
j=1

α
(s)
j

pj
,

k∑
j=1

α
(s)
j

pj

)

∪
[ h(d1,...,ds−1)∑

j=1

α
(s)
j

pj
,

h(d1,...,ds−1)∑
j=1

α
(s)
j

pj
+

1
ph(d1,...,ds−1)

))
.

If J is part of the second big union then we just extend by [0, 1).
By inserting we obtain

M ⊆
⋃

(d1,...,ds−1) admissible
di>0

( s−1∏
i=1

[ di−1∑
j=1

α
(i)
j

pj
,

di∑
j=1

α
(i)
j

pj

)

×
h(d1,...,ds−1)⋃

k=1

[ k−1∑
j=1

α
(s)
j

pj
,

k∑
j=1

α
(s)
j

pj

))

∪
⋃

(d1,...,ds−1) admissible
di>0

( s−1∏
i=1

[ di−1∑
j=1

α
(i)
j

pj
,

di∑
j=1

α
(i)
j

pj

)

×
[ h(d1,...,ds−1)∑

j=1

α
(s)
j

pj
,

h(d1,...,ds−1)∑
j=1

α
(s)
j

pj
+

1
ph(d1,...,ds−1)

))

∪
s−2⋃
w=0

⋃
(d1,...,dw) admissible

di>0

( w∏
i=1

[ di−1∑
j=1

α
(i)
j

pj
,

di∑
j=1

α
(i)
j

pj

)

×
[ h(d1,...,dw)∑

j=1

α
(w+1)
j

pj
,

h(d1,...,dw)∑
j=1

α
(w+1)
j

pj
+

1
ph(d1,...,dw)

)

× [0, 1)s−w−1

)
,

and the induction is finished.
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So we obtain∣∣∣∣AN (M)
N

− λ(M)
∣∣∣∣ ≤ s−1∑

w=0

(p− 1)w
∑

(d1,...,dw)
admissible

di>0

p−(d1+...+dw+h(d1,...,dw))

and the result follows.

3. The recursive matrix method. The recursive matrix method was
introduced in full generality by Niederreiter in [5], and it was studied in
detail for example in [6] and [7]. Here we only consider the case of recursive
matrix methods of order one. This is a combination of the classical matrix
method for the generation of pseudo-random vectors (see [4]), combined
with a p-adic digit method.

The method is the following. Let p be a prime and let Fp be again the
finite field of order p. Let m be a positive integer and let A be a non-singular
m × m matrix over Fp. A sequence z0, z1, . . . of row vectors from Fm

p is
generated by choosing an initial vector z0 different from 0 and by

zn+1 := zn ·A for n = 0, 1, . . .

We now derive pseudo-random numbers xn in [0, 1) from zn :=
(z(1)

n , . . . , z
(m)
n ) ∈ Fm

p in the following way. We identify the elements z ∈ Fp

in the natural way with digits z ∈ {0, . . . , p− 1}. Then

xn :=
m∑

j=1

z(j)
n p−j for n = 0, 1, . . .

The sequence (zn)n≥0 and therefore (xn)n≥0 is purely periodic because of
the non-singularity of the matrix A, with (least) period at most pm−1. This
maximal (least) period is attained if and only if the polynomial det(x·Im−A)
of degree m is a primitive polynomial over Fp. (Here Im is the m×m identity
matrix.) This is shown for example in Theorem 10.2 of [4]. In the following
we restrict ourselves to this, for practical purposes most important, case of
maximal period.

Let in the following q := pm. In Theorem 2 of [6] it was shown that
a sequence (zn)n≥0 with zn := (z(1)

n , . . . , z
(m)
n ) ∈ Fm

p is a recursive vector
sequence of the above form of period T := pm − 1 if and only if there is a
primitive element σ of Fq and a basis β1, . . . , βm of Fq over Fp such that
z
(j)
n = Tr(βjσ

n) for 1 ≤ j ≤ m and n ≥ 0. Here Tr is the trace function
from Fq to Fp.

