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A conditional result on Goldbach numbers
in short intervals

by
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1. Introduction. Define a Goldbach number (G-number) to be an even
number representable as a sum of two primes, and write L = log X. The
first result concerning the existence of G-numbers in short intervals is due
to Linnik [11] who proved, assuming the Riemann Hypothesis (RH), that
for any € > 0 and X sufficiently large, the interval [X, X + L3*¢] contains
a G-number. Linnik’s result was improved by Kétai [8] and, independently,
by Montgomery Vaughan [14] who showed that the interval [X, X + CL?]
contains a G-number for some constant C' and X sufficiently large. Other
proofs of the Katai and Montgomery Vaughan result have recently been
obtained by Goldston [3] and Languasco—Perelli [9].

The main aim of this paper is to study the distribution of G-numbers in
short intervals under the assumption of RH and Montgomery’s pair corre-
lation conjecture, a form of which asserts that

1
(1) F(X,T)NQ—TlogT for X — oo
i
uniformly for X* < T < X, for every fixed € > (), where
X'i(71*72)
F(X,T)=4 _
XM= 2 T

0<v1,72<T

and 7;, 7 = 1,2, run over the imaginary part of the nontrivial zeros of the
Riemann zeta-function ((s).

It is easy to see that
(2) F(X,T) < Tlog>T
uniformly in X. Moreover, Montgomery [13] (see also Goldston—-Montgomery
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[4]) proved, again under RH, that
1

(3) F(X,T)~2—TlogX for X — oc
™

holds uniformly for X < T.

In the following we will denote by MC the hypothesis (1) and by WMC
a weaker form of it where < replaces ~. As a slight generalization of WMC,
we state the following

HYPOTHESIS. Let 0 € [1,2). For any € > 0 the estimate
(4) F(X,T) < T(logT)"*
holds uniformly for X <T < X.

We will denote the hypothesis above by WMC(#). Observe that WMC
= WMC(1) and that, for 6 > 2, (4) is implied by (2). Our result is

THEOREM. Let 6 € [1,2) be fized and 1/(2X) < & < 1/2. Assume RH
and WMC(0) uniformly in the range 2X¢ <T < X. Then

¢ ) 12
§ [4 : . 6+2

where A is the von Mangoldt function and e(x) = exp(2miz).

We remark that this theorem is an analogue of Theorem 3 of Languasco
Perelli [10]. As an application we can obtain the following result on the
distribution of Goldbach numbers in short intervals.

COROLLARY. Let 6 € [1,2) and H = CL?, where C > 0 is a sufficiently
large constant. Assume RH and WMC(0) uniformly in the range X/H <
T < X. Then, for all sufficiently large X, the interval [X, X + H] contains
a G-number.

We remark that our Corollary can be obtained using the method of
Goldston [3].

We also recall that, under RH and MC, Goldston [3] proved that the
interval [X, X +CL] contains a G-number and that Friedlander—Goldston [2]

proved that the interval [ X, X—i—C%
RH together with a strong form of MC and a suitable form of the Elliott

Halberstam conjecture.

] contains a G-number assuming

Our second aim is to prove the following result, which may have some
independent interest, on the mean-square of the singular series of the Gold-
bach problem.
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PROPOSITION. Let

(e ) TG vme

S(n) = p>2

0 if mis odd.
Then
1 1
2 =9X 1+ ——— ) — ~L* + O(L%?).
5 e —2x [T (14 ) - 417+ 00
n<X p>2
The Proposition is a sharper version of Lemma 2 of Goldston [3], and

its proof is based on the argument in Friedlander-Goldston [2].

Acknowledgments. We wish to thank Prof. A. Perelli for his encour-
agement. We also thank the referee for his positive suggestions and for the
careful revision of this paper.

2. Some lemmas. Now we state two lemmas whose proofs follow the
lines of Languasco Perelli [10] (see also Heath-Brown [6]).
LEMMA 1. Writing

(X, Tw)= > X7

0<y<LT
we have
F(X,T)= | [2(X,T,v)]%e " dv.

LEMMA 2. Let a = a(X) and f = B(X) be real numbers satisfying
c < a< p <O for some absolute constants ¢,C > 0. Let T > U > 0.
Then

BX 2
S ‘ Y | dy < XF(X,T)
aX 0<y<T

and
Y X7 < TP max F(X,u)'/?.
U<u<T
U<~<T

The next lemma is an analogue of Lemma 2 in which we insert a factor
1/p in the summation on the .

