
ACTA ARITHMETICA
LXXXIII.1 (1998)

Nilpotent local class field theory

by

Helmut Koch (Berlin), Susanne Kukkuk (Detmold) and
John Labute (Montreal)

1. Introduction. Let G be any profinite group and A an abelian
profinite group. Let

L(G) =
∞⊕

n=1

G(n)/G(n+1)

be the graded Lie algebra associated with G by means of the lower central
series (G(n))n≥1 and let L(A) =

⊕∞
n=1 Ln(A) be the universal graded Lie

algebra associated with A (see §2 for exact definitions). Any homomorphism
ϕ of A into G/G(2) gives rise to a homomorphism ϕ∗ of L(A) into L(G).

In this paper we study the special situation where A is the profinite
completion K̂× of the multiplicative group K× of a local field K, i.e. a field
which is complete with respect to a discrete valuation with finite residue
class field. The group G is the absolute Galois group GK of K and ϕ is the
Artin isomorphism of K̂× onto GK/G

(2)
K .

The surjectivity of ϕ implies the same for ϕ∗. The goal of this paper is the
determination of the kernel of ϕ∗. This is equivalent to the determination
of the kernel of the component homomorphisms

ϕ∗(l) : L(A(l)) → L(GK(l)),

where l is any prime and B(l) is the maximal pro-l quotient of a profinite
group B. The difficult case occurs when l = p, the residual characteristic
of K. If K is of characteristic p, or if K is of characteristic zero and does
not contain a primitive pth root of unity, this kernel is zero. So we assume
that K is of characteristic zero and contains a primitive pκth root of unity
ζ with κ chosen largest possible. In this case GK(p) is a Demushkin group
so that the cup-product

H1(GK(p),Z/pκZ)×H1(GK(p),Z/pκZ) → H2(GK(p),Z/pκZ) = Z/pκZ
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is non-degenerate. We now assume that p is odd. In this case, the form is
alternating and so we obtain by duality an element in

Gab
K /(Gab

K )pκ

∧Gab
K /(Gab

K )pκ

.

Using the Artin isomorphism, this determines an element

τ ∈ L2(A(p))⊗ Z/pκZ

which is determined by GK up to a unit of Z/pκZ. Our main result is the
following theorem:

Theorem 1.1. The kernel of ϕ∗(p) is the ideal of L(A(p)) generated by
the elements of the form [ad(λ)(ζ), ad(λ)(τ)], where λ is an element of the
enveloping algebra of L(A(p)).

E.-W. Zink [Zi1], [Zi2] studied ϕ∗2 : L2(K̂×) → L2(GK) and showed that
ϕ∗2 is an isomorphism. His main interest in [Zi1], [Zi2] concerns the filtration
(L2(GK)r)r∈R+ of L2(GK) = G

(2)
K /G

(3)
K induced by the ramification groups

Gr
K of GK and the inverse image of this filtration in L(K̂×). His results

were augmented by Cram [Cr] and Kaufhold [Ka]. But the results of these
three authors are far from the goal of giving an independent description of
{ϕ−1

∗2 (L2(GK)r) | r ∈ R+}. There is of course a corresponding question for
(ϕ−1
∗n (Ln(GK)r))r∈R+ , but it will not be considered here.
The present paper originated from the thesis of the second author [Ku],

directed by the first, and assisted by important suggestions of the third
author. Section 5 was added by the third author.

2. Lie algebras. In this section we introduce the necessary definitions
and facts about groups and related Lie algebras.

2.1. Let k be a commutative, associative ring with unity and let A be a
k-module. Let T (A) be the non-associative tensor algebra of A considered
as a k-module, i.e.

T (A) :=
∞⊕

n=1

Tn(A),

T1(A) := A, T2(A) := A⊗k A,

Tn(A) :=
⊕

p+q=n

Tp ⊗k Tq.

Then we define the Lie algebra L(A) as the factor algebra of T (A) by the
ideal of T (A) generated by all elements of the form

a⊗ a, (a⊗ b)⊗ c+ (b⊗ c)⊗ a+ (c⊗ a)⊗ b,



Nilpotent local class field theory 47

with a, b, c ∈ T (A). Since this ideal is homogeneous, we have

L(A) =
∞⊕

n=1

Ln(A), Ln(A) := (Tn(A) + I(A))/I(A),

and so L is a graded Lie algebra over k.
If ϕ : A → B is a homomorphism of k-modules, then to ϕ corresponds

a homomorphism L(ϕ) of L(A) into L(B) so that L is a covariant functor
from the category of k-modules to the category of graded Lie algebras over k.
Moreover, if L =

⊕∞
n=1 Ln is any graded Lie algebra over k, there is a unique

homomorphism ψ of L(L1) into L such that

ψ(a) = a for a ∈ L1.

In the next section we apply this construction with k = Z to extend it to
the case where A is a profinite abelian group. If A is finitely generated, we
recover the above construction with k = Ẑ, the total profinite completion
of Z.

2.2. Now let A be a profinite abelian group and U the filtration of A
given by the set of open subgroups of A. We define Ln(A) as the projective
limit of the groups Ln(A/U) with U ∈ U. Then A and Ln(A) are Ẑ-modules.
In the following algebra means always Ẑ-algebra. The product of a, b ∈ L(A)
is denoted by [a, b]. The functor L is a covariant functor from the category of
profinite abelian groups to the category of profinite graded Lie algebras, i.e.,
graded Lie algebras (over Ẑ) whose homogeneous components are profinite.