Concerning the star-discrepancy D
∗(s)
T of the serial sets of dimension s

of these sequences, the following was shown in [6].
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Let 2 ≤ s ≤ m and let σ be a fixed primitive element of Fq. Then for
D
∗(s)
T we have on the average

D
∗(s)
T ≤ c(s)

(log T )s

T

with an implied constant depending only on s, where the average is taken
over all ordered bases of Fq over Fp.

From this we at once deduce the following. Let 2 ≤ s ≤ m, let σ be a
fixed primitive element of Fq and let B be the set of ordered bases of Fq

over Fp. Let 0 < γ < 1 be given. Then the number of bases B ∈ B for
which for the discrepancy D

∗(s)
T (B) of the s-dimensional serial set of the

corresponding sequence we have

D
∗(s)
T (B) ≤ 1

1− γ
c(s)

(log T )s

T

is at least γ|B|.
We improve this result (at least for small p) by almost one logarithmic

factor in the following way:

Theorem 1. Let 2 ≤ s ≤ m, let σ be a primitive element of Fq and let
B be the set of ordered bases of Fq over Fp. Let 0 < γ < 1 be given. Then
the number of bases B ∈ B for which for the discrepancy D

∗(s)
T (B) of the

s-dimensional serial set x0, . . . ,xT−1 of the corresponding sequence we have

D
∗(s)
T (B) ≤ 1

T
+

1
pm

s−1∑
w=0

(p− 1)w

(
m

w

)

×
[
(s− 1)

(
p

p− 1

)2 2
1− γ

p log m

+
(

p

p− 1

)2 2
1− γ

(
1 + p log

4
1− γ

)
+

1 + γ

1− γ

]
= O

(
(log T )s−1 log log T

T

)
is at least γ|B|. (Here we denote by p log the logarithm to base p.)

R e m a r k 1. Note that the constant in the O-result of Theorem 1 does
also depend on p.

R e m a r k 2. For example, in the case p = 2 for at least half the bases
B in B, we have

D
∗(s)
T (B) ≤ 68

1
2m

s−1∑
w=0

(
m

w

)
+ 16(s− 1) 2 log m

2m

s−1∑
w=0

(
m

w

)
.
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R e m a r k 3. The above discrepancy estimates coincide up to the
log log T factors with the conjectured general lower bound for the discrep-
ancy of point sets in [0, 1)s.

P r o o f o f T h e o r e m 1. Let the recursive matrix sequence x0, . . .
. . . , xT−1 be defined by the primitive element σ of Fq and by the ordered
basis B = {β1, . . . , βm} of Fq over Fp. The βi are viewed as vectors of Fq

over Fp. By Theorem 5 of [6], the set 0,x0,x1, . . . ,xT−1 forms a digital
net over Fp which is generated by certain matrices, say C1, . . . , Cs. Let
c
(i)
j ∈ Fm

p for 1 ≤ j ≤ m be rows of Ci for 1 ≤ i ≤ s.
It is shown in the proof of that Theorem 5 that these C1, . . . , Cs have

the following property: for any non-negative integers di ≤ m, i = 1, . . . , s,

the system of vectors {c(i)
j : 1 ≤ j ≤ di, 1 ≤ i ≤ s} is linearly dependent

over Fp if and only if the system {βjσ
i−1 : 1 ≤ j ≤ di, 1 ≤ i ≤ s} is.

In the following we consider admissible w-tuples of integers with respect to
the matrices Ai(B) with rows βjσ

i−1, j = 1, . . . ,m, for i = 1, . . . , s and
we call them (for fixed σ) admissible for B. Then by Proposition 1 for the
star-discrepancy D

∗(s)
T (B) of the set 0,x0,x1, . . . ,xT−1 we have

D
∗(s)
T (B) ≤

s−1∑
w=0

(p− 1)w
∑

(d1,...,dw)
admissible for B

di>0

p−(d1+...+dw+h(d1,...,dw)).

