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On the sequence of numbers of the form
ε0 + ε1q + . . . + εnqn, εi ∈ {0, 1}

by

Paul Erdős (Budapest), István Joó (Budapest) and
Vilmos Komornik (Strasbourg)

1. Introduction. Fix a real number 1 < q < 2. For every nonnegative
integer k let

(1) k = ε0 + 2ε1 + . . . + 2nεn, εi ∈ {0, 1}
be its dyadic expansion and set

(2) xk = ε0 + ε1q + . . . + εnqn.

Denote by y0 < y1 < . . . the increasing rearrangement of the sequence (xk),
without repetitions. It is clear that

y0 = 0, y1 = 1, y2 = q

and that
yk →∞ if k →∞.

We are interested here in the behavior of the difference sequence yk+1−
yk. Let us introduce for brevity the following notations:

l(q) = inf(yk+1 − yk), L(q) = lim sup(yk+1 − yk).

Note that l(q) = lim inf(yk+1 − yk). Indeed, fix ε > 0 arbitrarily. It is
sufficient to show that there exist arbitrarily large integers m < l such that
yl − ym < l(q) + ε. By the definition of l(q) there exists an integer k such
that yk+1 − yk < l(q) + ε. Then for every sufficiently large integer n (such
that qn > yk+1) the numbers qn +yk and qn +yk+1 are in the sequence (yi).
Denoting them by ym and yl we have yl − ym = yk+1 − yk < l(q) + ε and
l,m →∞ as n →∞. Hence the claim follows.

We recall the following results; the first three of them were proved in [3],
while the last one was obtained in [2].
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(a) 0 ≤ l(q) ≤ L(q) ≤ 1 for all 1 < q < 2.
(b) L(q) = 1 for all A ≤ q < 2 where A = (1 +

√
5)/2.

(c) L(q) > 0 for all Pisot numbers.
(d) l(q) = 1/q > 0 for all Pisot numbers 1 < q < 2 satisfying the equation

qr+1 = 1 + q + . . . + qr for some integer r ≥ 1.

In the proof of (b) it was assumed that q > A, but the proof remains
valid for q = A. (One can also give a different proof by adapting that of
Proposition 3 below; see the remark following that proposition.)

In this paper we obtain several new estimates of l(q) and of L(q) for
some special classes of numbers 1 < q < 2. In particular, we obtain the
following two results:

(e) l(q) > 0 for all Pisot numbers.
(f) L(q) = 0 (i.e. yk+1 − yk → 0) for all transcendental numbers 1 < q

<
√

2.

The property (e) was also obtained independently in another way by Y.
Bugeaud [1]. He also proved a partial converse of this statement.

At the end of the paper we correct a small error in our previous paper
[3] and we formulate some open problems.

The authors are grateful to the referee for his suggestions.

2. Pisot numbers. For any real number x let us denote by ‖x‖ its
distance from the closest integer. Our main result is the following:

Theorem 1. We have l(q) > 0 for all Pisot numbers. More precisely ,

(3) L(q) ≥ q−N
(
1−

∞∑
k=N

‖qk‖
)

for all nonnegative integers N , and

(4) l(q) ≥ q−N
(
1−

∞∑
k=N

‖qk‖
)

for all nonnegative integers N satisfying

(5)
∞∑

k=N

‖qk‖ <
1

q + 1
.

P r o o f. Since ‖qk‖ → 0 exponentially if q is a Pisot number, the in-
equality (5) is satisfied if N is sufficiently large. Then it follows from (4)
and (5) that

l(q) ≥ q1−N/(q + 1) > 0.

It remains to prove the estimates (3) and (4).
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For every real x there is a unique integer m satisfying −1/2 < x−m ≤
1/2. Set d(x) = x−m. Then −1/2 < d(x) ≤ 1/2 and |d(x)| = ‖x‖.

There is nothing to prove if
∑∞

k=N ‖qk‖ ≥ 1. Fix a nonnegative integer
N such that

∞∑
k=N

‖qk‖ < 1

and set

(6) α = −
∞∑

k=N

min{d(qk), 0}, β =
∞∑

k=N

max{d(qk), 0}.

