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1. Introduction. Let G be any profinite group and A an abelian
profinite group. Let

L(G) =P e /Gty
n=1

be the graded Lie algebra associated with G by means of the lower central
series (G™),>; and let £(A) = @7, L,(A) be the universal graded Lie
algebra associated with A (see §2 for exact definitions). Any homomorphism
¢ of A into G/G?) gives rise to a homomorphism ¢, of £(A) into L(G).

In this paper we study the special situation where A is the profinite
completion K> of the multiplicative group K> of a local field K, i.e. a field
which is complete with respect to a discrete valuation with finite residue
class field. The group G is the absolute Galois group G of K and ¢ is the
Artin isomorphism of K* onto G / Gg).

The surjectivity of ¢ implies the same for ¢.. The goal of this paper is the
determination of the kernel of ¢,. This is equivalent to the determination
of the kernel of the component homomorphisms

pa(l) : LIA() — LGk (1)),

where [ is any prime and B(l) is the maximal pro-l quotient of a profinite
group B. The difficult case occurs when [ = p, the residual characteristic
of K. If K is of characteristic p, or if K is of characteristic zero and does
not contain a primitive pth root of unity, this kernel is zero. So we assume
that K is of characteristic zero and contains a primitive p”th root of unity
¢ with & chosen largest possible. In this case Gk (p) is a Demushkin group
so that the cup-product

HY (G (p), Z/p"Z) x H (G (p), Z/p"T) — H*(Gx (p), Z/p"Z) = Z/p"Z
1991 Mathematics Subject Classification: 11520, 11S31.

(45]



46 H. Koch et al.

is non-degenerate. We now assume that p is odd. In this case, the form is
alternating and so we obtain by duality an element in

GR/(GR) AGR(GR).
Using the Artin isomorphism, this determines an element
T € Ly(A(p)) @ Z/p"Z

which is determined by Gk up to a unit of Z/p”Z. Our main result is the
following theorem:

THEOREM 1.1. The kernel of ¢.(p) is the ideal of L(A(p)) generated by
the elements of the form [ad(\)(C),ad(N)(7)], where X is an element of the
enveloping algebra of L(A(p)).

E.-W. Zink [Zi1], [Zi2] studied @, : L2(K*) — Ly(Gx) and showed that
x2 is an isomorphism. His main interest in [Zil], [Zi2] concerns the filtration
(L2(GK)")rer, of La(Gk) = G%/Gg) induced by the ramification groups
G of Gk and the inverse image of this filtration in L’(I? *). His results
were augmented by Cram [Cr] and Kaufhold [Ka]. But the results of these
three authors are far from the goal of giving an independent description of
{05 (La(Gk)™) | r € Ry}. There is of course a corresponding question for
(@in (Ln(GK)™))rer, , but it will not be considered here.

The present paper originated from the thesis of the second author [Ku],
directed by the first, and assisted by important suggestions of the third
author. Section 5 was added by the third author.

2. Lie algebras. In this section we introduce the necessary definitions
and facts about groups and related Lie algebras.

2.1. Let k be a commutative, associative ring with unity and let A be a
k-module. Let 7(A) be the non-associative tensor algebra of A considered
as a k-module, i.e.

T(4) = PT(4),
TiA) = A, T(A):= Awy A,
T.(A) = P T T,

pt+q=n

Then we define the Lie algebra £(A) as the factor algebra of 7(A) by the
ideal of 7 (A) generated by all elements of the form

a®a, (a®b)Rc+ (bR®c)®a+ (c®a)® b,
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with a,b,c € T(A). Since this ideal is homogeneous, we have
LIA) =P Lu(A),  La(A):= (To(A) +I(A)/Z(A),
n=1

and so L is a graded Lie algebra over k.

If o : A — B is a homomorphism of k-modules, then to ¢ corresponds
a homomorphism L(p) of L(A) into L(B) so that £ is a covariant functor
from the category of k-modules to the category of graded Lie algebras over k.
Moreover, if L = EBZOZI L, is any graded Lie algebra over k, there is a unique
homomorphism 1 of £(L;) into L such that

Y(a)=a foraé€ L.

In the next section we apply this construction with k = Z to extend it to
the case where A is a profinite abelian group. If A is finitely generated, we
recover the above construction with k = Z, the total profinite completion
of Z.

2.2. Now let A be a profinite abelian group and U the filtration of A
given by the set of open subgroups of A. We define £,,(A) as the projective
limit of the groups £,,(A/U) with U € 4. Then A and £,,(A) are Z-modules.
In the following algebra means always z—algebra. The product of a,b € L(A)
is denoted by [a, b]. The functor L is a covariant functor from the category of
profinite abelian groups to the category of profinite graded Lie algebras, i.e.,
graded Lie algebras (over Z) whose homogeneous components are profinite.