2.3. Let L =
⊕∞

n=1 Ln be any profinite graded Lie algebra. Then we
have a natural homomorphism ψ of L(L1) into L with ψ(a) = a for a ∈ L1.

2.4. The proof of our main result (Theorem 1.1) is based on the com-
parison of various filtrations of a profinite group G.

A filtration of G is a sequence of descending closed subgroups Gi (i ≥ 1)
such that the following conditions are fulfilled:

(i) G1 = G,
(ii) [Gi, Gj ] ⊆ Gi+j for i, j ∈ N,

where [Gi, Gj ] denotes the closed subgroup of G generated by the commu-
tators

(g, h) := g−1h−1gh for g ∈ Gi, h ∈ Gj .

The most interesting filtration is the descending central series (G(i)), which
is defined by induction:

G(1) := G, G(i+1) := [G,G(i)].

One proves by induction that (G(i)) is a filtration of G using the following
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well known rules for commutators (see e.g. [Hl], 10.2), where xy means
y−1xy:

(h, g) = (g, h)−1,(1)
hg = h(h, g),(2)

(f, gh) = (f, h)(f, g)((f, g), h),(3)
(fg, h) = (f, h)((f, h), g)(g, h),(4)

(fg, (g, h))(gh, (h, f))(hf , (f, g)) = 1,(5)

for f, g, h ∈ G.
We associate with a filtered groupG a graded Lie algebra L(G) as follows.

By definition, the groups Gi are normal subgroups of G. We put

Ln(G) := Gn/Gn+1 and [g, h] := (g, h)

for g ∈ Gn, h ∈ Gm. It is easy to see that this definition does not depend
on the choice of g and h in the classes g ∈ Ln(G) and h ∈ Lm(G) and that
it defines the structure of a profinite graded Lie algebra on

L(G) :=
∞⊕

n=1

Ln(G)

by (1)–(5).

2.5. We now restrict ourselves to the special situation of a free pro-
p-group F , where p denotes a prime number (see [Se2] for the definition
of F ).

Theorem 2.1. Let L(F ) be the Lie algebra associated with the descend-
ing central series of F . The natural map ψ : L(F/F (2)) to L(F ) is an
isomorphism of graded Lie algebras over Zp.

P r o o f. Let F be the free pro-p-group with generator system {si | i ∈ I}
and let S be any finite subset of I. Furthermore, let FS be the factor group
of F with generator system S. Then F is the projective limit of the groups
FS and Ln(F/F (2)) (resp. L(F )) is the projective limit of the profinite
groups Ln(FS/F

(2)
S ) (resp. Ln(FS)). Hence, it is sufficient to prove the

theorem for free pro-p-groups F with finite generator rank N .
Let s1, . . . , sN be the free generator system of F and let xi be the class of

si in F/F (2). Then F/F (2) is the free Zp-module with generators x1, . . . , xN

and hence L(F/F (2)) is the free Zp-Lie algebra with generators x1, . . . , xN .
On the other hand, L(F ) as well is the free Zp-Lie algebra with generators
x1, . . . , xN as follows from the argument of [Wi1] applied to the embedding
of F into the completed group algebra Zp (see §2.7). We have
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rkZp
Ln(F/F (2)) = rkZp

Ln(F ) =
1
n

∑
d|n

µ(n/d)Nd,

where µ denotes the Möbius function.
This completes the proof of Theorem 2.1 since ψ is surjective.

2.6. The special filtrations (Gi) of a pro-p-group G with the property

Gp
i ⊆ Gi+1

are called p-filtrations.
If (Gi) is a p-filtration of G, then L(G) is an Fp-Lie algebra with an extra

homogeneous operator π of degree 1 defined by

π(gGi+1) = gpGi+2, i = 1, 2, . . .

Using induction over s one proves

(gh)s ≡ gshs(g, h)s(s−1)/2 (mod Gi+j+1) for g ∈ Gi, h ∈ Gj .

This shows that π is linear for p > 2 and for i > 1 if p = 2. If p = 2 and
a, b ∈ L1(G) one has

π(a+ b) = πa+ πb+ [a, b].

Using (2), one proves by induction over s that

(gs, h) ≡ (g, h)s((g, h), g)s(s−1)/2 (mod G2i+j+1) for g ∈ Gi, h ∈ Gj .

This shows that

π[a, b] = [πa, b]

if a ∈ Li(G), b ∈ Lj(G) and p > 2 or if i > 1. Altogether we see that L(G)
is a graded Fp[π]-Lie algebra in the case where p > 2 and (Gn) (n ≥ 1) is
a p-filtration. If p = 2 then L>1(G) :=

⊕∞
n=2 Ln(G) is a graded Fp[π]-Lie

algebra.

2.7. Let F be a free pro-p-group with generators s1, . . . , sN . Beside the
filtration (F (i))i≥1 we need more general filtrations called κ-filtrations, and
corresponding p-filtrations called (κ, p)-filtrations. They were introduced in
[Lz], II.3.2, in much greater generality, but we restrict ourselves to what will
be necessary for our paper.