For a non-negative integer c let M(c) be the set of B ∈ B such that
there exist positive integers d1, . . . , ds with d1 + . . . + ds = m− c and with
βjσ

i−1, j = 1, . . . , di, i = 1, . . . , s, linearly dependent over Fp. We have

|M(c)| ≤
∑

d:=(d1,...,ds)
d1+...+ds=m−c

di>0

∑
λ:=(λ1,...,λm−c)∈

F m−c
p \{0}

|M(λ,d)|

with

M(λ,d) := {B ∈ B | λ1β1σ
0 + . . . + λd1βd1σ

0 + . . .

. . . + λd1+...+ds−1+1β1σ
s−1 + . . . + λm−cβds

σs−1 = 0}.

We estimate the number of elements of M(λ,d). There is an
i ∈ {1, . . . ,m − c} with λi 6= 0. Without loss of generality assume λ1 6= 0.
Since s ≤ m and since σ is primitive, we have λ1σ

0+. . .+λd1+...+ds−1+1σ
s−1

6= 0. So for arbitrarily chosen linearly independent β2, . . . , βm (there are
(pm − 1) . . . (pm − pm−2) such choices) there is at most one β1 such that
(β1, . . . , βm) ∈ B. Consequently,

|M(λ,d)| ≤ (pm − 1)(pm − p) . . . (pm − pm−2) = |B| 1
pm − pm−1
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and therefore

|M(c)| ≤ |B| 1
pc
· p

p− 1

(
m− c− 1

s− 1

)
.

Let M(c) := B \M(c). Then

|M(c)| ≥ |B|(1−R(c)) with R(c) :=
1
pc
· p

p− 1

(
m− c− 1

s− 1

)
.

For a positive integer c we now consider

∑
:=

1
|M(c)|

∑
B∈M(c)

D
∗(s)
T (B)

≤ 1
|M(c)|

∑
B∈M(c)

s−1∑
w=0

(p− 1)w
∑

d1,...,dw

admissible for B
di>0

p−(d1+...+dw+h(d1,...,dw))

≤ 1
|M(c)|

s−1∑
w=0

(p− 1)w
∑

B∈M(c)

∑
d1,...,dw

admissible for B
di>0

p−(d1+...+dw)

×
(( m−(d1+...+dw)∑

i=m−(d1+...+dw)−c+1

∑
λ

∗ p

p− 1
· 1
pi

)
+

1
pm−(d1+...+dw)

)
.

Here
∑∗

λ means summation over all

λ := (λ1, . . . , λd1+...+dw+i) ∈ F d1+...+dw+i
p \ {0}

for which

λ1β1 + . . .+λd1βd1 + . . .+λd1+...+dw−1+1β1σ
w−1 + . . .+λd1+...+dw

βdw
σw−1

+ λd1+...+dw+1β1σ
w + . . . + λd1+...+dw+iβiσ

w = 0.

The summand 1/pm−(d1+...+dw) comes from the case where h(d1, . . . , dw) =
m−(d1+. . .+dw) and the factor p/(p−1) comes from the fact that whenever
for given w, B, (d1, . . . , dw) and i there is a possible summand λ then there
are at least p− 1 such λ.
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Therefore∑
≤ 1

pm

s−1∑
w=0

(p− 1)w

(
m

w

)

+
1

|M(c)|
· p

p− 1

s−1∑
w=0

(p− 1)w
∑

d1,...,dw>0
d1+...+dw≤m

p−(d1+...+dw)

×
m−(d1+...+dw)∑

i=max(0,m−(d1+...+dw)−c+1)

1
pi

∑
λ∈F

d1+...+dw+i
p \{0}

|M(λ,d, w)|,

where M(λ,d, w) is defined like M(λ,d) above but with w instead of s− 1.
Estimating |M(λ,d, w)| in the same way as |M(λ,d)| above, we obtain
|M(λ,d, w)| ≤ |B|/(pm − pm−1), and∑

≤ 1
pm

s−1∑
w=0

(p− 1)w

(
m

w

)

+
1

|M(c)|
· p

p− 1
· c · |B|

pm − pm−1

s−1∑
w=0

(p− 1)w

(
m

w

)

=
1

pm

s−1∑
w=0

(p− 1)w

(
m

w

)[
1 +

(
p

p− 1

)2

c
|B|

|M(c)|

]
=: A(c).