2.3. Let L = .-, L, be any profinite graded Lie algebra. Then we
have a natural homomorphism v of £(L;) into L with ¢(a) = a for a € L.

2.4. The proof of our main result (Theorem 1.1) is based on the com-
parison of various filtrations of a profinite group G.

A filtration of G is a sequence of descending closed subgroups G; (i > 1)
such that the following conditions are fulfilled:

(i) G1 =G,
(11) [Gz, G]] - Gi+j for 1,] € N,
where [G;, G;] denotes the closed subgroup of G generated by the commu-
tators
(g,h) ;=g 'h 'gh forge Gy, hedj.
The most interesting filtration is the descending central series (G(*)), which
is defined by induction:

GW.=qg, GUY =[G G
One proves by induction that (G(V) is a filtration of G using the following
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well known rules for commutators (see e.g. [HI], 10.2), where ¥ means

y’lxy:

(1) (h,g) = (g, 1)~",
(2) h? = h(h, g),
3) (f;9h) = (f;1)(f, 9)((f; 9), h);
(4) (fg,h) = (£, R)((f: 1), 9)(g,h),
() (f%, (9, W) (g", (h, (W, (f,9)) =1

for f,g,h € G.

We associate with a filtered group G a graded Lie algebra L(G) as follows.
By definition, the groups G; are normal subgroups of G. We put

L.(G):=G,/Gny1 and [g,h] = (g,h)

for g € Gy, h € G- 1t is easy to see that this definition does not depend
on the choice of g and h in the classes g € L,,(G) and h € L,,(G) and that
it defines the structure of a profinite graded Lie algebra on

.
by (1)—(5).

2.5. We now restrict ourselves to the special situation of a free pro-
p-group F', where p denotes a prime number (see [Se2| for the definition
of F).

THEOREM 2.1. Let L(F) be the Lie algebra associated with the descend-
ing central series of F. The natural map ¢ : L(F/F®) to L(F) is an
isomorphism of graded Lie algebras over Z,.

Proof. Let F be the free pro-p-group with generator system {s; | i € I}
and let S be any finite subset of I. Furthermore, let Fs be the factor group
of F' with generator system S. Then F' is the projective limit of the groups
Fs and L,(F/F®) (resp. L(F)) is the projective limit of the profinite
groups L, (Fs/F éQ)) (resp. L,(Fs)). Hence, it is sufficient to prove the
theorem for free pro-p-groups F' with finite generator rank N.

Let s1,...,sn be the free generator system of F' and let z; be the class of
s; in F/F(Q). Then F/F(Q) is the free Z,-module with generators z1,...,zxN
and hence £L(F/F?) is the free Z,-Lie algebra with generators z1,...,zy.
On the other hand, L(F') as well is the free Z,-Lie algebra with generators
Z1,...,zy as follows from the argument of [Wil] applied to the embedding
of F' into the completed group algebra Z, (see §2.7). We have
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1
rkz, Ln(F/F®) = 1kg, Lo (F) = = p(n/d)N*,
n d|n
where p denotes the Mobius function.
This completes the proof of Theorem 2.1 since 1 is surjective. m

2.6. The special filtrations (G;) of a pro-p-group G with the property
G? C Gita

are called p-filtrations.

If (G;) is a p-filtration of G, then L(G) is an F,-Lie algebra with an extra
homogeneous operator 7 of degree 1 defined by

W(gGi—f—l) = ngi+27 L= 1’ 27 s
Using induction over s one proves
(gh)® = g°h*(g, h)**~Y/2 (mod Giyjp1) for g € Gi,h € Gy

This shows that 7 is linear for p > 2 and for ¢ > 1 if p =2. If p = 2 and
a,b € Li1(G) one has

m(a+0b) =ma+ b+ [a,b)].
Using (2), one proves by induction over s that
(9°,h) = (9,1)°((9,h),9)** V"% (mod Gaiyj11)  for g € Gih € Gj.
This shows that
w[a,b] = [ra,b]

ifae Li(G),be Lj(G) and p > 2 or if i > 1. Altogether we see that L(G)
is a graded IF)[r]-Lie algebra in the case where p > 2 and (G,,) (n > 1) is
a p-filtration. If p = 2 then L+1(G) := @, -, L,(G) is a graded Fp[r]-Lie
algebra.

2.7. Let F be a free pro-p-group with generators si,...,sy. Beside the
filtration (F(");>; we need more general filtrations called x-filtrations, and
corresponding p-filtrations called (k, p)-filtrations. They were introduced in
[Lz|, I1.3.2, in much greater generality, but we restrict ourselves to what will
be necessary for our paper.