For the definitions of these filtrations we consider the completed group
algebra A := Zp[[F ]], which is isomorphic to the ring Zp[[X1, . . . , XN ]] of
associative formal power series in the variables X1, . . . , XN with coefficients
in Zp. The isomorphism α is defined by α(si) = 1 + Xi ([Se1]). In the
following we identify A and Zp[[X1, . . . , XN ]] by means of α. The restriction
of α to F yields the Magnus representation of F .
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For any natural number κ we define a valuation v of A in the sense of
Lazard ([Lz], I.2.2) by means of

v
( ∑

i1,...,ik

ai1,...,ik
Xi1 . . . Xik

)
= inf

i1,...,ik

{bi1,...,ik
}

with
bi1,...,ik

= νp(ai1,...,ik
) + (i1 + . . .+ ik)κ,

where νp denotes the p-adic (exponential) valuation of Zp. Then v defines
a filtration (Ai) of A with

Ai := {u ∈ A | v(u) ≥ i}.
We define the (κ, p)-filtration of F by

F̂ (i) := {x ∈ F | v(x− 1) ≥ i}.

The associated Lie algebra L̂ =
∑∞

n=1 L̂n is an Fp[π]-Lie algebra if p > 2 or
κ > 1. In what follows, we will assume that p > 2.

In the same way one can define the filtration (F̃ (n)) by means of the
valuation w of A which is given by

w
( ∑

i1,...,ik

ai1,...,ik
Xi1 . . . Xik

)
= inf

i1,...,ik

{ci1,...,ik
}

with
ci1,...,ik

= (i1 + . . .+ ik)κ.
We define a filtration (Bi) of A:

Bi := {u ∈ A | w(u) ≥ i}.
Then

F̃ (i) := {x ∈ F | w(x− 1) ≥ i}.
We denote the associated Lie algebra by L̃ =

∑∞
n=1 L̃n. The Lie algebra L̃ is

a free Lie algebra over Zp on the images of s1, . . . , sN in Lκ = F̃ (κ)/F̃ (κ+1).
Let L be the Lie subalgebra of L̂ generated by σi := siF̂

(κ+1),
i = 1, . . . , N , and let

Ln := L̂n ∩ L, n = 1, 2, . . .

Then Ln = {0} if n 6≡ 0 (mod κ).
We have the following structure theorem for L̂:

Theorem 2.2. L is the free Fp-Lie algebra with generators σ1, . . . , σN

and L̂ is the free Fp[π]-Lie algebra with generators σ1, . . . , σN .

P r o o f. This result is well known. It is proved in [Lz], II.3.2, and goes
already back to A. Skopin ([Sk]). In fact, the assertions follow easily from
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the embedding of F in the algebra A and the theorem of Witt about Lie
polynomials in A ([Wi1]).

2.8. We want to compare the κ- and the (κ, p)-filtration of the free
pro-p-group F . For this purpose we introduce filtrations in L̃n and L̂n. In
L̃n our filtration is simply L̃h

n := phL̃n, h ≥ 1.

Proposition 2.3.

phL̃n = (F̃ (n) ∩ F̂ (n+h))F̃ (n+1)/F̃ (n+1)

= (F̃ (n) ∩ F̂ (n+h)F̃ (n+1))/F̃ (n+1).

P r o o f. An element in phL̃n has the form xph

F̃n+1 with x ∈ F̃ (n).
Therefore, xph ∈ F̂ (n+h). Let now y be an element of F̃ (n) ∩ F̂ (n+h). We
want to show that yF̃ (n+1) is in phL̃n.

We assume that n = κm with m ∈ N. Then

y ≡ 1 + yn (mod Bn+1),

where yn is a homogeneous polynomial of degree m in A. Furthermore,
y ∈ F̂ (n+h) if and only if yn ∈ An+h. This is possible only if each coefficient
of the polynomial yn is divisible by ph. Hence y has the form

y ≡ 1 + phzn (mod Bn+1)

with zn ∈ Bn. By the theorem of Witt ([Wi1]), zn is a Lie polynomial in
A. Hence, there is a z ∈ F̃ (n) such that z ≡ 1 + zn (mod Bn+1) and this
implies zph

F̃ (n+1) = yF̃ (n+1) ∈ phL̃n.

By Theorem 2.2 the group L̂n has the form

L̂n =
n−1⊕
m=0

πmLn−m.

We define a filtration (L̂(h)
n )1≤h≤n of L̂n by

L̂(h)
n :=

n−h⊕
m=0

πmLn−m.

Proposition 2.4.

L̂(h)
n = (F̂ (n) ∩ F̃ (h))F̂ (n+1)/F̂ (n+1) = (F̂ (n) ∩ F̃ (h)F̂ (n+1))/F̂ (n+1).

The proof of this proposition is a variation of the proof of Theorem 2.2.

Now we define the following maps ωh,n from L̃
(h)
n onto πhLn, which allow
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us to compare L̃ with L̂:

ωh,n : L̃(h)
n = (F̃ (n) ∩ F̂ (n+h))F̃ (n+1)/F̃ (n+1)

→ (F̃ (n) ∩ F̂ (n+h))F̃ (n+1)F̂ (n+h+1)/F̃ (n+1)F̂ (n+h+1)

∼=→ (F̃ (n)F̂ (n+h+1) ∩ F̂ (n+h))/(F̃ (n+1)F̂ (n+h+1) ∩ F̂ (n+h))
∼=→ L̂

(n)
n+h/L̂

(n+1)
n+h

∼=→ πhLn,

where the arrows denote the corresponding natural maps.

Proposition 2.5. kerωh,n = L̃
(h+1)
n .

P r o o f. By definition

kerωh,n = (F̃ (n) ∩ F̂ (n+h+1)F̃ (n+1))/F̃ (n+1) = L̃(h+1)
n .

