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The distribution of second order linear
recurrence sequences mod 2m
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Mark D. Morgan (College Park, Md.)

1. Introduction. Let {xn} be a sequence of residues modulo 2m defined
by the recursion relation

xn = xn−1 + xn−2 (mod 2m).

By choosing the pair {x1, x2}, called the initial state vector , the entire se-
quence is determined. A sequence generated by the recursion relation de-
fined above is periodic. If at least one of the elements in the initial state
vector is an odd number, then the sequence has period 3 ·2m−1 and is called
a maximal period sequence [1]. If {xn} is not a maximal period sequence,
let 2t be the highest power of 2 dividing both x1 and x2. Then it can easily
be seen that the sequence has period 3 · 2m−t−1.

By fixing m, an equivalence relation can be placed on the sequences.
Let Xi = {xi, xi+1}. Then X1 and Y1 are equivalent initial state vectors if
Y1 = Xj for some j. There are 22m − 22(m−1) = 3 · 22m−2 pairs of numbers
modulo 2m which contain at least one odd number. Each equivalence class
contains 3 · 2m−1 such pairs. Therefore the number of equivalence classes of
maximal period sequences is 2m−1.

The main result of this paper is the complete determination of the dis-
tribution of any maximal period sequence satisfying the above recursion.
In 1992, Jacobson determined the distribution of the Fibonacci numbers
modulo 2m (see [4]). The distribution of the Fibonacci numbers becomes
stable for m ≥ 5. In stark contrast, the distribution of the Lucas numbers
does not possess the stability property. In this paper, their distribution is
completely determined. By using these two distribution functions, the main
result is obtained, which states that any maximal period sequence modulo
2m is either equivalent to an odd multiple of the Fibonacci numbers or an
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odd multiple of the Lucas numbers. Thus, the distribution of any maximal
period sequence can be obtained by finding the odd number k such that the
sequence is equivalent to either {k, k} or {k, 3k}.

The distribution of all of these sequences are highly non-uniform. Early
work was done to find moduli for which the Fibonacci numbers are uniformly
distributed. By the work of Niederreiter [6] and Kuipers and Shiue [5], the
only moduli for which the Fibonacci numbers are uniformly distributed are
5k for all k. In recent years, more general recursions of the form

xn = axn−1 + bxn−2 (mod 2m), x0 = 0, x1 = 1,

have been studied to determine their distribution and stability properties.
Let Z2m(a) be the number of occurrences of the residue a in one period

of the sequence {xn}. This function will be called the frequency distribution
function. A sequence is called stable modulo 2 if the range of the frequency
distribution function remains constant for m ≥ m0 for some m0. The Fi-
bonacci numbers are stable modulo 2 with stability beginning at m0 = 5 (see
[4]). A criterion for stability was determined by Carlip and Jacobson [2].
In Section 3, Z2m(a) is obtained for the Lucas numbers, and the range of
the frequency distribution function is proved to become infinite as m →∞.
This shows that stability of a sequence depends on the choice of initial state
vector.

In [3], Carlip and Jacobson have determined the distribution for a num-
ber of sequences satisfying the more general recursion given above. Note
that in the cases studied by Carlip and Jacobson the choice of initial state
vector is restricted to x0 = 0 and x1 = 1. In addition, the distributions
determined in [3] have also been stable sequences with stability beginning
at arbitrary levels.

In Section 2, several standard facts are stated concerning the Fibonacci
numbers and linear recurring sequences. A large part of Section 3 is de-
voted to proving several lemmas needed to find the distribution of the Lucas
numbers modulo 2m. In Section 4, the distribution of any maximal period
sequence is obtained by extending the results of Section 3. In addition,
the proof of Theorem 3 produces a complete list of equivalence classes of
maximal period sequences.

2. Preliminary facts. Let Fn and Ln denote the nth Fibonacci number
and the nth Lucas number respectively. The following are standard facts
concerning the Fibonacci numbers which will be used throughout the work.

Fact 1. Fm+n = Fm−1Fn + FmFn+1.

Fact 2. If xn = xn−1 + xn−2, then for n ≥ 3, xn = x1Fn−2 + x2Fn−1.
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Fact 3. Suppose xn = xn−1 + xn−2. If y1 = tx1 and y2 = tx2 and
yn = yn−1 + yn−2, then yn = txn.

Fact 4. For n ≥ 1,(
1 1
1 0

)n

=
(

Fn+1 Fn

Fn Fn−1

)
.

Jacobson has proved the following congruence relation concerning the
Fibonacci numbers in Lemma 1 of [4].

