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On an equation with prime numbers
by

A. KuMcHEV (Columbia, S.C.) and T. NEDEVA (Plovdiv)

1. Introduction. B. I. Segal ([13], [14]) was the first to consider in
1933 additive problems with non-integer degrees. He studied the inequality

(1) lz{ + 25+ ...+ 2, — N| <e
and the equation
(2) [#5] + [z5] + ... + [z3] = N,

where ¢ > 1 is not an integer, and proved in both cases that there exists
ko(c) such that the corresponding problem has solutions if & > k¢ and
N is sufficiently large. Later Deshouillers [4] and Arkhipov and Zhitkov
[1] improved Segal’s result on (2). One may also mention the papers of
Deshouillers [5] and Gritsenko [7], where the equation (2) in two variables
was considered.

In 1952 I. I. Piatetski-Shapiro [12] considered (1) with z4,...,z re-
stricted to prime numbers. Let H(c) denote the least k such that the
inequality (1) with fixed ¢ > 0 has solutions in prime numbers for every
sufficiently large real N. Piatetski-Shapiro proved that

H(c
lim sup (c) < 4.
c—o0o Clogc

He also proved that H(c) <5 for 1 < ¢ < 3/2. The theorem of Goldbach
Vinogradov [16] motivates the conjecture that for ¢ close to 1, H(c) < 3.
This was proved by D. I. Tolev [15]. He showed that if 1 < ¢ < 15/14 and
g = N~(1/e)(15/14=¢) 166% N then the quantity

D(N) = Z log p1 log p> log ps
Ip§ +p5+p§—N|<e
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is positive for a sufficiently large N. Recently Y. C. Cai [3] improved the
upper bound for ¢ to 13/12.

In [10] Laporta and Tolev considered the corresponding equation of the
type (2). For 1 < ¢ < 17/16 they proved an asymptotic formula for the sum

R(N) := > log p1 log p2 log ps.
[pfl+[p5]+[ps]=N
In the present paper we improve the range of ¢ they obtained.

THEOREM 1. Assume that 1 < ¢ < 12/11 and § > 0 is arbitrary small.
Then for any sufficiently large integer N we have the asymptotic formula

IP(1+1/c)
- I3/
We also improve the result from [3]. We obtain an asymptotic formula

for the sum D(N). Since the proof is similar to the proof of Theorem 1, we
omit it.

R(N) N3/cfl + O(NS/Cfl exp(—(log N)1/376)).

THEOREM 2. Assume that 1 < ¢ < 11/10 and § > 0 is arbitrary small.
Then for any sufficiently large real N and e > N~1/)01/10=c)+v 40 some
v > 0 we have the asymptotic formula

I'}(1+4+1/c)
I'(3/c)

The range of ¢ in both problems depends on the estimate of an exponen-
tial sum over primes. In [10] and [15] Vaughan’s identity and the exponent
pair (1/2,1/2) are used. We derive Theorem 1 from a more precise estimate
of this sum (Lemma 5 below). To prove it we use the identity of Heath-
Brown [8], van der Corput’s method as described in Chapters 2 and 3 of [6]
and the estimate of a double exponential sum due to Kolesnik [9].

D(N) = 2¢ N3/ L O(eN3/*"Yexp(—(log N)/379)).

2. Notation. Since for 1 < ¢ < 17/16 Theorem 1 is proved in [10],
we can assume that 17/16 < ¢ < 12/11. In this paper n > 0 is a fixed
small number depending only on ¢; P = N'/¢ w = P1=¢=": p p, ... are
primes; a € (0,1); € is an arbitrary small positive number, not necessarily
the same in different appearances. We use [z], {z} and ||z|| for the integral
part of z, fractional part of z and the distance from x to the nearest integer
respectively. A(n) is von Mangoldt’s function. Moreover,

e ¢(x) = exp(2miz);

o £(2) < gl) means that f(z) = O(g());

o f(x) < g(z) means that f(z) < g(z) < f(z);

e  ~ X means that z runs through a subinterval of [ X, 2X];
e f(r1,...,oy) ~a g(r1,...,%,) means that
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8.71+~~~+.7n 871++7n

%f($1 - .. x ) =
ozt ... 0z TR gl oy

for all n-tuples (j1,...,4n) for which it makes sense.

g(z1,...,z,)(1 + O(AQ))

We use sums of two types, which we define in the following way:

Z Z A F(mn),

m~M,n~L
mn~X

Z Z A by F'(mn),

m~M,n~L
mn~X

where the coefficients satisfy the conditions a,, < m®, b, < n®.
We define

o type I sums:

e type 11 sums:

o = exp((log N)'/379).
We also set
S(a) = logp-e(alp]),
p<P
R; = | $*(a)e(—aN)da (i=1,2)
£2;
where 2 = (~w,w) and 25 = (v, 1 — w).