3. The Artin map. We first recall some facts from class field theory
(see e.g. [We]).

3.1. A local field is a finite extension of the field Qp of rational p-adic
numbers (case of characteristic 0) or a finite extension of the field Fp((x))
of power series in the variable x over the field Fp with p elements (case of
characteristic p). A global field is a finite extension of the field Q of rational
numbers (case of characteristic 0) or a finite extension of the field Fp(x) of
rational functions with coefficients in Fp.

Let K be a local or global field. Then one has a formation module AK

associated with K, which is the multiplicative group K× if K is a local
field, and the idele class group of K if K is a global field. Furthermore, let
ÂK be the profinite completion of AK . Then the Artin map is a canonical
map from AK into the Galois group of the maximal abelian extension Kab

of K, which induces an isomorphism φK from ÂK onto G(Kab/K). In the
following we call φK the Artin map.

3.2. Let K be a fixed separable algebraic closure of K and let GK be the
Galois group of K/K. By 2.1–2.4, the map φK induces a homomorphism
of Lie algebras from L(ÂK) onto L(GK), which will be denoted by φK as
well. We let φK,n be the component of degree n of φK . Then φK,1 is the
usual Artin map. We call φK the Artin map of L(ÂK).

3.3. Let Gnil
K be the Galois group of the maximal nilpotent extension

of K in K. Then the kernel of the projection GK → Gnil
K is equal to the

intersection of the groups G(n)
K for n ≥ 1. Therefore, one has a natural

isomorphism of L(GK) onto L(Gnil
K ). Since Gnil

K is canonically isomorphic to
the product of its l-components GK(l), this implies that L(GK) is canoni-
cally isomorphic to the direct product of the Lie algebras L(GK(l)), where
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l runs through all primes. Similarly, the decomposition of ÂK into the di-
rect product of its l-components ÂK(l) yields a canonical decomposition of
L(ÂK) as the product of the Lie algebras L(ÂK(l)). The study of the Artin
map φK therefore reduces to the study of its l-components

φK(l) : L(ÂK(l)) → L(GK(l))

as l varies over all primes. The map φK(p) and its p-component

φK(p) : L(ÂK(p)) → L(GK(p))

with

ÂK(p) :=
∏
l 6=p

ÂK(l), GK(p) :=
∏
l 6=p

GK(l)

are the subjects of our further investigations.

3.4. We now restrict ourselves to the case where K is a local field of
residue characteristic p. We denote the ring of integers of K by OK and the
maximal ideal of OK by p. Hence AK = K× and ÂK is the direct product
of a group (π) generated as topological group by a fixed prime element π,
the group µq−1 of roots of unity in K of order dividing q− 1, where q is the
number of elements in the residue field, and of the group 1 + p of principal
units in K. The group (π) is isomorphic to Ẑ, the total completion of Z,
the group µq−1 is cyclic of order q− 1 and the group 1 + p is a pro-p-group,
where p denotes the residue characteristic of K. The group 1 + p is the
direct product of a finite cyclic group and a free abelian pro-p-group.

The surjectivity of φK implies the surjectivity of φK(p) and φK(p). The
main goal of this paper is the determination of the kernel of φK(p) and
φK(p).

3.5. In this section we consider φK(p). We introduce the following
notations: A profinite group G will be called a p-group if G is pro-nilpotent
and all finite factor groups of G have order prime to p. Corresponding by
a p-extension of K is a Galois extension of K with Galois group being a
p-group.

Proposition 3.1. Let σ be an extension of the Frobenius automorphism
of the maximal unramified p-extension of K and let τ be a topological gen-
erator of the inertia group of GK(p). Then GK(p) is generated as p-group
by σ and τ and has one generating relation

(6) (σ, τ)τ q−1 = 1.

Let σ and τ be the images of σ and τ in L1(GK(p)) = GK(p)/GK(p)(2).
If n ≥ 2, then Ln(GK(p)) is a cyclic group of order q − 1 with generator

(7) [σ, [σ, . . . , [σ, τ ] . . .]].
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P r o o f. The structure of the group GK(p) is well known (see e.g. [Ko1],
p. 95). The relation (6) implies that any element of the form

[a1, [a2, . . . , [an−1, an] . . .]] ∈ Ln(GK(p))

with ai ∈ {σ, τ} is equal to 0 if at least for two of the a1, . . . , an one has
ai = τ . It follows that

(8) [σ, [σ, . . . , [σ, τ ] . . .]] = τ (1−q)n−1
GK(p)(n+1)

is a generator of Ln(GK(p)) and has order q − 1.

For the next proposition we introduce some further notation.
If α ∈ K× we denote by α the image of α under the map

K× → K̂× → K̂×(p).

Let µq−1 be the group of roots of unity of order dividing q − 1 and let ζ
be a generator of µq−1. Furthermore, let π be a prime element of K. Then
the pro-p-group K×(p) is generated by ζ and π. The elements of K×(p) are
uniquely represented in the form ζ

µ
πν with µ = 0, . . . , q − 2, ν ∈ Zp̄, i.e.,

K×(p) ∼= µq−1×Zp̄. We denote by M the derived algebra of L(K×(p)) and
by N the ideal of L(K×(p)) generated by all the elements of the form

[ζ, ad(π)nζ] (n ≥ 1).

Furthermore, let F = L(Z/(q − 1)Z⊕ Z/(q − 1)). With these notations we
have the following proposition.

Proposition 3.2. As a graded Lie algebra, M is isomorphic to the
derived algebra of F and the kernel of the map φK(p) is N . Furthermore,

Mn = Nn ⊕ Z/(q − 1)Z · ad(π)n(ζ) (n ≥ 1).