For the definitions of these filtrations we consider the completed group
algebra A := Z,[[F]], which is isomorphic to the ring Z,[[X1,..., Xn]] of
associative formal power series in the variables X1, ..., X with coefficients
in Z,. The isomorphism « is defined by a(s;) = 1+ X; ([Sel]). In the
following we identify A and Z,[[X1, ..., Xn]] by means of o. The restriction
of a to F yields the Magnus representation of F.
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For any natural number x we define a valuation v of A in the sense of
Lazard ([Lz], 1.2.2) by means of

U( E @iy, i Xy sz) = inf {bnzk}
. i 1150005k
11500tk

with
bil,-'wik = Vp(ai17~--7ik) + (il +...+ ik)’%v

where v, denotes the p-adic (exponential) valuation of Z,. Then v defines
a filtration (A?) of A with

A ={uc Alv(u) >i}.
We define the (k, p)-filtration of F' by
FO .= {zeF|v(x—1)>i}.

The associated Lie algebra L = > L, is an [F,[r]-Lie algebra if p > 2 or
x> 1. In what follows, we will assume that p > 2.

In the same way one can define the filtration (F() by means of the
valuation w of A which is given by

w< E @iy, i Xiy sz) = inf {ci,. i}
. i 11 5e-05k
115.-450k

with

Ciyooin = (11 + ... Fig)K.
We define a filtration (B?) of A:

B :={uc A|wu) >i}.
Then

FO ={zeF|wx-1)>i}.

We denote the associated Lie algebra by L= S L,. The Lie algebra Lis
a free Lie algebra over Z, on the images of s1,...,sy in L, = ﬁ(”)/ﬁ(“H).

Let L be the Lie subalgebra of L generated by o; = siﬁ(“H),
i=1,...,N, and let

L,=L,NnL, n=12,...
Then L,, = {0} if n £ 0 (mod k).
We have the following structure theorem for L:

THEOREM 2.2. L is the free F,-Lie algebra with generators oi,...,0N
and L is the free F,[r|-Lie algebra with generators o1,...,0nN.

Proof. This result is well known. It is proved in [Lz], I1.3.2, and goes
already back to A. Skopin ([Sk]). In fact, the assertions follow easily from
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the embedding of F' in the algebra A and the theorem of Witt about Lie
polynomials in A ([Wil]). m

2.8. We want to compare the k- and the (k,p)-filtration of the free
pro-p-group F. For this purpose we introduce filtrations in L, and L,. In
L, our filtration is simply L := p"L,,, h > 1.

PROPOSITION 2.3.

p'L, = (F™ o oty plntl) ) pint)
— (ﬁ(n) N ﬁ(nJrh)ﬁ(nJrl))/ﬁ(nJrl)‘

Proof. An element in phzn has the form 2" F™"*! with 2 € F™,
Therefore, 2" € F(’ffh). Let now y be an element of F®) n Fnth) - We
want to show that yF(*Y is in p"L,,.

We assume that n = km with m € N. Then

y=1+4y, (mod B”'H),

where y, is a homogeneous polynomial of degree m in A. Furthermore,
y € F"+th) if and only if y,, € A"*+". This is possible only if each coefficient
of the polynomial v, is divisible by p”. Hence y has the form

y=1+pz, (mod B”+1)

with z,, € B". By the theorem of Witt ([Wil]), z, is a Lie polynomial in
A. Hence, there is a z € F(™ such that 2 = 1+ 2, (mod B"*') and this
implies 2" F("+1) = yF(n+1) ¢ phT  u

By Theorem 2.2 the group En has the form
n—1

Ly=ED ™" Lo—m.
m=0

We define a filtration (E,(lh))lghgn of En by
R n—nh
L;h) = @ T Ly
m=0
PROPOSITION 2.4.
E%h) — (ﬁ(n) N ﬁ(h))ﬁ(nﬂ)/ﬁ(nﬂ) — (ﬁ(n) N ﬁ(h)ﬁ(nﬂ))/ﬁ(nﬂ)'

The proof of this proposition is a variation of the proof of Theorem 2.2.

Now we define the following maps wy, ,, from Z%h) onto 7" L,,, which allow
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us to compare L with L:

Whon zglh) = (ﬁ(n) N ﬁ(n+h))ﬁ(n+l)/ﬁv(n+1)
— (ﬁ(n) N F\(n-i-h))ﬁ(n-‘rl)ﬁ(n+h+1)/f(n+1)ﬁ(n+h+1)
2 (F0 Platht1) o Bnth)) j(Flntl) Bath+1) o Binth))
S LU /LS B L,
where the arrows denote the corresponding natural maps.

PROPOSITION 2.5. kerwy, ,, = Ly Y.