Lemma 1. Let m ≥ 5. Then

F3·2m−2 ≡ 2m (mod 2m+2),

F3·2m−3−1 ≡ 1− 2m−2 (mod 2m).

Lemma 2. Let xn = xn−1 + xn−2 (mod 2m). If m ≥ 3 and n ≥ 0, then

xn+3·2m−2 ≡
{

xn (mod 2m) if xn is even,
xn + 2m−1 (mod 2m) if xn is odd.

P r o o f. Jacobson has proved this lemma for xn = Fn and m ≥ 5 in
Lemma 3 of [4]. Hence, Lemma 1 implies that

F3·2m−2 ≡ 0 (mod 2m), F3·2m−2−1 ≡ 1 + 2m−1 (mod 2m).

These statements can also be verified for m = 3 and 4. Applying Fact 2
implies

xn+3·2m−2 = x1Fn+3·2m−2−2 + x2Fn+3·2m−2−1

= x1(Fn−3F3·2m−2 + Fn−2F3·2m−2+1)
+ x2(Fn−2F3·2m−2 + Fn−1F3·2m−2+1)

= F3·2m−2(x1Fn−3 + x2Fn−2) + F3·2m−2+1(x1Fn−2 + x2Fn−1)
= F3·2m−2xn−1 + F3·2m−2+1xn

≡ xn(1 + 2m−1) (mod 2m).

Therefore, the result follows by this computation.

3. Distribution of Fibonacci and Lucas numbers mod 2m. The
frequency distribution functions for the sequences formed by the Fibonacci
numbers and the Lucas numbers are quite different. The frequency distribu-
tion function for {Fn} (mod 2m) has the property that Z2m(a) = Z2m+1(a)
for m ≥ 5. In stark contrast, the sequence formed by {Ln} (mod 2m) does
not possess this stability property for all values of a. Theorem 2 shows that
when a ≡ 2 (mod 2m), Z2m(a) → ∞ as m → ∞. However, for all other
values of a, this stability property holds for m ≥ m0 for some m0.
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Theorem 1 (Jacobson). Let Z2m(a) be the frequency distribution func-
tion for {Fn} (mod 2m). Then

Z2(0) = Z4(0) = Z4(2) = 1,

Z2(1) = Z8(0) = Z8(2) = Z16(0) = Z16(8) = 2,

Z16(2) = 4,

Z2m(a) =

{ 1 if a ≡ 3 (mod 4) and 2 ≤ m ≤ 4,
3 if a ≡ 1 (mod 4) and 2 ≤ m ≤ 4,
0 in all other cases where 2 ≤ m ≤ 4.

For m ≥ 5,

Z2m(a) =


1 if a ≡ 3 (mod 4),
3 if a ≡ 1 (mod 4),
2 if a ≡ 0 (mod 8),
8 if a ≡ 2 (mod 32),
0 otherwise.

Theorem 2. Let Z2m(a) be the frequency distribution function for the
sequence {Ln} (mod 2m). Then

Z2(0) = Z4(0) = 1, Z2(1) = 2,

Z4(0) = Z4(2) = 1, Z32(18) = 4,

Z64(18) = Z128(66) = 8, Z256(66) = 16,

Z2m(a) =



1 if a ≡ 1 (mod 4) and 2 ≤ m ≤ 8,
3 if a ≡ 3 (mod 4) and 2 ≤ m ≤ 8,
2 if a ≡ 4 (mod 8) and 3 ≤ m ≤ 8,
2bm/2c if a ≡ 2 (mod 2m) and 3 ≤ m ≤ 8,
16 if a ≡ 18 (mod 128) and m = 7 or 8,
0 in all other cases where 2 ≤ m ≤ 8.

For m ≥ 9,

Z2m(a) =



1 if a ≡ 1 (mod 4),
3 if a ≡ 3 (mod 4),
2 if a ≡ 4 (mod 8),
16 if a ≡ 18 (mod 128),
2t+2 if a ≡ 2+5 · 22t (mod 22t+3) for 3≤ t≤b(m−3)/2c,
2bm/2c if a ≡ 2 (mod 2m),
2bm/2c if a ≡ 2 + 2m−1 (mod 2m) and m is odd,

or a ≡ 2 + 2m−2 (mod 2m) and m is even,
0 otherwise.

The proof of Theorem 2 depends on the following series of lemmas. For
m ≤ 8, the values of the frequency distribution function can be verified by
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computation. So the induction arguments that follow will start with a base
case m where m ≤ 9.