P r o o f. The natural projection K̂×(p) → K̂×(p)/K̂×(p)q−1 induces a
surjective homomorphism φ′ of graded Lie algebras. Since K̂×(p)/K̂×(p)q−1

is a free Z/(q − 1)Z-module of rank 2 it follows that the restriction of φ′

to M is an isomorphism and L(K̂×(p)/K̂×(p)q−1) is the free graded Lie
algebra with two generators over the ring Z/(q− 1)Z. Furthermore, we can
choose σ and τ in Proposition 3.1 such that

φK(p)(π) = σ, φK(p)(ζ) = τ .

Proposition 3.1 implies that for n ≥ 2 the group Ln(K̂×(p)) is the direct
sum of (kerφK(p))n and the cyclic group of order q − 1 generated by

[π, [π, . . . , [π, ζ] . . .]].

This proves Proposition 3.2.

4. The map φK(p). It remains to consider φK(p). This is the main
goal of the paper. We restrict ourselves to the case p 6= 2.
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The structure of GK(p) is well known (see e.g. [La0], [Ko1], pp. 96–105):
If CharK = p, or if K does not contain the pth roots of unity, then

GK(p) is a free pro-p-group and φK(p) is an isomorphism.

Proposition 4.1. Let K be a local field of characteristic p or of char-
acteristic 0 and not containing the pth roots of unity. Then φK(p) is an
isomorphism of L(K̂×(p)) onto L(GK(p)).

Now let K be a local field of characteristic 0 which contains the pth roots
of unity. Then K̂×(p) is isomorphic to µpκ ×ZN−1

p , where N = [K : Qp]+2
and κ is the natural number such that µpκ ⊂ K but µpκ+1 6⊂ K. Then GK(p)
is a Demushkin group and so is a group with N generators s1, . . . , sN and
one generating relation r. One can choose s1, . . . , sN such that

r = spκ

1 (s1, s2)(s3, s4) . . . (sN−1, sN ).

In the following we identify GK(p) with F/R, where F is the free pro-p-
group with generators s1, . . . , sN and R is the closed normal subgroup of F
generated by r. The projection F → GK(p) induces a surjective homomor-
phism

θ : L(F ) → L(GK(p)).

We let ψ be the unique homomorphism of L(F ) onto L(K̂×(p)) such that

θ = φK(p)ψ.

We first study θ. With the identification

GK(p) = F/R, R = (r)

this study is a question of group theory. We introduce the following nota-
tions:

R(n) := R ∩ F (n),

Nn(R) := R(n)F (n+1)/F (n+1),

N (R) :=
∞∑

n=1

Nn(R).

Proposition 4.2. Nn(R) is the kernel of θn : Ln(F ) → Ln(F/R).

P r o o f. We have
Ln(F/R) = (F/R)(n)/(F/R)(n+1)

∼= F (n)R/F (n+1)R ∼= F (n)/F (n+1)(F (n) ∩R).

Hence, ker θn = F (n+1)(F (n) ∩R)/F (n+1).

Let U be the enveloping algebra of L(F ) ([Se1]). Since the Zp-Lie algebra
L(F ) is a free algebra generated by

{σi := siF
(2) | i = 1, . . . , N}
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we can identify U with the ring of polynomials in the non-commutative
indeterminants σ1, . . . , σN with coefficients in Zp. The ring U operates on
L(F ) by adjoint action such that

ad(α)β = [α, β],
ad(λ1λ2)α = ad(λ1)ad(λ2)α

and
ad(λ1 + λ2)α = ad(λ1)α+ ad(λ2)α

for α, β ∈ L(F ), λ1, λ2 ∈ U .
We put

t := (s1, s2) . . . (sN−1, sN ), τ := tF (3) ∈ L2(F ).

Let N ′(R) be the ideal of N (R) generated by the elements

(9) pκσ1, [ad(λ)σ1, ad(λ)τ ] (λ ∈ U).

Then N ′(R) is generated as a Zp-module by the element pκσ1 together with
the elements

(10) [ad(λ)σ1, ad(λ)τ ],
(11) [ad(λ)σ1, ad(µ)τ ] + [ad(µ)σ1, ad(λ)τ ]

with λ, µ homogeneous elements of U . The goal of this section is the proof
of the following theorem:

Theorem 4.3. N (R) = N ′(R).

Corollary 4.4. The subalgebra of L(GK(p)) generated by σ2, . . . , σN

is a free Lie algebra over Zp on these generators.

The corollary follows immediately from the fact that N (R) is a subset
of the ideal of L generated by σ1.

To prove the theorem we first show that N ′(R) ⊆ N (R). Firstly,

rF (2) = spκ

1 F (2) = pκσ1,

and, to show that the elements of the form (10), (11) lie in N (R), we may
assume that

λ = σi1 . . . σil
and µ = σj1 . . . σjk

.

Then

[ad(λ)σ1, ad(λ)τ ] = ((si1 , . . . , (sil
, s1) . . .), (si1 , . . . , (sil

, t) . . .))F (2l+4).

Since r = spκ

1 t, we have

(sil
, t) ∈ (sil

, s−pκ

1 r)F (4)R = (sil
, s−pκ

1 )F (4)R
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and
(sil

, s−pκ

1 )F (4) = (sil
, s1)−pκ

((sil
, s1), s1)−pκ(−pκ+1)/2F (4)

= (sil
, s1)−pκ

((sil
, s1), r)(p

κ−1)/2F (4).