Proof. By definition
ker wy, ., = (ﬁ(n) N ﬁ(n—&-h—&-l)ﬁ(n—l—l))/ﬁ(n—&—l) _ E%}H_l). .

3. The Artin map. We first recall some facts from class field theory
(see e.g. [We]).

3.1. A local field is a finite extension of the field Q, of rational p-adic
numbers (case of characteristic 0) or a finite extension of the field F,((z))
of power series in the variable x over the field F), with p elements (case of
characteristic p). A global field is a finite extension of the field Q of rational
numbers (case of characteristic 0) or a finite extension of the field F,(z) of
rational functions with coefficients in [F),.

Let K be a local or global field. Then one has a formation module Ay
associated with K, which is the multiplicative group K* if K is a local
field, and the idele class group of K if K is a global field. Furthermore, let
Ag be the profinite completion of Ag. Then the Artin map is a canonical
map from A into the Galois group of the maximal abelian extension K ab
of K, which induces an isomorphism ¢ from Ax onto G(K*/K). In the
following we call ¢ the Artin map.

3.2. Let K be a fixed separable algebraic closure of K and let G be the
Galois group of K/K. By 2.1-2.4, the map ¢y induces a homomorphism
of Lie algebras from £(Ag) onto L(Gg), which will be denoted by ¢ as
well. We let ¢k, be the component of degree n of ¢x. Then ¢ ;1 is the

usual Artin map. We call ¢ the Artin map of L'(.%TK).

3.3. Let G4 be the Galois group of the maximal nilpotent extension
of K in K. Then the kernel of the projection Gx — GU! is equal to the

intersection of the groups Gg?) for n > 1. Therefore, one has a natural
isomorphism of L(G ) onto L(G4). Since GB! is canonically isomorphic to
the product of its I-components G (1), this implies that L(G ) is canoni-
cally isomorphic to the direct product of the Lie algebras L(G (1)), where
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[ runs through all primes. Similarly, the decomposition of ./TK into the di-
rect product of its [-components Ak (1) yields a canonical decomposition of
L(Ag) as the product of the Lie algebras £(Ax (1)). The study of the Artin
map ¢ therefore reduces to the study of its [-components

or (1) : L(Ak (1)) — LGk (1))

as [ varies over all primes. The map ¢ (p) and its p-component

o (P) : L(Ak (D)) — L(Gx(P))
with

Ax () = H«IK(Z), G (@) =] Gx()
I#p I#p
are the subjects of our further investigations.

3.4. We now restrict ourselves to the case where K is a local field of
residue characteristic p. We denote the ring of integers of K by Ok and the
maximal ideal of O by p. Hence Ax = K* and Ak is the direct product
of a group (m) generated as topological group by a fixed prime element T,
the group p4—1 of roots of unity in K of order dividing ¢ — 1, where ¢ is the
number of elements in the residue field, and of the group 1+ p of principal
units in K. The group (m) is isomorphic to Z, the total completion of Z,
the group pq—1 is cyclic of order ¢ — 1 and the group 1+ p is a pro-p-group,
where p denotes the residue characteristic of K. The group 1 + p is the
direct product of a finite cyclic group and a free abelian pro-p-group.

The surjectivity of ¢ implies the surjectivity of ¢ (p) and ¢ (p). The
main goal of this paper is the determination of the kernel of ¢x(p) and

¢x (D).

3.5. In this section we consider ¢ (p). We introduce the following
notations: A profinite group G will be called a p-group if G is pro-nilpotent
and all finite factor groups of G have order prime to p. Corresponding by
a p-extension of K is a Galois extension of K with Galois group being a
p-group.

PRrROPOSITION 3.1. Let o be an extension of the Frobenius automorphism
of the mazximal unramified p-extension of K and let T be a topological gen-
erator of the inertia group of Gk (p). Then Gk (p) is generated as p-group
by o and T and has one generating relation
(6) (o, 7)1 =1.

Let & and 7 be the images of o and T in Li(Gk (D)) = Gk (p)/Gk(P)?.
If n>2, then L,(Gk (D)) is a cyclic group of order ¢ — 1 with generator

(7) [G,[0,...,[0,7]...]]
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Proof. The structure of the group Gk (p) is well known (see e.g. [Kol],
p. 95). The relation (6) implies that any element of the form

[ala [a’27 s [an—lvan] < H € Ln(GK(ﬁ))
with a; € {7,7} is equal to 0 if at least for two of the aq,...,a, one has
a; = 7. It follows that
(8) 7,7, ... 7). =70 G (p) Y

is a generator of L,(Gk(p)) and has order ¢ — 1. =

For the next proposition we introduce some further notation.
If @« € K* we denote by @& the image of a under the map

K* — K* — K*(p).
Let pg—1 be the group of roots of unity of order dividing ¢ — 1 and let ¢
be a generator of ji,—1. Furthermore, let 7 be a prime element of K. Then
the pro-p-group K *(p) is generated by ¢ and 7. The elements of K * (p) are
uniquely represented in the form Zuﬁ” with u = 0,...,9 =2, v € Zjp, ie,
K> (p) = pg—1 % Zz. We denote by M the derived algebra of L(K*(p)) and
by N the ideal of L(K*(p)) generated by all the elements of the form

[Cad(@)"¢]  (n > 1).
Furthermore, let F = L(Z/(q — 1)Z ®Z/(q — 1)). With these notations we
have the following proposition.