In order to obtain the desired result, it is convenient to investigate certain
subsequences of {Ln}. Define Wn = L6n and Tn = W2n−1 . The Lucas
numbers that have indices which are multiples of six are all congruent to
2 (mod 8). These prove to be the most challenging and interesting aspect
of the frequency distribution function, and so special attention should be
given to the sequence {Wn}. A basic fact about the Lucas numbers is
Ln = Fn−1 + Fn+1 for all n. So let

B =
(

1 1
1 0

)6

=
(

13 8
8 5

)
.

Hence Fact 4 implies

Ln = tr
(

1 1
1 0

)n

and Wn = tr
(

13 8
8 5

)n

.

Let λ1 and λ2 be the eigenvalues for the matrix B. Then λ1 = 9 + 4
√

5
and λ2 = 9 − 4

√
5. From the above facts, Wn = λn

1 + λn
2 for all positive

integers n. Note that

λn+1
1 + λn+1

2 = (λn
1 + λn

2 )(λ1 + λ2)− λ1λ2(λn−1
1 + λn−1

2 ).

Translating this into a statement concerning the sequence {Wn} gives

(1) Wn+1 = WnW1 − λ1λ2Wn−1 = 18Wn −Wn−1.

Hence the sequence {Wn} obeys a different recursion with W0 = 2 and
W1 = 18.

There is a basic fact concerning 2× 2 matrices which relates the trace of
a matrix with the trace of the square of the matrix.

Fact 5. Let A be a 2× 2 matrix. Then tr(A2) = (trA)2 − 2 detA.

Applying this fact yields

(2) W2n = (Wn)2 − 2.

Hence the sequence {Tn} can be defined by

(3) Tn+1 = T 2
n − 2 where T1 = 18.

Lemma 3. Tn ≡ 2 (mod 2m) if and only if m ≤ 2n + 2.

P r o o f. The first step is to prove that if m = 2n + 2, then Tn ≡ 2
(mod 2m). If this is true, then the statement holds for all m < 2n + 2.
Clearly the result holds for n = 1 since T1 = 18 ≡ 2 (mod 16). So suppose
Tn ≡ 2 (mod 2m), where m = 2n + 2. Then Tn = 2 + 2mz for some integer
z. Then

Tn+1 = T 2
n − 2 = 2 + 2m+2z + 22mz2 ≡ 2 (mod 2m+2),
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which completes the induction. It is sufficient to show that if m = 2n + 3,
then Tn ≡ 2 + 2m−1 (mod 2m). Clearly the result is true for n = 1, since
T1 ≡ 18 (mod 32). So assume Tn ≡ 2 + 2m−1 (mod 2m) for m = 2n + 3.
Then Tn = 2 + 2m−1 + 2mz for some integer z. So

Tn+1 = (2 + 2m−1 + 2mz)2 − 2 ≡ 2 + 2m+1 (mod 2m+2),

which will complete the proof.

Note that the condition in the previous lemma, m ≤ 2n + 2, can be
rewritten as n ≥ dm/2e − 1. The relationship between the sequences {Tn}
and {Wn} implies that Wr ≡ 2 (mod 2m) where r = 2dm/2e−2. Now that
one occurrence of the residue 2 has been located in the sequence {Wn}, the
next step is to locate the remainder of them.

Lemma 4. Suppose m ≥ 3 and let r = 2dm/2e−2. Then for all integers k
and µ,

Wk+µr ≡ 2Wk −Wk−µr (mod 2m+1).

In addition, Wkr ≡ 2 (mod 2m).

P r o o f. First assume µ = 1. Let λ1 and λ2 be the eigenvalues of the
matrix B as defined previously. Without loss of generality, assume k ≥ r
since the sequence {Wn} (mod 2m) is periodic. Then

Wk+r = λk+r
1 + λk+r

2 = (λk
1 + λk

2)(λr
1 + λr

2)− λr
1λ

r
2(λ

k−r
1 + λk−r

2 )
= WkWr −Wk−r.

By the previous lemma, Wr ≡ 2 (mod 2m). So Wr = 2 + 2mz for some
integer z. Hence

Wr+k = 2Wk + 2mzWk −Wk−r ≡ 2Wk −Wk−r (mod 2m+1),

since every term in the sequence {Wn} is even. Noting that W0 ≡ Wr ≡ 2
(mod 2m) and using the above recursion, we obtain Wkr ≡ 2 (mod 2m) for
all integers k. To complete the proof, it is necessary to consider µ > 1. By
the same argument as above, replace r by µr. But since Wµr ≡ 2 (mod 2m)
for all µ, the result is obtained.