We get

((si1 , . . . , (sil
, s1) . . .), (si1 , . . . , (sil

, t) . . .))F (2l+4) ∈ RF (2l+4) ∩ F (2l+3)

and this implies

[ad(λ)σ1, ad(λ)τ ] ∈ N2l+3(R),

which shows that elements of the form (10) belong to N (R). In a similar
manner one shows that the elements of the form (11) also belong to N (R).

To show that N (R) ⊆ N ′(R) we use a technique of [La3] consisting in
the comparison of the κ- and (κ, p)-filtrations of F , where now κ is equal
to the κ appearing in the defining relation r = spκ

1 (s1, s2) . . . (sN−1, sN ) of
GK(p).

We introduce the following notation as supplement to the notation
in 2.7–2.8:

σ̃i := siF̃
(κ+1) ∈ L̃κ, i = 1, . . . ,m+ 2,

τ̃ := (s1, s2) . . . (sN−1, sN )F̃ (2κ+1) ∈ L̃2κ,

Ñn(R) := (R ∩ F̃ (n))F̃ (n+1)/F̃ (n+1),

Ñ (R) :=
∞∑

n=1

Ñn(R).

Then Ñ ′(R) is the ideal of L̃ generated by pκσ̃1 and ad(λ)σ̃1 ∧ ad(λ)τ̃ for
λ ∈ Ũ , where Ũ denotes the enveloping algebra of L̃. Set

σ̂i := siF̂
(κ+1) ∈ L̂κ, i = 1, . . . ,m+ 2,

τ̂ := (s1, s2) . . . (sN−1, sN )F̂ (2κ+1) ∈ L̂2κ,

N̂n(R) := (R ∩ F̂ (n))F̂ (n+1)/F̂ (n+1),

N̂ (R) :=
∞⊕

n=1

N̂n(R).

The homogeneous component N̂2κ(R) contains the element

rF̂ (2κ+1) = πκσ̂1 + τ̂

and by Theorem 4′ of [La1], N̂ (R) is even generated as an ideal of L̂ by
πκσ̂1 + τ̂ . This is the initial point of our proof.

Now we show Ñ ′(R) = Ñ (R). The proof of Ñ ′(R) ⊆ Ñ (R) is similar to
the proof of N ′(R) ⊆ N (R).
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Let U be the enveloping algebra of L. Then U can and will be iden-
tified with the Fp-subalgebra of the enveloping algebra Û of L̂ generated
by σ̂1, . . . , σ̂N . Any non-zero homogeneous element λ of L̂ can be uniquely
written in the form

(12) λ = λ0 + πλ1 + . . .+ πlλl

with λ0, λ1, . . . , λl ∈ U and λl 6= 0. Since deg(λl) ≡ 0 (mod κ) and
deg(λl−i)
= deg(λl) + i, we have λi = 0 if i 6≡ l (mod κ).

Let I be the ideal of L generated by σ̂1 and let N be the ideal of L
generated by the elements of the form

(13) [ad(λ)σ̂1, ad(λ)τ̂ ]

with λ ∈ U .

Lemma 4.5.

(14)

(15)
N̂m(R) ∩ L̂(m−j)

m ⊆

{
πjNm−j + L̂

(m−j+1)
m if j < κ,

πjIm−j + L̂
(m−j+1)
m if j ≥ κ.

P r o o f. Any element % of N̂m(R) has the form ad(λ)(πκσ̂1 + τ̂) with λ
as above. If l = dκ+ e with 0 ≤ e < κ, we have

% = πead(λe)τ̂ +
d∑

j=1

πe+jκ(ad(λe+(j−1)κ)σ̂1 + ad(λe+jκ)τ̂) + πl+κad(λl)σ̂1.

If ad(λl)σ̂1 6= 0, we have

% ∈ πl+κIm−(l+κ) + L̂(m−(l+κ)+1)
m ,

which yields the required result.
Now suppose that ad(λl)σ̂1 = 0. Then λl lies in the annihilator of σ̂1.

By [La4], Theorem 2, the annihilator of σ̂1 consists of the elements u ∈ U
of the form

u =
∑
v∈U

av(ad(v)σ̂1)v (av ∈ U).

Therefore λl has this form. If l < κ, we have

% = πl
∑
v∈U

av[ad(v)σ̂1, ad(v)τ̂ ] ∈ πlNm−l

as required. If l ≥ κ and ad(λl−κ)σ̂1 + ad(λl)τ̂ 6= 0, we have

% ∈ πlIm−l + L̂(m−l+1)
m



Nilpotent local class field theory 59

as required. If ad(λl−κ)σ̂1 + ad(λl)τ̂ = 0 we get

ad(λl−κ)σ̂1 = −ad(λl)τ̂ = −
∑
v∈U

ad(av(ad(v)σ̂1)v)τ̂

=
∑
v∈U

ad(av(ad(v)τ̂)v)σ̂1

since
ad((ad(v)σ̂1)v)τ̂ = ad(ad(v)σ̂1)ad(v)τ̂ = [ad(v)σ̂1, ad(v)τ̂ ]

= −[ad(v)τ̂ , ad(v)σ̂1] = −ad((ad(v)τ̂)v)σ̂1.

Hence
λl−κ −

∑
v∈U

av(ad(v)τ̂)v

is in the annihilator of σ̂1. Therefore,

λl−κ ∈ ann(σ̂1) + ann(τ̂).