Therefore for Γ ≥ 1 the number of B ∈ B with D
∗(s)
T (B) ≤ ΓA(c) is at least

(1− 1/Γ )(1−R(c))|B|.
Let now Γ = (1+γ)/(1−γ) and choose c ≥ 1 such that R(c) ≤ (1−γ)/2,

that is,
1
pc
· p

p− 1

(
m− c− 1

s− 1

)
≤ 1− γ

2
,

which is satisfied for

c ≥
⌈

p log
(

2p

(1− γ)(p− 1)
ms−1

)⌉
(here dxe means the smallest integer larger than or equal to x). By inserting
the choices for c and Γ and by noting that the discrepancies of the point
sets x0, . . . ,xT−1 and 0,x0, . . . ,xT−1 differ by at most 1/T , we obtain the
result.

4. Shift-register sequences. In this section we consider both the
digital multistep method and the generalized feedback shift-register (GFSR)
method. For details see again [4], especially Chapter 9.
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(a) The digital multistep method . This method was introduced by Taus-
worthe in [13]. Let p be a prime, let k ≥ 2 be an integer and generate a kth
order linear recurring sequence y0, y1, . . . ∈ Fp by

yn+k ≡
k−1∑
l=0

alyn+l (mod p) for n = 0, 1, . . .

where y0, . . . , yk−1 are initial values not all zero, and where the coefficients
a0, . . . , ak−1 ∈ Fp are chosen in such a way that the characteristic polynomial
f(x) := xk −

∑k−1
l=0 alx

l ∈ Fp[x] is a primitive polynomial over Fp. We then
have a maximal possible period of length pk − 1 for the sequence (yn)n≥0.

In the digital multistep method we construct a pseudo-random number
sequence x0, x1, . . . in [0, 1) by choosing an integer m with 2 ≤ m ≤ k and
by putting

xn :=
m∑

j=1

ymn+jp
−j for n = 0, 1, . . .

This sequence has a period (pk − 1)/(m, pk − 1). (See [4], Lemma 9.1.)
For various reasons it is most convenient to choose m = k and to choose
k such that (k, pk − 1) = 1. For given k and m the sequences (xn)n≥0 are
uniquely determined by the primitive polynomial f and by the initial values
y0, . . . , yk−1. Concerning the star-discrepancy D

∗(s)
T (f) of the s-dimensional

serial set xn := (xn, . . . , xn+s+1), n = 0, . . . , T − 1, it was shown in [3] that
for m = k and (k, pk − 1) = 1 (and therefore T = pk − 1), and initial values
y0, . . . , yk−1 not all zero, we have, on the average,

D
∗(s)
T (f) ≤ c(s, p)

(log T )s+1 log log T

T

with an implied constant depending only on p and s, where the average is
taken over all primitive polynomials f over Fp of degree k. From this for
arbitrary γ, 0 < γ < 1, we again immediately get the following. Let Q be
the set of primitive polynomials f over Fp of degree k. Then the number of
f ∈ Q for which the discrepancy D

∗(s)
T (f) of the s-dimensional serial set of

the corresponding sequence satisfies

D
∗(s)
T (f) ≤ 1

1− γ
c(s, p)

(log T )s+1 log log T

T

is at least γ|Q|.
We improve this result in the following:

Theorem 2. For a prime p let s ≥ 2, m = k and T := pk − 1 with
(k, T ) = 1 and y0, . . . , yk−1 in Fp, not all zero, be given. For fixed γ, 0 <