PROPOSITION 3.2. As a graded Lie algebra, M is isomorphic to the
derived algebra of F and the kernel of the map ¢ (p) is N'. Furthermore,

My =Np @ Z/(q—1)Z-ad(m)"*(() (n=1).

Proof. The natural projection K*(p) — K*(p)/K*(p)¢~" induces a
surjective homomorphism ¢’ of graded Lie algebras. Since K * )/ K* (p)et
is a free Z/(q — 1)Z-module of rank 2 it follows that the restriction of ¢’
to M is an isomorphism and £(K*(p)/K*(p)?!) is the free graded Lic
algebra with two generators over the ring Z/(q — 1)Z. Furthermore, we can
choose @ and 7 in Proposition 3.1 such that

ok (P)(T) =7, k(D)) =T

Proposition 3.1 implies that for n > 2 the group £, (K *(p)) is the direct
sum of (ker ¢ (P)), and the cyclic group of order ¢ — 1 generated by

7, [T, ..., [7, (.. ]

This proves Proposition 3.2. =

4. The map ¢x(p). It remains to consider ¢ (p). This is the main
goal of the paper. We restrict ourselves to the case p # 2.
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The structure of Gk (p) is well known (see e.g. [La0], [Kol], pp. 96-105):
If Char K = p, or if K does not contain the pth roots of unity, then
Gk (p) is a free pro-p-group and ¢ (p) is an isomorphism.

PROPOSITION 4.1. Let K be a local field of characteristic p or of char-
acteristic 0 and not containing the pth roots of unity. Then ¢ (p) is an

isomorphism of L(K*(p)) onto L(Gk(p)). m

Now let K be a local field of characteristic 0 which contains the pth roots
of unity. Then K* (p) is isomorphic to i, x ZY !, where N = [K : Q)] +2
and & is the natural number such that p,~ C K but p,+1 ¢ K. Then Gk (p)

is a Demushkin group and so is a group with N generators s1,...,sy and
one generating relation r. One can choose s1,..., sy such that
pK/

(81, 82)(83, 84) Ce (SN—la SN).

In the following we identify Gk (p) with F'//R, where F is the free pro-p-
group with generators s1,...,sy and R is the closed normal subgroup of F
generated by r. The projection ' — Gk (p) induces a surjective homomor-
phism

0:L(F)— L(Gk(p)).
We let ¢ be the unique homomorphism of L(F) onto £(K*(p)) such that
0 = ¢r(p)y-
We first study 6. With the identification
Gk(p)=F/R, R=(r)

this study is a question of group theory. We introduce the following nota-
tions:

R™ .— RN F(n),
No(R) = R(")F(n+1)/F(n-H)7

N(R) :=) N, (R).

PROPOSITION 4.2. N,,(R) is the kernel of 6, : L,(F) — L,(F/R).
Proof. We have
L,(F/R) = (F/R)™ /(F/R)"Y
= F(n)R/F(”+1)R i~ F(n)/F(n-i—l)(F(n) A R).
Hence, ker 6, = F"+D(F() A R)/F(+) u

Let U be the enveloping algebra of L(F') ([Sel]). Since the Z,-Lie algebra
L(F) is a free algebra generated by

{o; :=5,F® |i=1,...,N}
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we can identify U with the ring of polynomials in the non-commutative

indeterminants o1, ...,on with coefficients in Z,. The ring U operates on
L(F) by adjoint action such that
ad(a)g = [a, 8],

ad(A1A2)a = ad(A)ad(A2)a
and
ad(A\1 + A2)a = ad(A)a + ad(A2)a

for a, 8 € L(F), M, \2 € U.
We put

ti=(s1,82)...(sn_1,8n), T:=tF® € Ly(F).
Let N'(R) be the ideal of N'(R) generated by the elements
(9) pto1, [ad(N)or,ad(N)T] (A€ U).

Then N'(R) is generated as a Z,-module by the element p”o; together with
the elements

(10) [ad(AN)o1,ad(A)T],
(11) [ad(A)o1, ad(p)7] + [ad(p) o1, ad(A)7]

with A, u homogeneous elements of U. The goal of this section is the proof
of the following theorem:

THEOREM 4.3. N(R) = N'(R).