If ad(λl−(j+1)κ)σ̂1 + ad(λl−jκ)τ̂ = 0 for 1 ≤ j ≤ d then, repeating the
above argument, we get

λe ∈ ann(σ̂1) + ann(τ̂),

which yields % ∈ πeNm−e. Otherwise, there is a j such that

ad(λl−(j−1)κ)σ̂1 + ad(λl−jκ)τ̂ 6= 0

and
% ∈ πl−jκIm−(l−jκ) + L̂(m−(l−jκ)+1)

m .

R e m a r k. Lemma 4.5 deals with the ideal N̂ (R) of the graded
Fp-algebra L̂ generated by πκσ̂1 + τ̂ . It is easy to be seen that Lemma
4.5 is valid in the case p = 2 as well. This will be used in the proof of
Theorem 5.1.

Corollary 4.6. N̂ (R) ∩ L = N .

We now consider the homomorphism ω0,n of L̃n onto Ln. By Proposi-
tion 2.5 its kernel is pL̃n. Furthermore, ω0,n maps Ñn(R) onto Ln ∩ N̂n(R)
= Nn. Hence

(16) Ñ (R) ⊆ Ñ ′(R) + pL̃.

More generally, we prove by induction

(17) Ñ (R) ⊆ Ñ ′(R) + p1+hL̃, h = 0, 1, . . . ,

using the homomorphisms ωh,n.

Lemma 4.7. Ñn(R) ∩ phL̃n = (R ∩ F̃ (n) ∩ F̂ (n+h))F̃ (n+1)/F̃ (n+1).



60 H. Koch et al.

P r o o f. Let η ∈ Ñn(R) ∩ phL̃n. Then η = yF (n+1) with y = uph

v,
u ∈ F̃n, v ∈ F̃n+1. Since F̃ (n+1) ⊆ F̂ (n+1), we have v ∈ F̃ (n+1) ∩ F̂ (n+1).
Let l ≥ 1 be largest such that there exists s ∈ R ∩ F̃ (n+1) with vs ∈
F̂ (n+l)∩F̃ (n+1). Assume that δ < h and let δ be the image of vs in (F̂ (n+l)∩
F̃ (n+1))F̂ (n+l+1)/F̂ (n+l+1). Then

δ ∈ N̂n+l(R) ∩ L̂(l−m−1)
n+l

for some integer m with 0 ≤ m ≤ l, which we can assume is maximal and
6= l. By 4.5, we have δ = δ1 + δ2 where δ2 ∈ L̂(l−m−2)

n+l and

δ1 ∈
{
πl−1Nn+1 if l ≤ κ,
πl−1In+1 + πl−1Nn+1 if l > κ,

where I is the ideal of L generated by σ̂1. It follows that there is an el-
ement y1 ∈ F̂ (n+l) ∩ F̃ (n+1) with δ1 = y1F̂

(n+l+1). But then vyy−1
1 = δ2

contradicting the maximality of m.

Now, since

ωh,n((R ∩ F̃ (n) ∩ F̂ (n+h))F̃ (n+1)/F̃ (n+1))

= ((R ∩ F̃ (n) ∩ F̂ (n+h))F̂ (n+h+1)/F̂ (n+h+1))L̂(n+1)
n+h /L̂

(n+1)
n+h

= (N̂n+h(R) ∩ L̂(n)
n+h) + L̂

(n+1)
n+h /L̂

(n+1)
n+h ,

we have

ωh,n(Ñn(R) ∩ phL̃n) = (N̂n+h(R) ∩ L̂(n)
n+h) + L̂

(n+1)
n+h /L̂

(n+1)
n+h .

Assume that we proved

Ñ (R) ⊆ Ñ ′(R) + phL̃

for a certain h. We want to show

Ñ (R) ⊆ Ñ ′(R) + ph+1L̃.

Let ξ ∈ Ñn(R). Then there exists ξ′ ∈ Ñ ′
n such that ξ′′ = ξ − ξ′ ∈ phL̃n. It

follows that ξ′′ ∈ Ñn(R) ∩ phL̃n. By Lemma 4.7 we have

(18)

(19)
ωh,n(ξ′′) ∈

{
πhNn if h < κ,
πhIn + πhNn if h ≥ κ.

Hence there exists δ ∈ Ñ ′
n(R) such that ωh,n(ξ′′) = ωh,n(δ), which implies

that ξ′′ − δ ∈ ph+1L̃n and hence that ξ − (δ + ξ′) ∈ ph+1 which com-
pletes the inductive step. It follows that Ñ (R) ⊆ Ñ ′(R) and hence that
Ñ (R) = Ñ ′(R).

Since the grading of L̃ is only a rescaling of the grading of L it follows
immediately that N (R) = N ′(R), i.e. Theorem 4.3.
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Now we consider the map

ψ : L(F ) → L(ÂK(p))

in connection with θ : L(F ) → L(GK(p)). Let siR, 1 ≤ i ≤ m + 2, be a
system of generators of F/R = GK(p) such that R = (r) with

r = spκ

1 [s1, s2] . . . [sN−1, sN ].

Then (see e.g. [Ko1], Lemma 10.7) there are elements α1, . . . , αN in K×

such that (
αi

Kab(p)/K

)
= siRF

(2),

and α1 is a root of unity of order pκ in K.
Since the kernel of ψ : L1(F ) → K̂×(p) is generated by pκσ1, where

σi := siF
(2), the kernel of ψ, as an ideal of L(F ), is generated by pκσ1 as

well.
Combining our knowledge of θ and ψ we get the following result about

the kernel of the Artin map.

Theorem 4.8. The kernel of the Artin map φK(p) is generated as an
ideal of L(K̂×(p)) by the elements of the form

[ad(λ)α1, ad(λ)β] (λ ∈ U),

where U is the enveloping algebra of L(K̂×(p)) and

β = [α1, α2] + . . .+ [αN−1, αN ].