3. Some preliminary results

LEMMA 1. Let D be a subdomain of the rectangle {(z,y) | X <z < 2X,
Y <y <2Y} (X >Y) such that any line parallel to any coordinate azis
intersects it in O(1) line segments. Let «, [ be real numbers, aff # 0,
a+p #1, a+ B # 2, and let f(z,y) be a real sufficiently many times
differentiable function such that f(z,y) ~a Az®y? throughout D. Setting
N =XY,F=AX°Y?, we have

‘ Z e(f(’l),’l/))‘ < (]VF')E(_Fl/?’]\]'l/2 +Ny—1/2 +N5/6
(z,y)€D
+ NF~Y4t Np-l/8x-1/8
+ A2/5p1/5 N9/10 x—2/5 4 A1/4NX_1/4)_
Proof. This is a version of Theorem 1 of [9]. The proof may be found
in [11].

LEMMA 2. Let 3 < U <V < Z < X and suppose that Z —1/2 € N,
X >64Z%U, Z > 4U?, V3 > 32N. Assume further that F(n) is a comple-
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valued function such that |F(n)| < 1. Then the sum
> A(n)F(n)
n~X

may be decomposed into (’)(log10 X)) sums, each either of type 1 with L > Z,
or of type IT with U < L < V.

Proof. This is Lemma 3 of [8].
LEMMA 3. Let x not be an integer, o € (0,1), H > 3. Then

e(—afz}) = Y eula)e(ha) + O(min (1, ﬁ))

Ih|<H

where

_ l—e(~a)
@) = oty
Proof. See Lemma 12 of [2].

In the following lemma we estimate the number N (A) of quadruples
(h1,ha,n1,n3) for which hy,hy ~ H, ny,ns ~ N and
|(h1 + a)n; — (hg + a)n§| S A
LEMMA 4. Suppose that ¢ #0, « € (0,1), A >0, H > 3 and N is large.
Then
N(A) < AHN? ¢+ H3?N log(2HN).
Proof. We follow the approach of D. R. Heath-Brown [8]. We define
the quantity
N (4;a,b) = #{(h1,ha,n1,m2) | hi,ha ~ H, (h1,h2) = a, n1,n2 ~ N,
(n1,n2) = b, [(hy + a)ni — (he + a)n3| < A}

which we are going to estimate. If hy,hy ~ H, ni,ns ~ N and |[(hy +
a)n§ — (ha + a)n§| < A we have

1 ¢ h2+a A h2 h2+05 1
— | — < ) — — <L =,
o h1 + « HNc¢ hl hl + « H
hence
h2 VAN ¢ 1 A
3 2 (= — .
We also have
1/e
n1 h2+()’. A
4 — — .
( ) no <h/1+(l’.> < HNc¢
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From (3) and (4), arguing as on pp. 256257 of [8], we obtain

A H?N? . (H? N? HN?
N(A;(I,,b) < —'a—+mln(a—2,b—2+m>

Since

N(A)Y < Y ) N(4ja,b),

a<2H b<2N

the proof of the lemma is complete.

4. The main lemma

LEMMA 5. Suppose that X > P10 H = 6 X~ and ¢, () are complex
numbers such that |cp ()| < (1 + |h|)~'. Then, uniformly with respect to
a € (w,1 —w), we have

T() =Y enl@) Y A(n)e((h+a)n®) < X>¢7¢
|h|<H n~X

for some sufficiently small o > 0, depending only on c.

Proof. We use Lemma 2 with F(n) = e((h + a)n®) to reduce the
estimation of T'(«) to the estimation of the sums

T()= Y a@Y (=12
h|<H

where ) ,, Y, are type I and type II sums, respectively. We choose the
parameters U, V, 7 as follows:

U= X272+20 /956, V =4Xx1/3
and
[X (16e=16)/3+30] 1 1/2 if 17/16 < ¢ < 14/13,
Z = [X(8e=13)/3+3e] 1 1/2 if 14/13 < ¢ < 13/12,
[X (20e=21)/2450] 1 1/2 if 13/12 < ¢ < 12/11 .

Let us consider T5(«). We have
(1) ()¢,
(5) Ty (o) < Jmax) L5 (N[ + (log X) max 157 (e )|

where

T2(1)()\) — Z Z a,mbne()\(mn)c),

m~M n~L

157 (3 ) = Z cn(a) Z Z ambpe((h + a)(mn)®).

h~J m~M n~L
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First we estimate T(2)(a' J). We obtain
“J<<_ZZ‘ > d(h,n)e((h + a)(mn)°)
m~M q<Q  (h,n)€T,
where |d(h,n)| <1, @ > 1 is a parameter to be defined later and for ¢ < @,
Z,={(h,n)|h~J n~0L, 5(—1)JL° < Q(h+ a)n® < bqJL}.
So, using the Cauchy inequality, we get

18 (o) < g S | X o

2~J m~ M
n1q m2~L

IN<B5ILY/Q

where A\ = (h; +a)n§ — (ha + a@)ng. We estimate the innermost sum trivially
if |[A\| < M ¢, and using the exponent pair (13/40,11/20) otherwise. From
Lemma 4 we now obtain