Then

(7) α ≥ 0, β ≥ 0 and α + β =
∞∑

k=N

‖qk‖ < 1.

Consider the increasing sequence yN
0 < yN

1 < . . . of the numbers of the
form (2) with ε0 = . . . = εN−1 = 0. Since clearly yN

k = qNyk for all k ≥ 0,
it is sufficient to prove that

(8) yN
k+1 − yN

k ≥ 1−
∞∑

j=N

‖qj‖

for infinitely many k ≥ 0, and that

(9) yN
k+1 − yN

k ≥ 1−
∞∑

j=N

‖qj‖

for all k ≥ 0 if the condition (5) is satisfied.
It follows from (6) and (7) that for every k ≥ 0 there is a unique integer

m = m(k) satisfying m − α ≤ yN
k ≤ m + β. Since yN

k → ∞, there are
infinitely many k’s for which m(k) < m(k + 1). For these k’s we have
(writing m = m(k))

(10) yN
k+1 − yN

k ≥ (m + 1− α)− (m + β) = 1− (α + β) = 1−
∞∑

j=N

‖qj‖

and (8) follows.
Now assume (5). It follows from (6) and (7) that for any l > k ≥ 0 we

have either 0 < yN
l − yN

k ≤ α + β or yN
l − yN

k ≥ 1− (α + β). It remains to
prove that the first case never occurs.

Assume on the contrary that 0 < yN
l − yN

k ≤ α + β for some l > k ≥ 0.
Choose an integer m ≥ 1 such that α + β < qm(yN

l − yN
k ) ≤ q(α + β) and

consider the numbers yN
l′ = qmyN

l and yN
k′ = qmyN

k . Then α+β < yN
l′ −yN

k′ ≤
q(α +β). However, this is impossible because q(α +β) < 1− (α +β) by the
assumption (5).
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Examples. 1. Let q ≈ 1.32472 be the first Pisot number (the real
root of q3 − q − 1 = 0). Denoting its conjugates by q2 and q3, we have the
(crude) estimates ‖qk‖ ≤ |q2|k + |q3|k for all k ≥ 0. Applying the theorem
with N = 22 resp. N = 26 and using these estimates we easily obtain
L(q) > 0.0006 and l(q) > 0.0004.

2. Let q ≈ 1.46557 be the fourth Pisot number (the real root of q3 −
q2− 1 = 0). Applying the theorem with N = 15 and with N = 18 we easily
obtain L(q) > 0.0011 and l(q) > 0.0006. Simple numerical tests seem to
indicate that L(q) = q−1 ≈ 0.46557 and l(q) = q5−q4−q3+q2−1 ≈ 0.1479.

3. Let q = A = (1 +
√

5)/2. Applying the theorem with N = 4 we
find that l(q) > 0.09. We recall from [2] (see (d) in the introduction) that
l(A) = 1/A ≈ 0.618. We also recall that L(A) = 1.

We can give lower bounds of L(q) and l(q) without using N .

Corollary 2. Let q be a Pisot number. Denote by d the degree of its
minimal polynomial , by q2, . . . , qd the conjugates of q and by Q the largest
absolute value of these conjugates, so that Q < 1. Then

L(q) ≥ (2q)−1q(log(2d−2)−log(1−Q))/ log Q

and
l(q) ≥ (1 + q)−1q(log(d−1)+log(1+q)−log(1−Q))/ log Q.

P r o o f. If we choose N such that
∞∑

k=N

‖qk‖ < 0.5,

then L(q) > 2−1q−N by the preceding theorem. Since

(11)
∞∑

k=N

‖qk‖ ≤
∞∑

k=N

d∑
j=2

|qj |k ≤ (d− 1)
∞∑

k=N

Qk = (d− 1)QN/(1−Q),

it is sufficient to choose N so that (d− 1)QN/(1−Q) < 0.5, or equivalently,

N >
log(1−Q)− log(d− 1)− log 2

log Q
.