This yields Theorem 1.1 since, by Satz 7.23 of [Ko1], the image of β in
(L2(K̂×(p)))⊗ Z/pκZ is equal to τ .

Corollary 4.9. The kernel of φK(p) is pκ-torsion and , modulo torsion,
L(K̂×(p)) is a free Lie algebra over Zp with basis the images of α2, . . . , αN .

Actually, as we shall see in Section 5, the kernel of φK(p) is a free
Z/pκZ-module as is the torsion submodule of L(GK(p)). We shall, more-
over, give formulae for the ranks of these free modules.

5. The module structure of L(GK(p)) and kerφK(p). Let LZ =
LZ(x1, . . . , xN ) be the free Lie algebra over Z on the elements x1, . . . , xN

and let U be its enveloping algebra. Assume that N is even, let

y = [x1, x2] + [x3, x4] + . . .+ [xN−1, xN ],

and let N be the ideal of LZ generated by the elements of the form [ad(u)x1,
ad(u)y] with u ∈ U . Then, by Theorem 4.8, L(GK(p)) is isomorphic to
(LZ/N )⊗ Zp modulo the ideal generated by pκx1.

Theorem 5.1. LZ/N is a free Z-module.
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P r o o f. Since the homogeneous components of LZ/N are finitely gener-
ated, it suffices to prove that, for each prime l, the homogeneous components
of (LZ/N )⊗Fl have ranks which are independent of l. Let L = LZ⊗Fl and
let N be the image of N in L. Then

L/N = (LZ/N )⊗ Fl.

Let L̂ = L⊗ Fl[π], where π is an indeterminate over Fl of degree 1 and let
N̂ (R) as in Section 4 (κ = 1) be the ideal of L̂ generated by πx1 + y, where
xi is the image of xi in L̂ and

y = [x1, x2] + [x3, x4] + . . .+ [xN−1, xN ].

Then, since L̂ is the free Lie algebra over Fl[π] on x1, . . . , xN , we have
N̂ (R) ∩ L = N by Corollary 4.6, which implies that

L/N ∼= (L+ N̂ (R))/N̂ (R).

By Lemma 4.5 the initial form πsλ0 of a homogeneous element

λ = πsλ0 + πs−1λ1 + . . .+ λs, λ0 6= 0,

of N̂ (R) is in the ideal of L̂ generated by x1. Hence

(N̂ (R) + L) ∩ πL̂(x2, . . . , xN ) = 0,

which implies that L̂ is the direct sum of N̂ (R)+L and πL̂(x2, . . . , xN ) and
hence that

dim(L/N)n = dim(L̂/N̂ (R))n − dim(πL̂(x2, . . . , xN ))n

= dim(L̂/N̂ (R))n − dim(L̂(x2, . . . , xN ))n

+ dim(L(x2, . . . , xN ))n.

Now, by Théorème 3 of [La1], L̂/N̂ (R) is a free graded Fl[π]-module and so

L̂/N̂ (R) ∼= (L/(y))⊗Fl
Fl[π]

as graded Fl-modules. Now, by [La1], Théorème 2, the Poincaré series of
the enveloping algebra of L/(y) is

1
1−Nt+ t2

=
1

(1− β1t)(1− β2t)
,

where β1 + β2 = N , β1β2 = 1. If an = dimFl
(L/(y))n, we have (by the

Birkhoff–Witt Theorem)∏
n≥1

1
(1− tn)an

=
1

1−Nt+ t2
,
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which yields by a standard calculation (see [Se1], LA 4.5–4.6),

an =
1
n

∑
d|n

µ(n/d)(βd
1 + βd

2 ).

It follows that

dim(L̂/N̂ (R))n =
n∑

k=1

1
k

∑
d|k

µ(k/d)(βd
1 + βd

2 )

and hence that

dim(L/N )n =
n∑

k=1

1
k

∑
d|k

µ(k/d)(βd
1 + βd

2 − (N − 1)d)(20)

+
1
n

∑
d|n

µ(n/d)(N − 1)d

is independent of l.

Theorem 5.2. We have

kerφK(p)n
∼= (Z/pκZ)cn , Ln(GK(p)) ∼= (Z/pκZ)bn ⊕ Zdn

p ,

where

bn =
n∑

k=1

1
k

∑
d|k

µ(k/d)(βd
1 + βd

2 − (N − 1)d),

cn =
n−1∑
k=1

1
k

∑
d|k

µ(k/d)((N − 1)d − βd
1 − βd

2 ) +
1
n

∑
d|n

µ(n/d)(Nd− βd
1 − βd

2 ),

dn =
1
n

∑
d|n

µ(n/d)(N − 1)d.

P r o o f. By Theorem 4.8 we have kerφK(p) isomorphic to N ⊗ Z/pκZ,
which gives the first isomorphism since the Z/pκZ-rank of Nn ⊗ Z/pκZ is
the dimension of Nn over Fp, which in turn equals cn.

Again, by Theorem 4.8, the torsion submodule of Ln(GK(p)) is isomor-
phic to ((x1)/N )⊗Z/pκZ, and Ln(GK(p)) modulo torsion is isomorphic to
the free Lie algebra over Zp on N − 1 generators. This yields the second
isomorphism since the Z/pκZ-rank of ((x1)/N )⊗Z/pκZ is the dimension of
(x1)/N over Fp, which in turn is equal to bn.
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