COROLLARY 4.4. The subalgebra of L(Gg(p)) generated by os,...,0N
is a free Lie algebra over Z, on these generators.

The corollary follows immediately from the fact that N'(R) is a subset
of the ideal of L generated by o7.
To prove the theorem we first show that N’(R) C N'(R). Firstly,

rF?) = stF(Q) =p"oq,

and, to show that the elements of the form (10), (11) lie in A'(R), we may
assume that

A=o04 ...05, and p=o0j ...0j.
Then
[ad( Mo, ad(A)7T] = ((Siy,- - (Si,51) ), (Siys oy (84,,1) .. ) FEFY,
Since 7 = s t, we have

(si,,t) € (sil,sl_pﬂr)F(ll)R = (sil,sl_pn)F(‘L)R
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and

K

(505517 VP = (s1,,51) 7 (11, 51), 1) 7 P2 PW

= (530:51) 7" ((5551), )W V2RO,

((Siys-- - (Siy81) )5 (Siy5- -5 (53, 8) .. ) FCHHD € RPGHY q pRIHS)
and this implies
[ad(X)o1,ad(A)7] € Nays(R),
which shows that elements of the form (10) belong to N'(R). In a similar
manner one shows that the elements of the form (11) also belong to N'(R).

To show that N (R) C N'(R) we use a technique of [La3] consisting in
the comparison of the k- and (k, p)-filtrations of F', where now & is equal

to the x appearing in the defining relation r = 3117"(817 s2)...(sn-1,8n) of
Gk (p).

We introduce the following notation as supplement to the notation
in 2.7-2.8:

5= Ft) e L. i=1,...,m+2,
T = (81, 82) . (81\[71, SN)ﬁ(z‘H_l) € z?m

No(R) := (RN FM)F(n+D) FntD)
N(R) =" Na(R).
n=1

Then N”(R) is the ideal of L generated by p~oy and ad(A)a; A ad(\)7 for
A € U, where U denotes the enveloping algebra of L. Set

Gii=s; PV e L i=1,...,m+2,
(51,82)...(sn-1, SN)ﬁ@K—H) € Ezm

T =
No(R) := (RN FM)FntD) ) Fnt 1),

N(R) := PN (R).

The homogeneous component /\Afgn(R) contains the element
Y’F\(2K+1) = ﬂﬁa'\l + 5'\

and by Theorem 4’ of [Lal], N'(R) is even generated as an ideal of L by
w01 + 7. This is the initial point of our proof.

Now we show N’(R) = N(R). The proof of N’(R) C N(R) is similar to
the proof of N’(R) C N(R).
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Let U be the enveloping algebra of L. Then U can and will be iden-
tified with the F,-subalgebra of the enveloping algebra U of L generated

by &1,...,0n. Any non-zero homogeneous element A of L can be uniquely
written in the form
(12) X=X+ 7N + ...+ 7N

with Ao, A1,...,\r € U and \; # 0. Since deg();) = 0 (mod x) and
deg(Ai—i)
= deg(A\;) + 4, we have \; =0 if ¢ Z[ (mod k).

Let Z be the ideal of L generated by o, and let N be the ideal of L
generated by the elements of the form

(13) [ad(A\)o1,ad(A)T]
with A € U.
LEMMA 4.5.
(14) - TIN g + LI if <,

N (R) N LUm=9) C {

(15) T T+ LD if >k,

Proof. Any element o of N, (R) has the form ad(\)(7*5, + 7) with A
as above. If [ = dk + e with 0 < e < Kk, we have

d
o =mad(A)T+ Y 7 (ad(Act(j1)n)01 + ad(Aerju)7) + 7T ad (A5
j=1

If ad(\;)o1 # 0, we have
o€ ﬂ_H—njm_(H—H) + E%n—(l-ﬁ—m)-i—l)’

which yields the required result.

Now suppose that ad(\;)a; = 0. Then A; lies in the annihilator of 7.
By [Lad], Theorem 2, the annihilator of &; consists of the elements u € U
of the form

u= Z a,(ad(v)a)v  (a, € U).
veU
Therefore A; has this form. If | < k, we have
o= Z ay[ad(v)Gy, ad(v)7] € TN,y
vel
as required. If [ > k and ad(\—,)o1 + ad(\)T # 0, we have

RS Wlfm_l + E%n_l'i_l)
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as required. If ad(N\;—,)o1 + ad(\)T = 0 we get
ad(\j—x)o1 = —ad(\)T = — Z ad(a,(ad(v)oy)v)T

veU
=) ad(a,(ad(v)7)v)5,
veﬁ
ad((ad(v)31)v)7 = ad(ad(v)31)ad(v)7 = [ad(v)Fy, ad(v)7]
= —[ad(v)7, ad(v)5] = —ad((ad(v)7)v)5;.
Hence