Choosing the smallest integer N satisfying this inequality, we have

N − 1 ≤ log(1−Q)− log(d− 1)− log 2
log Q

and therefore

L(q) > 2−1q−N = (2q)−1q−(N−1) ≥ (2q)−1q(log(d−1)+log 2−log(1−Q))/ log Q,

proving the first part of the corollary.
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Next, if we choose N such that
∞∑

k=N

‖qk‖ < 1/(1 + q),

then l(q) > q1−N (1 + q)−1. By (11) it is sufficient to choose N so that

(d− 1)QN/(1−Q) < 1/(1 + q),

or equivalently,

N >
log(1−Q)− log(d− 1)− log(1 + q)

log Q
.

Choosing the smallest integer N satisfying this inequality, we have

N − 1 ≤ log(1−Q)− log(d− 1)− log(1 + q)
log Q

and therefore

l(q) > q1−N (1 + q)−1 ≥ (1 + q)−1q(log(d−1)+log(1+q)−log(1−Q))/ log Q,

proving the second part of the corollary.

It is possible to obtain more accurate lower bounds of L(q) by ad hoc
arguments for special Pisot numbers. Let us give an example.

Proposition 3. If q ≈ 1.46557 is the fourth Pisot number (i.e. the
only real root of the equation q3 = q2 + 1), then none of the open intervals
(qn − (q − 1), qn) contains any element yk. Hence L(q) ≥ q − 1.

P r o o f. Assume that this is false and let n ≥ 0 be the smallest integer
such that there exists yk ∈ (qn − (q − 1), qn). It follows easily from the
relations

y0 = 0, y1 = 1, y2 = q, y3 = q2, y4 = q + 1

that n ≥ 4. Furthermore, we have obviously

yk = ε0 + ε1q + . . . + εn−1q
n−1.

Observe that εn−1 = 0. Indeed, otherwise we would have

yl := yk − qn−1 ∈ (qn−3 − (q − 1), qn−3),

contradicting the minimality of n.
Similarly, we have εn−3 = 0, for otherwise

yl := yk − qn−3 ∈ (qn−1 − (q − 1), qn−1),

again contradicting the minimality of n.
Next we claim that εn−2 = 1. Indeed, otherwise yk would be too small:

we would have yk ≤ qn − (q − 1) by the following computation:
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qn − (q − 1)− yk ≥ qn − (q − 1)− (1 + q + . . . + qn−4)

= qn − q + 1− qn−3 − 1
q − 1

=
qn+1 − qn − q2 + 2q − 1− qn−3 + 1

q − 1

=
qn−2 − q2 + 2q − qn−3

q − 1
=

qn−3(q − 1) + q(2− q)
q − 1

> 0.

Now it follows that εn−4 = 0. Indeed, otherwise

yl := yk − qn−2 − qn−4 = yk − qn−1 ∈ (qn−3 − (q − 1), qn−3),

contradicting the minimality of n.
However, this is also impossible, because now we have yk < qn− (q− 1).

Indeed, using also the relation q2(q − 1) = 1 and the inequality q >
√

2, we
obtain

qn − yk ≥ qn − (1 + q + . . . + qn−5 + qn−2)

= qn − qn−2 − qn−4 − 1
q − 1

=
qn(q − 1)− qn−2(q − 1)− qn−4 + 1

q − 1

=
qn−2 − 2qn−4 + 1

q − 1
>

1
q − 1

.

Remark. One can prove by a similar but simpler argument that if q = A,
then none of the open intervals (qn, qn + 1) (n = 1, 2, . . .) contains any
element of the sequence (yk). Hence L(q) = 1.

3. Numbers q close to 1. We do not know whether L(q) = 0 for all q
sufficiently close to 1. We have the following weaker result:

Theorem 4. We have L(q) → 0 as q → 1. More precisely , L(q) ≤
(q2 − 1)e for all 1 < q < 2.

P r o o f. If q ≥ 6/5, then (q2− 1)e > 1 and the estimate follows from the
inequality L(q) ≤ 1. Assume therefore that 1 < q < 1.2; then there exists
an odd integer n ≥ 5 satisfying

1 +
1

n + 2
≤ q < 1 +

1
n

.