LEMMA 3. Let o = 1/2 + iy, a = a(X) and B = B(X) be real numbers
satisfying ¢ < a < B < C for some absolute constants ¢,C > 0. Let
T >U>0. Then
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BX 2 T
Y F(X,T) F(X,U) 1 du
S E . dy<<X< T2 + 2 + i SF(X u)—— L
aX | U<~y<T U
and
X 1 vz T Ly du
il 227
> S (s, FOG0) o [y P0G
U<~<T U

Proof. By partial summation

; T
X .
) —<<T‘ x4 > X0
U<~<T 0 y<T U U<vy<u

du
o

u

The second estimate above follows immediately from the second estimate in
Lemma 2. For the first estimate we have, by the Cauchy—Schwarz inequality
and Lemma 2,

BX yi,), 2
()/SX' U§<T 0

du

11

T
2 du du
! u5/2> ( S u3/2> dy
U

S

S\Zy

U U<~y<

1 PX .
<7 ‘ > "
aX U<~<T

<<%(F(XT)+FXU S(H D
aX U <

T
X 1 du
< 5 (F(X,T) + F(X,U)) + 575 | X(P(X,u) + F(X,U)—5 —5
U
F(X,T) FX,U) 1 | du
<<X< T2 + U2 +U1/2 SFX“) ub/2
U

3. Proof of the Theorem and of the Corollary. Writing Selberg’s
integral

2X
J(X,2X, H) = | [(t + H) — (1) — H|” dt,
b's
where 9(t) = ), ., A(n), we get, by Gallagher’s lemma (see, e.g., Mont-
gomery [12], Lemma 1.9),
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§ 2
5) | \ S (A(m) - l)e(na)‘ da
—¢ X<n<2X
X 1 1 2
<<§2[ S ¢(t+2—> — (X)) - (t—X+—> dt
3 2¢
X-1/(26)
1 1 2X
+ J(X, 2X - o, 2—) + | weEx) -y - @2x -1 dt}
SRS ox e
+ XE +¢

=N+ I+ I3) + O(XE2 4 ¢),

say. We remark that the term O(X¢? +¢) in (5) arises from the O(1) term
in the estimate ) ., 1=>0—a+ O(1) applied in the above integrals.

Using the explicit formula (see Davenport [1], Ch. 17)

x° m(long)2> ( ) ( x ))
T) =12 — —+O<7 +O( logzmin | 1; —— ] |,
v == 3 5 K : Kl

where ||z|| = min,en |2 — n|, with K = X L2¢'/2, we get, by (5),

¢ 2
6 V| X (A0~ De(na)| da < € + > + 1) + O(X¢),
—¢ X<n<2X
where
X 2
e |y bryee-oxe
X—1/(2¢) ' 0<y<K @
2X —1/(2¢)
Loy bryeorow?,
X 0<y<K 0
2X 2
2X)e — y°
Jy = S Z ()71/ dy.
2X—1/(2¢) ' 0<y<K 9

We first consider the terms in J; + Js + J3 where 0 < v < 2X¢, and
show that they make a contribution

BX

fLY |

aX 0<y<2X¢

(7) <

Xe dy.



98 A. Languasco

Using the Cauchy-Schwarz inequality with 0 <V < W we get

w w
Z u :‘S Z 11,9*1d11,2§\WfV|S‘ Z 71,i72—

0<y<U 9 V 0<y<U vV 0<~y<U

2

Applying this estimate in Jy,Jy and J3 we obtain (7). By Lemma 2 and
WMC(6) the right hand side of (7) is < F(X,2X¢)/¢%2 < XL?/¢, which,
by (6), makes the contribution X¢L°.

Now we consider the contribution from the terms 2X¢ < v < K in
Jv + Jo + J3. We see immediately that this contribution is

BX iy (2 i 12 i 12
: X X 2X)"

<x iy Dlae(] ¥ ey B
aX '2XE<y<K 0 5 2XE<y<K 0 2XE<y<K 0

By Lemma 3 and WMC(#) the first term is < X L?/¢. The other terms
on the right come from J; and J3. By Lemma 3 and WMC(#) they con-
tribute < X L2%9/¢; alternatively they are bounded by I; + I3, which by
the Brun—Titchmarsh theorem is < L2/(£3(log 2£)?). These estimates, com-
bined with (6), give the second error term in the Theorem.

Now we prove the Corollary. Let H = [CL?], where C > 1 is a constant.
Define

h+k=n X<n<2X
T(e)= Y. e(na), Bla)=5()?-T(a)?
X<n<2X
We have
X+H 1/2
®) Y aln-X)Rmn)= | S(@)’L(@)e(-Xa)do
n=X—-H —1/2
1/2
= S T(a)?L(a)e(—Xa) da
—1/2
1/2

+ | Blo)L(a)e(-Xa)da = A+ B,
—1/2
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say. It is easy to prove that