Lemma 5. For m ≥ 6, the period of the sequence {Wn} (mod 2m) is
2m−5.

P r o o f. The result can be showed by direct computation for m = 6, 7,
and 8. So assume that the sequence {Wn} reduced modulo 2m has period
p = 2m−5 where m ≥ 8. Then by reducing {Wn} modulo 2m+1, the period
must be a multiple of p. Note that for m ≥ 8, 2m−5 > 2dm/2e−2. Thus
for m ≥ 8, p/2 is a multiple of 2dm/2e−2. Hence by Lemma 4, Wp/2 ≡ 2
(mod 2m). Since p is the period, this forces Wp/2+1 ≡ 18+2m−1 (mod 2m).
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Hence Wp/2+1 ≡ 18 + 2m−1 + 2mz (mod 2m+1) for some integer z. Then
using Lemma 4 with k = p/2 + 1 and µr = p/2,

Wp+1 ≡ 2(18 + 2m−1 + 2mz)− 18 ≡ 18 + 2m (mod 2m+1).

Now, applying the lemma again with k = p + 1 and µr = p yields

W2p+1 ≡ 2(18− 2m)− 18 ≡ 18 (mod 2m+1).

Since W2p ≡ 2 (mod 2m+1), the period modulo 2m+1 must be 2p. Hence,
induction completes the proof.

Lemma 2 shows how the second half of the period of the sequence {Ln}
depends on the first half of the period. Now, the same can be done for the
sequence {Wn}.

Lemma 6. For m ≥ 8 and all integers k,

Wk+2m−6 ≡
{

Wk (mod 2m) if k is even,
Wk + 2m−1 (mod 2m) if k is odd.

P r o o f. The proof will follow by induction on k. In the proof of the
previous lemma, it is apparent that

W0 ≡ W2m−6 ≡ 2 (mod 2m), W1 ≡ 18 (mod 2m),
W1+2m−6 ≡ 18 + 2m−1 (mod 2m).

Hence the lemma holds for k = 0 and k = 1. Assume the lemma holds for
all integers less than or equal to k. First suppose k is even. Then

Wk+1+2m−6 = 18Wk+2m−6 −Wk−1+2m−6

≡ 18Wk −Wk−1 − 2m−1 ≡ Wk+1 + 2m−1 (mod 2m).

Now assume k is odd. Then

Wk+1+2m−6 ≡ 18(Wk + 2m−1)−Wk−1 ≡ Wk+1 (mod 2m).

Hence the result holds for all k ≥ 0. By periodicity of the sequence, the
result also holds for negative values of k.

Lemma 7. Let m ≥ 6. Then for all integers k,

Wk ≡ W−k (mod 2m).

P r o o f. Define the {Wn} sequence also for negative values of n. Then
since W0 = 2, W1 = 18, we have W−1 = 18. Hence Wt = W−t for t = 0 and
t = 1. Assume that this holds for t = 0, 1, . . . , k. Then

Wk+1 = 18Wk −Wk−1 = 18W−k −W1−k = W−k−1,

which completes the proof.
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Lemma 8. Let m ≥ 6 and r = r(m) = 2dm/2e−2. Then for all integers k,

Wr(m)(2k+1)/2 ≡
{

2 + 2m−2 (mod 2m) if m is even,
2 + 2m−1 (mod 2m) if m is odd.

P r o o f. First assume k = 0 and m is even. Then when m = 6, r(m)/2 =
1, and since W1 ≡ 18 (mod 26), the result holds. So assume that the result
holds for all even j with 6 ≤ j ≤ m. Then

Wr(m)/2 = 2 + 2m−2 + 2mz

for some integer z. Then by (2),

Wr(m) = (2 + 2m−2 + 2mz)2 − 2

= 2 + 2m + 22m−4 + 22mz2 + 22m−1z + 2m+2z

≡ 2 + 2m (mod 2m+2).

Since r(m) = r(m + 2)/2, we obtain Wr(m)/2 ≡ 2 + 2m−2 (mod 2m) when
m is even.

Now assume m is odd. Then r(7)/2 = 2 and since W2 ≡ 66 (mod 27),
the result holds for m = 7. Now by a similar inductive argument as above,
assume Wr(m)/2 = 2 + 2m−1 + 2mz for some integer z. Then

Wr(m) = (2 + 2m−1 + 2mz)2 − 2

= 2 + 2m+1 + 22m−2 + 22mz2 + 22mz + 2m+2z

≡ 2 + 2m+1 (mod 2m+2).