γ < 1, the number of f ∈ Q for which the star-discrepancy D
∗(s)
T (f) of the
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s-dimensional serial set of the corresponding digital multistep shift-register
sequence defined by f and the initial values y0, . . . , yk−1 satisfies

D
∗(s)
T (f) ≤ 1

T
+

1
pk

s−1∑
w=0

(p− 1)w

(
k

w

)
×

[
s(s− 1)

p

p− 1
· 2
1− γ

k
pk

φ(T )p log
(

k
pk

φ(T )

)
+ (s− 1)

p

p− 1
· 2
1− γ

k
pk

φ(T )

(
1 + p log

2(s− 1)
1− γ

)
+

1 + γ

1− γ

]
= O

(
(log T )s(log log T )2

T

)
is at least γ|Q|. (Here φ is Euler’s totient function.)

P r o o f. The proof runs along the same lines as the proof of Theorem 1.
So it suffices to give the following details.

By Theorem 9.5 of [4], the pk points 0,x0, . . . ,xT−1 form a digital net
over Fp defined by s matrices C1, . . . , Cs with rows ci

j ∈ F k
p with 1 ≤ j ≤ k

for 1 ≤ i ≤ s with the following property: for non-negative integers di ≤
k, i = 1, . . . , s, the system of vectors {ci

j : 1 ≤ j ≤ di, 1 ≤ i ≤ s} is
linearly dependent over Fp if and only if the system {α(i−1)k+j−1 : 1 ≤ j ≤
di, 1 ≤ i ≤ s} is. Here α is a root of f in Fpk , viewed as an element of the
vector space Fpk over Fp. In the following we consider admissible w-tuples
of integers with respect to the matrices Ai(f) with rows α(i−1)k+j , j =
0, . . . , k − 1, for i = 1, . . . , s. For a non-negative integer c, for an s-tuple
of non-negative integers d := (d1, . . . , ds) with d1 + . . . + ds = k − c and
λ := (λ1, . . . , λk−c) ∈ F k−c

p \{0} let M(c, λ,d) be the set of f ∈ Q satisfying

λ1α
0 + . . . + λd1α

d1−1 + λd1+1α
k + . . . + λd1+d2α

k+d2−1 + . . .

. . . + λd1+...+ds−1+1α
(s−1)k + . . . + λd1+...+dsα

(s−1)k+ds−1 = 0.

Then

|M(c, λ,d)| ≤
[
(s− 1)k + k − 1

k

]
= s− 1.

This follows from the fact that the equation in the definition of M(c, λ,d)
has at most (s−1)k+ds−1 solutions α, and that for every such solution α,
all k simple roots of the defining primitive polynomial f of α satisfy the
equation.

Therefore, by proceeding quite analogously to the proof of Theorem 1,
and since |Q| = φ(pk−1)/k, lettingM(c) be the set of f ∈ Q such that there
exist d1, . . . , ds > 0 with d1 + . . .+ds = k− c and with α0, . . . , αd1−1, αk, . . .
. . . , αk+d2−1, . . . , α(s−1)k, . . . , α(s−1)k+ds−1 linearly dependent over Fp, we
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have

|M(c)| ≤ |Q| pk

φ(pk − 1)
k(s− 1)p−c

(
k − c− 1

s− 1

)
=: |Q|R(c).

Let M(c) := Q\M(c). Then |M(c)| ≥ |Q|(1−R(c)). Proceeding as in the
proof of Theorem 1 we get∑

:=
1

|M(c)|

∑
f∈M(c)

D
∗(s)
T (f)

≤ 1
pk

s−1∑
w=0

(p− 1)w

(
k

w

)[
pk

|M(c)|
c(s− 1)

p

p− 1
+ 1

]
=: A(c).

We then easily finish the proof like the proof of Theorem 1. The Q-result
comes from the fact that x/φ(x) = O(log log x).