X+H
(9) A= > an-X) Y 1=H’X+0(H?).
n=X—-H h+k=n

Now we proceed to estimate B. Using
T(a) < min(X;1/|a|) for |of <1/2
we get
£

2 < X?2¢ if0<¢<1/X,
1) ) 17l do (S own Tuk<elin
Hence, using the identity

fP-g®=2f(f-9) - (f -9
the Cauchy—Schwarz inequality and (10), we have

¢ ¢ R
(11) S |E(a)|da < (X S |S () — T(a)|2da> + S 1S(a) — T(a)|? da
- —£ —£
provided 1/X < ¢ < 1/2.
Since
(12) L(a) < min(H?*;1/|a)?)  for |a| < 1/2,
we have
1/H 1/2 i
o
(13) B< H?* | |E(a)de+ | |E(a)=.
~1/H 1/H @
From the Theorem and (11) we get
1/H
(14) H? | |E(a)|lda < HY2X L0/,
~1/H

By partial integration, the Theorem and (11) we obtain

1/2
da
(15) | 1B()| S5 < B32X LY.
1/H @
Hence from (13) (15) we have
(16) B < H¥*XL9/2,

and from (8), (9) and (16) we get
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X+H
(17) > a(n - X)R(n) > H’X

n=X—-H

provided that C' is sufficiently large. Thus the Corollary follows.

4. Proof of the Proposition. Let

M- 5t)

p>2
We have
2
2 _ 2 p—1
n<X 2n<X p|n
p>2
2p — 3
=46" >[I (1+( _2)2>
2n<X pln 4
p>2
=48> Y > f0),
n<X/2 jln
where
. 2p — 3 .
2 . .
' (| ——= ifjis odd,
1) = G =
0 if 7 is even.

Then, changing the order of summation in (18), we obtain

1) X sw? =18 3 1) 5]

n<X J<X/2
= f(4) 5 f(5)
:262XZ—.—26 X Z L
=1 J i>X/2 J

—28? Y f(j) 18> Y f(j)P(%>,

i<X/2 i<X/2

where P(u) =u — [u] — 1/2.
By straightforward computations we get

(20) 2622@=2H<1ﬁ>2(1+%>

p>2

_2H<”(p—11>3>‘

p>2
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Next, we will show
(21) > F0) 862 log? U + BlogU + O(1),
i<U

where B is a constant. By partial summation this implies

f 1 logU 1
22 Ol —=].
(22) > Ol g

i>U

The Proposition follows from (19) (22) together with the estimate

(23) S FG)IP(X/5) < L3P
Jj<X

Now we prove (21). Writing

N 2p — 3
=Y s =TT (1450255
m=1 p>2 p \p
we see that H(s) is an analytic function for Res = o > 0 and, using the
Perron formula with error term (see, e.g., Lemma 3.12 of Titchmarsh [15]),
we obtain

1 c+iZ [y oo ‘f(m)‘
S0 =g § @ asro(v Y )
i<v e S =y me(1+ Zlog(U/m)))
where ¢ > 0 is a fixed constant, ¢ = ¢+ 1/logU < 1/4 and Z will be chosen
later on.

The error term can be estimated using

d(m) ~ d*(h)
fim) < —— hZ -
(see (30) of Goldston [3]), where d(m) is the divisor function, and the clas-
sical estimates Zv<m d(v)? < m(logm)?'~?! (see, e.g., Theorem 5.3 of Hua
[7]) and d(m) < m® (see, e.g., Theorem 315 of Hardy Wright [5]). So we
have

ct+iZ c
(24) S0 =g § a0 ).
j<U c—iZ

Now we observe that

He) = (1 ) SO0+ 000

g(s)—H<1—#>2<”%>’

where
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which converges absolutely and is analytic for 0 > —1/2. So H(s)U*/s has
a triple pole at s = 0 with residue

862 log? U + BlogU + O(1).

Consider a rectangular contour with right side s = ¢+ it, t € [—Z, Z],
and left side —1/4 4+ it, t € [~ Z,Z]. The contribution of the top, bottom
and left sides of the contour can be estimated using (o + it) < t'/6 for
o >1/2 (see, e. g Titchmarsh [15], p. 115). Hence we have

> F0G) 862 log? U + BlogU + O(Z~23U° + Z3Uu~Y%) + 0(1).
i<U

Choosing Z = U3¢, we obtain (21).
Now we prove (23). For j odd we have

16) =2 T (p E 2) (pp_3é2> _ MQ;Z)(?)U) 11 (1 + ﬁ)

plj plj

~pP()d()) 1> (9)
() %2“’(6)%(5)’

where w(n) is the number of distinct prime factors of n, @s(p) = p — 2 and
s is extended to square-free numbers by multiplicativity.
Hence, interchanging the order of summation, we obtain

soor(3)- 2 dagor( 2, S ()

J<X < k<X/r$
(6,2)=1 (k,2)=

Using the argument in (2.9) (2.13) of Friedlander Goldston [2], we find that
the inner sum can be estimated by

> W pixm,

n<X

which is < L5/3 by the remark at the end of Section 2 of [2]. Using this
estimate we obtain

5/3 (1% (6)d(9)
2 10) P(F) <t 2 o)
(6,2)=1

and hence (23) follows from the convergence of the series
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