Therefore, Wr(m)/2 ≡ 2 + 2m−1 (mod 2m) where m is odd and m ≥ 7.
Next assume k = 1. Then Lemmas 4 and 7 imply that

W3r(m)/2 ≡ 2Wr(m)/2 −W−r(m)/2 (mod 2m) ≡ Wr(m)/2 (mod 2m).

Assume k > 1 and that the statement holds for all values less than k.
Then

Wr(m)(2k+1)/2 ≡ 2Wr(m)(2k−1)/2 −Wr(m)(2k−3)/2 (mod 2m)

≡ Wr(m)/2 (mod 2m)

by the induction hypothesis. Therefore the statement holds for all positive
integers k and must also hold for all negative values of k.

Lemma 9. Suppose m ≥ 3 and k ≡ 3 (mod 6). Then

Lk+3·2m−2 ≡ Lk + 2m (mod 2m+1).

P r o o f. The lemma can be shown for m = 3 and 4 by direct computa-
tion. So assume m ≥ 5. Using the fact that Ln = Fn−1 + Fn+1 shows

Lk+3·2m−2 − Lk = Fk+3·2m−2−1 + Fk+3·2m−2+1 − Fk−1 − Fk+1.
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Since k ≡ 3 (mod 6), Fk is even and Fk−1 and Fk−2 are odd. Lemma 1
implies that

F3·2m−2 ≡ 2m (mod 2m+1) and F3·2m−2−1 ≡ 1− 2m−1 (mod 2m+1).

Hence F3·2m−2+1 ≡ 1 + 2m − 2m−1 (mod 2m+1). Then by Fact 1,

Fk+3·2m−2−1 = Fk−2F3·2m−2 + Fk−1F3·2m−2+1

≡ 2m + Fk−1(1 + 2m − 2m−1) (mod 2m+1)

≡ Fk−1(1− 2m−1) (mod 2m+1).

Similarly,

Fk+3·2m−2+1 = FkF3·2m−2 + Fk+1F3·2m−2+1

≡ 2mFk + Fk+1(1 + 2m − 2m−1) (mod 2m+1)

≡ Fk+1(1 + 2m − 2m−1) (mod 2m+1).

Then

Lk+3·2m−2 − Lk ≡ Fk−1(1− 2m−1) + Fk+1(1 + 2m − 2m−1)

−Fk−1 − Fk+1 (mod 2m+1)

≡ −2m−1Fk−1 − 2m−1Fk+1 + 2mFk+1 (mod 2m+1)

≡ −2m−1Lk + 2mFk+1 (mod 2m+1).

Since k ≡ 3 (mod 6), Lk ≡ 0 (mod 4). Also, Fk+1 is odd. Thus

−2m−1Lk + 2mFk+1 ≡ 2m (mod 2m+1),

which completes the proof.

It is now possible to proceed with the proof of Theorem 2. The proofs of
the cases a ≡ 1 (mod 2) and a ≡ 4 (mod 8) contain ideas which are similar
to Jacobson’s proof of Theorem 1. The remainder of the cases contain ideas
which are not found in Jacobson’s proof.

Proof of Theorem 2

Case 1: a ≡ 1 (mod 2). Suppose Lk ≡ a (mod 2m). Either Lk ≡ a
(mod 2m+1) or Lk ≡ a + 2m (mod 2m+1). Then Lemma 2 implies that
Lk+3·2m−1 ≡ Lk +2m (mod 2m+1) for m ≥ 2. Hence by lifting the sequence
{Ln} modulo 2m+1, either Lk or Lk+3·2m−1 ≡ a (mod 2m+1), but not both.
So Z2m(a) = Z2m+1(a) for m ≥ 2. Therefore, Z2m(a) = 1 if a ≡ 1 (mod 4),
and Z2m(a) = 3 if a ≡ 3 (mod 4) for m ≥ 2.

Case 2: a≡4 (mod 8). First note that Z8(a)=2. So suppose Z2m(a)=
2. If Lk ≡ a (mod 2m), then k ≡ 3 (mod 6). When looking at the sequence
modulo 2m+1, it is necessary to examine the sequential elements with indices
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k, k + 3 · 2m−2, k + 3 · 2m−1, and k + 3 · 2m−2 + 3 · 2m−1. It is apparent from
Lemma 2 that

Lk ≡ Lk+3·2m−1 (mod 2m+1)
and

Lk+3·2m−2 ≡ Lk+3·2m−2+3·2m−1 (mod 2m+1).
However, Lemma 9 implies that Lk and Lk+3·2m−2 are different modulo
2m+1. Hence, Z2m+1(a) = 2. Therefore, Z2m(a) = 2 for m ≥ 3.