(b) The GFSR method . This method is due to Lewis and Payne [1]. Let
p be a prime, and let k ≥ 2 be an integer. For a primitive characteristic
polynomial f of degree k over Fp we define the sequence (yn)n=0,...,T−1 of
period T = pk − 1 as in the digital multistep method. For m ≥ 2 we then
choose integers h1, . . . , hm ≥ 0 and we put

xn :=
m∑

j=1

yn+hj
p−j for n = 0, 1, . . .

This GFSR sequence has period T . In the following we again consider the
case m = k.

It was shown in [2] (see also Theorem 9.17 of [4]) that for given f of
degree k ≥ s ≥ 2 and given initial values y0, . . . , yk−1 not all zero (and for
m = k), for the star-discrepancy D

∗(s)
T (h1, . . . , hk) of the s-dimensional serial

set xn := (xn, xn+1, . . . , xn+s−1), n = 0, . . . , T − 1, of the corresponding
GFSR sequence (xn)n=0,...,T−1 we have on the average

D
∗(s)
T (h1, . . . , hk) ≤ c(p, s)

(log T )s

T
with an implied constant depending only on p and s, where the average is
taken over all H = (h1, . . . , hk) with 0 ≤ hj ≤ T −1 for 1 ≤ j ≤ k. Let H be
the system of all such k-tuples H. Then again for every γ with 0 < γ < 1,
the number of H for which D

∗(s)
T (H) satisfies

D
∗(s)
T (H) ≤ 1

1− γ
c(s, p)

(log T )s

T

is at least γ|H|. The following Theorem 3 is an improvement of this result:

Theorem 3. For a prime p let s ≥ 2, m = k ≥ s, a primitive polynomial
f of degree k over Fp, and initial values y0, . . . , yk−1, not all zero, be given.
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Let T := pk − 1. For fixed γ, 0 < γ < 1, the number of H ∈ H for which
the star-discrepancy D

∗(s)
T (H) of the s-dimensional serial set of the GFSR

sequence defined by f , H and the initial values satisfies

D
∗(s)
T (B) ≤ 1

T
+

1
pk

s−1∑
w=0

(p− 1)w

(
k

w

)

×
[
(s− 1)

(
p

p− 1

)2 2
1− γ

p log k

+
(

p

p− 1

)2 2
1− γ

(
1 + p log

4
1− γ

)
+

1 + γ

1− γ

]
= O

(
(log T )s−1 log log T

T

)
is at least γ|H|.

P r o o f. Again (see Theorem 9.14 of [4]), 0,x0, . . . ,xT−1 form a digital
net over Fp with the matrices Ai(h) with rows αi−1+hj , j = 1, . . . , k, i =
1, . . . , s (α a root of f in Fpk), playing the role of Ai(B) and Ai(f) in the
proofs of Theorems 1 and 2, respectively.

For a non-negative c we define the sets M(λ,d) and M(c) as in the
proofs of the above theorems. The equation in the definition of M(λ,d) is
then equivalent to

k∑
j=1

ξjα
hj = 0 with ξj :=

s−1∑
i=0

λd1+...+di+jα
j .

Since s ≤ k and since α is a primitive element in Fpk , we see that for λ 6= 0
not all ξj are zero and therefore (again since α generates Fpk and since
0 ≤ hj ≤ pk − 2 for all j) we have |M(λ,d)| ≤ T k−1. Consequently,

|M(c)| ≤ |H|
(

k − c− 1
s− 1

)
pk−c 1

T
=: |H|R(c)

and with M(c) := H \M(c) we get

1
|M(c)|

∑
H∈H

D
∗(s)
T (H)

≤ 1
pk

s−1∑
w=0

(p− 1)w

(
k

w

)[
1 +

|H|
|M(c)|

· p

p− 1
· 1
1− 1/pk

c

]
=: A(c).

We finish the proof like the proofs of Theorems 1 and 2.
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