Consider the numbers q < q3 < . . . < qn+2. First of all, we have

qn+2 ≥
(

n + 3
n + 2

)n+2

>

(
4
3

)3

> 2 +
1
3

> q + 1

because n ≥ 3. Furthermore,

q3 − q < q5 − q3 < . . . < qn+2 − qn
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and
qn+2 − qn = (q2 − 1)qn < (q2 − 1)e =: δ.

We claim that for every real number α > q there exists a yk satisfying
α − δ < yk < α. Indeed, since 1 < q2 < 2, we have L(q2) ≤ 1 by (a) of the
introduction. Hence there exists

y = ε0 + ε2q
2 + . . . + ε2mq2m

such that α− q − 1 ≤ y < α− q. Consider the numbers

y + q < y + q3 < . . . < y + qn+2.

The first of them is clearly less than α, while the last one is greater than α:

y + qn+2 > y + q + 1 ≥ α.

Furthermore, the distance of two consecutive numbers is always less than δ.
It follows that if we denote by yk the largest term of this sequence which is
still less than α, then α− δ < yk < α.

The above claim implies that

lim sup(yk+1 − yk) ≤ δ,

and the proof is complete.

Our next result shows that yk+1 − yk → 0 for almost all numbers q
sufficiently close to 1.

Theorem 5. Let q be a real number satisfying 1 < q <
√

2 and l(q2) = 0.
Then L(q) = 0, i.e. yk+1 − yk → 0. In particular , this is true when
1 < q <

√
2 and q is transcendental.

We need three lemmas.

Lemma 6. Let 1 < q < 2 satisfy l(q) = 0 and fix δ > 0. Then there exists
a subsequence (zk) of (yk) satisfying the following two conditions:

(a) if i 6= j, then zi and zj have no common term qn;
(b) δ < z2i − z2i−1 < 2δ for all i = 1, 2, . . .

P r o o f. Since l(q) = 0, there exist l > k ≥ 1 such that 0 < yl − yk < δ.
(We may even choose l = k+1.) By omitting the common terms qn (if any),
we may assume that yk and yl have no common terms. Choose a positive
integer m such that δ < qm(yl − yk) < 2δ (possible because 1 < q < 2), and
set z1 = qmyk, z2 = qmyl.

Now we proceed by induction. Assume that z1 < . . . < z2n are already
defined for some n ≥ 1 and that they satisfy the conditions (a) and (b).

Fix a positive integer N such that qN > z2n. Then none of the numbers
z1 < . . . < z2n contains any term qi with i ≥ N . Since l(q) = 0, there
exist l > k ≥ 1 such that 0 < yl − yk < q−Nδ. We may also assume that
yk and yl have no common terms. Choose a positive integer m such that
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q−Nδ < qm(yl− yk) < 2q−Nδ (possible because 1 < q < 2), and set z2n+1 =
qN+myk, z2n+2 = qN+myl. Then δ < z2n+2 − z2n+1 < 2δ. Furthermore,
z2n+2, z2n+1 have no common term, and no term qi with i ≤ N . Hence the
properties (a) and (b) continue to hold.

Lemma 7. Let 1 < q < 2 satisfy l(q) = 0 and fix δ > 0, D > 0. Then
there exists a finite subsequence

(12) w0 < w1 < . . . < wm

of (yk) such that

(13) wi − wi−1 < 2δ, i = 1, . . . ,m,

and

(14) wm − w0 > D.

P r o o f. Consider the sequence (zk) of the preceding lemma. Choose an
integer m > D/δ and define

w0 = z1 + z3 + z5 + . . . + z2m−3 + z2m−1,

w1 = z2 + z3 + z5 + . . . + z2m−3 + z2m−1,

w2 = z2 + z4 + z5 + . . . + z2m−3 + z2m−1,

...
wm−1 = z2 + z4 + z6 + . . . + z2m−2 + z2m−1,

wm = z2 + z4 + z6 + . . . + z2m−2 + z2m.