Case 3: a ≡ 2 (mod 2m). By Lemma 4, Wkr ≡ 2 (mod 2m) for all
integers k where r = 2dm/2e−2 and m ≥ 3. The subsequence {Wn} of {Ln}
contains 2m−2 elements and every rth element is a 2. So

Z2m(a) ≥ 2m−2

2dm/2e−2
= 2bm/2c

for m ≥ 3. Equality is shown later.

Case 4: a ≡ 2 + 2m−2 (mod 2m), m even. By Lemma 8, Wr(2k+1)/2

≡ 2 + 2m−2 (mod 2m) for all integers k where r is defined as before and
m ≥ 6. So there is at least one occurrence of 2 + 2m−2 in any r consecutive
sequence members of {Wn}. So by the same argument as in the previous
case, Z2m(a) ≥ 2bm/2c for m ≥ 6.

Case 5: a ≡ 2 + 2m−1 (mod 2m), m odd. The argument is analogous
to the previous case. However, the odd case of Lemma 8 is used to get
Z2m(a) ≥ 2bm/2c for m ≥ 7.

Case 6: a ≡ 18 (mod 128). First note that Z128(a) = 16 by computa-
tion. Define Z2m(a) to be the number of occurrences of the residue a in one
period of the sequence {Wn} (mod 2m). Then for m ≥ 6 and any residue b
in {Wn},

Z2m(b) = 8Z2m(b).
So Z128(a) = 2. Note that if Wk ≡ a (mod 2m), then k is odd, since
one period of {Wn} (mod 128) is {2, 18, 66, 18}. By Lemma 7, W2m−5−k is
the only other occurrence of a for all positive indices less than 2m−5. So
assume Z2m(a) = 2. To count the number of occurrences of a modulo 2m+1,
it is necessary to examine the sequential elements with indices k, 2m−5 −
k, k + 2m−5, and 2m−4 − k. Lemma 6 implies that Wk+2m−5 ≡ Wk + 2m

(mod 2m+1). As in a previous argument, exactly two of these four elements
must be a. Hence, Z2m+1(a) = Z2m(a) for m ≥ 8. Therefore, Z2m(a) = 16
for m ≥ 7.

Case 7: a ≡ 2+5(26) (mod 512). Note that this case applies only when
m ≥ 9. Let

A0 = {18 + 27z | 0 ≤ z < 2m−7}.
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Note that A0 is the set of residues modulo 2m which are congruent to 18
modulo 128. Also let

A1 = {322 + 29z | 0 ≤ z < 2m−9}.

Similarly A1 is the set of all residues modulo 2m which are congruent to
322 modulo 512. Let f be a function mapping A0 into Z/2mZ defined by
f(x) = x2 − 2. Then

f(18 + 27z) ≡ 322 + 29(9z) + 214z2 (mod 2m)

≡ 322 + 29(9z + 25z2) (mod 2m) ≡ 322 + 29z̃ (mod 2m),

where z̃ is an integer such that 0 ≤ z̃ < 2m−9. This implies that f(A0) ⊂ A1.
Now suppose 18 + 27z1 and 18 + 27z2 are elements of A0 such that

f(18 + 27z1) ≡ f(18 + 27z2) (mod 2m).

Then

322 + 29(9z1 + 32z2
1) ≡ 322 + 29(9z2 + 32z2

2) (mod 2m),

9(z1 − z2)− 32(z2
2 − z2

1) ≡ 0 (mod 2m−9),

(z1 − z2)(9 + 32(z1 + z2)) ≡ 0 (mod 2m−9),

z1 − z2 ≡ 0 (mod 2m−9).

Therefore, z1 ≡ z2 (mod 2m−9), which implies that f(A0) has at least 2m−9

elements, and so f(A0) = A1. Also, the function f which maps A0 to f(A0)
is a 4-to-1 function. Let b ∈ A1. Then there are exactly 4 distinct values in
A0, say a1, a2, a3, and a4, such that f(ai) = b for each i. Then by a previous
case, Z2m(ai) = 2 for each i, where Z2m(ai) is as defined before. By look-
ing at the sequence {Wn}, recall by (2) that W2k ≡ b (mod 2m) if and only if
Wk ≡
ai (mod 2m) for some i = 1, 2, 3, or 4. By Lemma 7, one occurrence of
ai in the sequence {Wn} lies in the first half of the period, and the other in
the second half. By doubling the indices to find the locations of b, half of
the occurrences will fall within the first period and half in the second period
of {Wn}. Therefore Z2m(b) = 4, which implies that Z2m(b) = 32.