Mow = Y ay(ad(v)7)
veU
is in the annihilator of o;. Therefore,

Ai—y € ann(oy) + ann(7).
If ad(AN—(j4+1)x)01 +ad(N—jx)T = 0 for 1 < j < d then, repeating the
above argument, we get
Ae € ann(oy) + ann(7),
which yields o € m°A/,,,_.. Otherwise, there is a j such that
ad(N—(j—1)x)01 +ad(N—jx)T # 0
and
0 € T _(_juy + LGP TUTIMFY,

Remark. Lemma 4.5 deals with the ideal N(R) of the graded
[F,-algebra L generated by %o + 7. It is easy to be seen that Lemma
4.5 is valid in the case p = 2 as well. This will be used in the proof of
Theorem 5.1.

COROLLARY 4.6. N(R)NL =N

We now consider the homomorphism wy ,, of En onto L,. By Proposi-
tion 2.5 its kernel is pLy,. Furthermore, wo , maps N, (R) onto L, NN, (R)
= MN,,. Hence

(16) N(R) C N'(R) + pL.
More generally, we prove by induction
(17) N(R) CN'(R)+p**t"L, h=0,1,...,

using the homomorphisms wy, ,,.

LEMMA 4.7. Ny (R) N pP Ly = (RN F) A Fnth)) Fnt) j Fn+1),
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Proof. Let 5 € N,(R)Np"L,. Then n = yF™+) with y = uP" v,
wekF, ve Fn+1 Since F(m+1) C F("+1) we have v € F(+1) q pln+l),
Let [ > 1 be largest such that there exists s € RN FHD) with vs €
FtD A F(n+D) - Assume that § < h and let § be the image of vs in (F("+) N
Fr4 D) Plu1) POt Ty

7 l—m—
d e Npqp(R)N L7(1+l Y

for some integer m with 0 < m < [, which we can assume is maximal and
% 1. By 4.5, we have § = §; + 2 where 5 EL(l m 2 and

5 e Wl_lyn_i_l B if | <k,
! Wl_12n+1 + Fl_an+1 if I > k,
where 7 is the ideal of L generated by o1. It follows that there is an el-
ement y; € FH) 0 PO+ with 6, = y FOFHD . But then vyy; ' = 6o
contradicting the maximality of m. m

Now, since
Wi (RN F® o Fth)) 1)/ fo(n1))

7 B n(n n(n 7(n+1) 7 (n+1
= (RN F( A Pl plokha )y Rt Dy plnt ) 7t D)

~

= (Nosn(R) N L) + LD i)

we have
Whn N (R) NP L) = (N (R) N L) + LD LD
Assume that we proved
N(R) CN'(R) +p"L

for a certain h. We want to show

N(R) CN'(R) +p"'L.
Let £ € N,(R). Then there exists & € N7 such that £’ = ¢ — &' € phLy,. It
follows that & € N, (R) Np'L,. By Lemma 4.7 we have

18 h AT :
( ) whn(f//)e WhNn . ?fh<l-€,
(19) ’ "L, + "N, if h > k.

Hence there exists 6 € N7,(R) such that wp (") = wy.n(8), which implies
that ¢ — & € p"*t1L, and hence that §—(0+¢) € € p"*! which com-
pletes the inductive step. It follows that N(R) € N'(R) and hence that
NB) =N'(R).

Since the grading of L is only a rescaling of the grading of L it follows
immediately that N'(R) = N’(R), i.e. Theorem 4.3.
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Now we consider the map
V1 L(F) — L(Ak(p))

in connection with 6 : L(F) — L(Gk(p)). Let s;R, 1 <i < m+2, be a
system of generators of F/R = Gk (p) such that R = (r) with

K

r=st [s1,82]...[sN—1,SN]

Then (see e.g. [Kol], Lemma 10.7) there are elements aq,...,ay in K*

such that
s
S = SZ‘RF(2),
(K”@VK)

and «; is a root of unity of order p* in K.

Since the kernel of ¢ : Li(F) — IA(X(p) is generated by p“cq, where
o; := 5;F ), the kernel of ¢, as an ideal of L(F), is generated by p“o; as
well.

Combining our knowledge of 8 and ¢ we get the following result about
the kernel of the Artin map.