T3 (0 )|
< XEJMQ(MN( )

+ Mﬁﬂ<r£3)§]LC/Q(A13/4OM(9+136)/40 + Afllec)N(A))

< XE(J—1/2M2LQ 4 J13/40M(49+13c)/40L(80+13c)/40Q—13/40
+ I IM2 L 4 ‘]77/40M(49+130)/40L(40+130)/40Q27/40).
We choose @) via Lemma 2.4 of [6] and the conditions on J, M and L imply

(6) max T2 (a; J)| < X270m0te,
2<J<H

Let us now estimate T2( )()\). Using the Cauchy inequality and Lemma
2.5 of [6] we get

0P < xe (L LS SO S eaito+ o) - w0y

a<Qn~L m~M )

where Q < L is a positive integer. We apply the exponent pair (13/40,
11/20) to the innermost sum and choose () via Lemma 2.4 of [6] to obtain

‘T2(1)()\)|2 < XE(MQL + )\13/40M(49+13C)/40L(67+13C)/40
+)\13/53M(75+138)/53L(93+136)/53)

and using the conditions on M, L and X\ we get

(7) max [T ()] < XP7emere,

The needed estimate for T5(a) follows from (5) (7).
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Let us now consider T («). We have

8) Ti(a) < X°  max \ 3 e(n

M €E(w,H+1
ME(w,H+1) = | —

If L > X(57¢-49)/2343¢ we estimate the sum over n using the exponent
pair (8/41,26/41) to obtain

(9) Ty ()| < X27emote,

Otherwise we first use the Cauchy inequality and Lemma 2.5 of [6] to
the sum on the right-hand side of (8) and obtain

| <<X6<M2L2 YT Y el )

g~J n~L m~M

where f(m,n,q) = AM(n+q)°—n°)m°, J < Q/2 and Q < L is a parameter
to be chosen later. Then we apply the Poisson summation formula (Lemma
3.6 of [6]) to the sums over m and n successively and Abel’s transformation:

ZZ ’I’I’I’I’Iq

q m,n
_ZZ< IO D) a8 + flmunea) — gy
+OMLJF~'? + LJlog X)

< MF ] S el )|+ XIF P L log X

< MF~1/?

n 1/2
ZZ (8 f1(s, g ,,)> e(1/8 + f1(u, g, m0) — vny)

+ MF*I/QJFM*(LF*”2 +log X) + XJF /% + LJlog X

< MLF~!

e(g(p, v, q)) \ +F'?Jlog X + LJlog X + XJF /2
q,p,v
where F' = AJMCLC_l? fl(:u'aqa n) = f(mllanaq) - KMy,

9(1,v,q) = fr(i, qsmy) — vny ~a co(Aq)V/ P20 p1/2)cl(e=2) <

co is a constant depending only on ¢, A= J/L,v < FL™! px< FM~L
Hence
10) X mPe Q74X Y Y Y v
g~J puxFM-'v<FL~!
+X?F7V2 4 XL + XF'2.
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If X1/2 < I < x(67c=49)/23430 we estimate the sum over p,v in (10)
using Lemma 1 with X = FM 'Y = FL~ ! and f(z,y) = g(u,v,q). We
get

XN < X?Q 1+ F'\AXP2 4 XFP L2
+X7/6F2/3 +X3/2F3/5J2/5L_4/5 +XF3/4M1/8
4 ¢]1/4X5/4F3/4L_1/2 +X2F_1/2 +XL

Now we substitute the expression for F' in the last estimate and choose ()
via Lemma 2.4 of [6]. We obtain (9).

If Z < L < X'/? we interchange the roles of 4 and v and prove (9) again.
This completes the proof of the lemma.

5. Proof of Theorem 1. It is easy to see that

R(N) ={S8*(a)e(—aN) da = Ry + R».

The integral R is studied by Laporta and Tolev [10], pp. 928 929. They
proved that if 1 < ¢ < 17/16 then
_ I*(1+1/c) N3/e—1
I'(3/e)

but the same argument shows that this asymptotic formula holds for 1 <
¢ < 3/2. Hence the theorem follows from the estimate

R + O(o™ N3/

(11) Ry < o~1P%e,
It is not difficult to prove that

Ry; < Plog P max |S(a)|.
a €S2y

To prove (11) it remains to show that

max |S(a)| < o7 P*C

€S2y
We have
S(a) =Y A(n)e(an®) e(—afn}) + O(P'?).

n<P

So, it is sufficient to prove that for X satisfying P9/ < X < P,

Si(a) = Y A(n)e(an®) e(—af{n}) < o' X>7C.

n~X
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Using Lemma 3 with z = n° and H = 0 X! we obtain

i) = 3 en(a) 32 Am)e((h + a)n?)

|h|<H n~X
1
+O<10gX min<1,7>>.
2 Hln|

The estimation of the error term in the above equality is standard (see [8],
pp. 245 246). Hence (11) follows from Lemma 5.
The proof of Theorem 1 is complete.
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