Case 8: a ≡ 2 + 5(22t) (mod 22t+3) for 3 ≤ t ≤ b(m− 3)/2c. This was
proved in the previous case for t = 3. Let

An = {2 + 5 · 22(n+2) + 27+2nz | 0 ≤ z < 2m−7−2n}

for 1 ≤ n ≤ b(m − 7)/2c. Note that A1 is consistent with its previous
definition, and let f and A0 be as before. The claim is that fn(A0) = An

for 1 ≤ n ≤ b(m − 7)/2c. The case n = 1 was shown previously. Let
tj = 2 + 5 · 22(n+1) + 25+2nzj ∈ An−1 for 2 ≤ n < b(m− 7)/2c. Then
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f(tj) = 2 + 5 · 22(n+2) + 25 · 24(n+1) + 210+4nz2
j + 27+2nzj + 5 · 24n+8zj

= 2 + 5 · 22(n+2) + 27+2n(zj + 23+2nz2
j + 25 · 22n−3 + 5zj · 22n+1)

≡ 2 + 5 · 22(n+2) + 27+2ny (mod 2m)

for some integer y where 0 ≤ y < 2m−7−2n. Thus f(tj) ∈ An, and f(An−1)
⊂ An. Suppose t1 and t2 are in An−1 such that f(t1) ≡ f(t2) (mod 2m).
Then

27+2n(23+2nz2
1 + (1 + 5 · 22n+1)z1 + 25 · 22n−3)

≡ 27+2n(23+2nz2
2 + (1 + 5 · 22n+1)z2 + 25 · 22n−3) (mod 2m),

23+2nz2
1 + (1 + 5 · 22n+1)z1 + 25 · 22n−3

≡ 23+2nz2
2 + (1 + 5 · 22n+1)z2 + 25 · 22n−3 (mod 2m−7−2n),

23+2n(z2
1 − z2

2) + (1 + 5 · 22n+1)(z1 − z2) ≡ 0 (mod 2m−7−2n),
(z1 − z2)(23+2n(z1 + z2) + 1 + 5 · 22n+1) ≡ 0 (mod 2m−7−2n),

z1 − z2 ≡ 0 (mod 2m−7−2n).

Therefore |f(An−1)| ≥ 2m−7−2n. However, |An| = 2m−7−2n, and so f(An−1)
= An, which proves the claim. In addition, f is a 4-to-1 function map-
ping An−1 onto An. Note that since a ≡ 2 + 5 · 22t (mod 22t+3) for
3 ≤ t ≤ b(m − 3)/2c, a ∈ At−2. Let r = t − 2. Then the case t = 3
showed that Z2m(a) = 25 if a ∈ A1. So suppose Z2m(a) = 2r+4 for all
a ∈ Ar where r < b(m − 7)/2c. Now suppose b ∈ Ar+1. Then there are
4 distinct values in Ar, say a1, a2, a3, and a4, such that f(ai) = b for each
i. So in order to look for occurrences of b in the sequence {Wn}, it suffices
to double the indices where each ai occurs. So by the same argument as
in the t = 3 case, Z2m(b) = 2Z2m(ai). Hence, Z2m(b) = 2r+5 if b ∈ Ar+1.
Therefore, since a ∈ Ar, Z2m(a) = 2r+4 = 2t+2.

Finally, to verify that the entire frequency distribution function has been
determined, it is sufficient to check that

2m−1∑
j=0

Z2m(j) = 3 · 2m−1.

This will force the inequalities found before to be equalities. Indeed,

2m−1∑
j=0

Z2m(j) = 1(2m−2) + 3(2m−2) + 2(2m−3) + 16(2m−7) + 2(2bm/2c)

+
b(m−3)/2c∑

t=3

(2t+2)(2m−2t−3)
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= 2 · 2m−1 + 2m−2 + 2m−3 + 2b(m+2)/2c + 2m−1

b(m−3)/2c∑
t=3

2−t

= 2 · 2m−1 + 2m−2 + 2m−3 + 2b(m+2)/2c + 2m−1(2−2 − 2−b(m−3)/2c)

= 2 · 2m−1 + 2m−2 + 2m−3 + 2b(m+2)/2c + 2m−3 − 2m−1+d(3−m)/2e

= 2 · 2m−1 + 2m−2 + 2m−2 + 2b(m+2)/2c − 2d(m+1)/2e

= 2 · 2m−1 + 2m−1 + 2b(m+2)/2c − 2b(m+2)/2c

= 3 · 2m−1.