THEOREM 4.8. The kernel of the Artin map ¢k (p) is generated as an
ideal of [,(IA(X(p)) by the elements of the form

ad(Nas,ad(N)B] (A€ D),
where U is the enveloping algebra of .C(I?X (p)) and
ﬂ = [al,ag} + ...+ [oszl,aN].
This yields Theorem 1.1 since, by Satz 7.23 of [Kol], the image of 3 in
(L2(K*(p))) @ Z/p~Z is equal to 7.
COROLLARY 4.9. The kernel of ¢x(p) is p*-torsion and, modulo torsion,
L(K*(p)) is a free Lie algebra over Z, with basis the images of aa,...,an.

Actually, as we shall see in Section 5, the kernel of ¢x(p) is a free
Z/p"Z-module as is the torsion submodule of L(Gk(p)). We shall, more-
over, give formulae for the ranks of these free modules.

5. The module structure of £L(Gk(p)) and ker ¢ (p). Let Ly =
Ly(xy,...,zn) be the free Lie algebra over Z on the elements z1,...,xx
and let U be its enveloping algebra. Assume that N is even, let

Yy = ['7:17:1:2] + [x37x4] 4+ ...+ [foth]a

and let A be the ideal of Ly generated by the elements of the form [ad(u)z1,
ad(u)y] with w € U. Then, by Theorem 4.8, L(Gk(p)) is isomorphic to
(Lz/N) ® Z, modulo the ideal generated by p“x;.

THEOREM 5.1. Ly /N is a free Z-module.
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Proof. Since the homogeneous components of Ly /N are finitely gener-
ated, it suffices to prove that, for each prime [, the homogeneous components
of (Lz/N) @F,; have ranks which are independent of I. Let L = Lz ® F; and
let N be the image of A/ in L. Then

LN = (Lz/N) @ F,.

Let L=L®F, [7], where 7 is an indeterminate over [F; of degree 1 and let
N (R) as in Section 4 (k = 1) be the ideal of L generated by 7Z; + 7, where
T; is the image of x; in L and

Yy = [T1,To| + [T3,Ta] + ... + [TNn_1,TN].

Then, since L is the free Lie algebra over IFj[r] on Z1,...,Zn, we have
N(R)N L = N by Corollary 4.6, which implies that

L/N = (L +N(R))/N(R).

By Lemma 4.5 the initial form 7m*\y of a homogeneous element
A=7 X +7 A . 4+ A, Ao #0,
of N'(R) is in the ideal of L generated by Z;. Hence
(N(R) + L) N 7L(Ta,...,Zn) =0,
which implies that L is the direct sum of N'(R)+ L and 7L(Zs, ..., Zy) and
hence that
dim(L/N),, = dim(L/N(R)), — dim(xL(Za, ..., ZN))n
= dim(L/N(R)), — dim(L(Z2, ..., Zn))n
+ dim(L(Za, ..., TN) )n-

Now, by Théoréme 3 of [Lal], L/N(R) is a free graded F;[r]-module and so

LIN(R) = (L/(@)) &, Fil7]

as graded IF;-modules. Now, by [Lal], Théoreme 2, the Poincaré series of
the enveloping algebra of L/(7) is

1 1

1—Nt+t2  (1—=p61t)(1 = Bot)’

where 81 + 32 = N, 132 = 1. If a,, = dimy,(L/(Y))n, we have (by the
Birkhoff-Witt Theorem)

I 1 B 1
(1—tn)an 1 — Nt+¢2’

n>1
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which yields by a standard calculation (see [Sel], LA 4.5-4.6),
1
=D u(n/d) (B + 53).

d|n
It follows that

dim(E/R (R = 7 1 37 wlk/d) (57 + 62)

k=1 d|k
and hence that

n

(20) dim(L/N),, Z Z

k=1 dk
2_n
d|n

(k/d)(B) + B3 — (N = 1)%)

1
n

(n/d)(N —1)%

is independent of [. m

THEOREM 5.2. We have
ker ¢ (p)n = (Z/D"2)°",  Ln(Gi(p)) = (Z/p"2)" & L,

where
o= 3" 2 S nlk/d) B+ B — (N~ 1),
k=1 dlk
o= 3 LS u/ DN ~ 1) B )+ - (N 5 ),
k=1 d|k d|n
= LS /)N~ 1),

dln

Proof. By Theorem 4.8 we have ker ¢k (p) isomorphic to N ® Z/p~Z,
which gives the first isomorphism since the Z/p“Z-rank of N,, ® Z/p~Z is
the dimension of NV, over F,, which in turn equals c,,.

Again, by Theorem 4.8, the torsion submodule of L, (Gx(p)) is isomor-
phic to ((z1)/N)®Z/p"Z, and L, (Gk(p)) modulo torsion is isomorphic to
the free Lie algebra over Z, on N — 1 generators. This yields the second
isomorphism since the Z/p"Z-rank of ((x1)/N)®Z/p"Z is the dimension of
(71)/N over F,, which in turn is equal to b,,. =
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