4. Determining the distribution of arbitrary maximal period
sequences. Since the distribution of both the Fibonacci numbers and Lucas
numbers modulo 2m has been determined, the following theorem will show
that the distribution of any maximal period sequence can be obtained from
Theorems 1 and 2.

Theorem 3. Let xn = xn−1 +xn−2 (mod 2m) where X1 = {x1, x2} with
either x1 or x2 odd. Suppose m ≥ 3. Then X1 is equivalent to {k, k} or
{k, 3k} for some odd integer k.

P r o o f. Let
A = {{k, k} | k is odd and 1 ≤ k < 2m−1} and

B = {{k, 3k} | k is odd and 1 ≤ k < 2m−1}.
The claim is that A ∪ B generate a complete list of equivalence classes of
sequences. Recall that there are 2m−1 equivalence classes of maximal period
sequences and note that |A| + |B| = 2m−1. It suffices to show that two
elements in A∪B are inequivalent. This will be done by showing that each
sequence has a different frequency distribution function. Clearly no element
of A can be equivalent to an element of B, since a sequence produced by
an element of A will have two occurrences of zero within a period, and a
sequence produced by an element of B will never have an occurrence of zero.

Now let {xn} be a sequence with X1 = {k, k} ∈ A. Then Z2m(0) = 2
and so there are only 2 numbers which are consecutively repeated within
the sequence. Those are k and k + 2m−1. Hence no two elements of A can
be equivalent.

Now assume X1 = {k, 3k} ∈ B and Y1 = {k′, 3k′} ∈ B are equivalent.
The result can be verified by listing the equivalence classes in the cases of
3 ≤ m ≤ 5. Suppose m is odd and m ≥ 7. Let a ≡ k(2 + 5 · 2m−3)
(mod 2m) and a′ ≡ k′(2 + 5 · 2m−3) (mod 2m). For the sequence produced
by X1, Z2m(a) = 2bm/2c+1 by the distribution theorem. Similarly for the
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sequence produced by Y1, Z2m(a′) = 2bm/2c+1. Since these are equivalent
sequences and no other residue has a frequency distribution of 2bm/2c+1,

k(2 + 5 · 2m−3) ≡ k′(2 + 5 · 2m−3) (mod 2m).

Therefore k ≡ k′ (mod 2m−1) and so k = k′. Now assume m is even
and m ≥ 6. For the sequence produced by X1, Z2m(a) = 2bm/2c if a ≡ 2k
(mod 2m) or a ≡ k(2+2m−2) (mod 2m). Since m is even, these are the only
two residues where the values of a are determined modulo 2m. Every other
case has smaller moduli, which give more values for a where the frequency
distribution function is non-zero. The analogous statements are obtained
for Y1. Since the frequency distribution functions must be identical, one of
two cases must occur. In the first case,

2k ≡ 2k′ (mod 2m) and k(2 + 2m−2) ≡ k′(2 + 2m−2) (mod 2m).

In this case, k ≡ k′ (mod 2m−1) and so k = k′. In the second case,

2k ≡ k′(2 + 2m−2) (mod 2m) and 2k′ ≡ k(2 + 2m−2) (mod 2m).

This implies

2k ≡ 2k′(1 + 2m−3) (mod 2m) ≡ k(2 + 2m−2)(1 + 2m−3) (mod 2m)

≡ k(2 + 2m−2 + 2m−2 + 22m−5) (mod 2m) ≡ k(2 + 2m−1) (mod 2m),

which leads to the contradiction that 2 ≡ 2 + 2m−1 (mod 2m). Hence, no
two elements of B can generate equivalent sequences. Therefore A ∪B is a
complete list of equivalence classes.

The proof gives a list of equivalence classes for the maximal period se-
quences. In addition, it implies that two sequences are equivalent if and
only if they have the same frequency distribution functions. To summarize
the key points of Theorems 1, 2 and 3, Theorem 4 follows easily from the
previous results and by a direct computation.

Theorem 4. Let xn = xn−1 + xn−2 (mod 2m) with either x1 or x2 odd.
Suppose m ≥ 3. Then the sequence is equivalent to either an odd multiple
of the Fibonacci numbers or an odd multiple of the Lucas numbers. For any
sequence which is an odd multiple of the Fibonacci numbers the sequence
is stable modulo 2. In addition, for m ≥ 5, exactly 21/32 of the residues
have a non-zero frequency distribution. For any sequence which is an odd
multiple of the Lucas numbers, the sequence is not stable modulo 2, and
asymptotically 61/96 of the residues have a non-zero frequency distribution.
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