We clearly have (12) and it follows from property (a) of the preceding
lemma that (wi) is a subsequence of (yk). It is also clear from (b) that (13)
is satisfied. Finally, (14) also follows from (b):

wm − w0 = (z2 − z1) + . . . + (z2m − z2m−1) > mδ > D.

Lemma 8. If 1 < q < 2 and q does not satisfy any algebraic equation
with integer coefficients belonging to the set {−1, 0, 1}, then l(q) = 0.

P r o o f. Fix δ > 0. Choose a sufficiently large n with (qn− 1)/(q− 1) <
(2n − 1)δ and consider the numbers xi, 0 ≤ i < 2n, constructed in the
introduction. It follows from our assumption on q that they are all different.
Furthermore, all these 2n numbers belong to the interval [0, 1 + . . . + qn−1]
whose length is less than (2n − 1)δ by the choice of n. Therefore, by the
box principle there are two xi whose distance is less than δ. Hence l(q) < δ.
Letting δ → 0 we conclude that l(q) = 0.

Proof of Theorem 5. Fix δ > 0 and apply Lemma 7 with q2 instead of q.
It follows that there exists a finite sequence a0 < a1 < . . . < am of numbers
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of the form

ε0 + ε2q
2 + ε4q

4 + . . . + ε2nq2n, εi ∈ {0, 1},
satisfying

0 < ai − ai−1 < 2δ, i = 1, . . . ,m, am − a0 > q.

On the other hand, since L(q2) ≤ 1 (see (a) in the introduction), every
open interval I ⊂ (0,∞) of length q contains at least one number of the
form

(15) ε1q + ε3q
3 + ε5q

5 + . . . + ε2n+1q
2n+1, εi ∈ {0, 1}.

It follows that every interval (x, x+2δ), x > a0 +q, contains at least one
yk. Indeed, choose b of the form (15) in (x − a0 − q, x − a0) and consider
the numbers

b + a0 < b + a1 < . . . < b + am.

It is clear that they all are in the sequence (yk). Since b + a0 < x, b + am >
b+a0 + q > x and since the difference of two consecutive elements is always
less than 2δ, it follows that at least one of them lies in (x, x + δ).

We have thus proved that L(q) ≤ 2δ. Since δ > 0 was arbitrary, we
conclude that L(q) = 0.

The last part of the theorem follows from Lemma 8.

The following result completes Theorem 5:

Proposition 9. We have L(
√

2) = 0.

P r o o f. Fix δ > 0 and choose an integer N > 1/δ. There exist two
integers 0 ≤ k < l ≤ N such that the fractional part of l

√
2 − k

√
2 is in

(0, 1/N). Taking integer multiples of l
√

2− k
√

2, it follows easily that there
exists a finite sequence of integers k1 < . . . < kN such that every interval
of length δ contains at least one number having the same fractional part as
one of ki

√
2, 1 ≤ i ≤ N .

It follows that every interval (x, x + δ), x > kN

√
2, contains at least one

yk. Indeed, let x < x′ < x + δ and 1 ≤ i ≤ N be such that x′ and ki

√
2

have the same fractional part. Then l := x′ − ki

√
2 is a nonnegative integer

and hence x′ = l + ki

√
2 is in the sequence (yk).

Correction. We have proven in [3] that if 1 < q < 2 and L(q) = 0, then
the number 1 has an infinite expansion containing arbitrarily long sequences
of consecutive 0 digits (Theorem 4, part (c)). In the proof, at the bottom
of page 388, the sentence “It is equal to yn for some n ≥ 1.” should be
changed to: “If m is sufficiently large, then this number belongs to the
interval (yn−1, yn] for some n ≥ 2.” Next, the first sentence on the top of
page 389 should be changed to: “It follows from (19) that yn−1 < qm−k−nik

and therefore n1+ik
> k + nik

≥ nik
.” The rest of the proof is the same.
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Let us note that the proof can easily be modified to prove, more generally,
that under the same assumption L(q) = 0, every x ∈ (0, 1/(q − 1)) has
an infinite expansion containing arbitrarily long sequences of consecutive 0
digits.

4. Open problems

1. Is it true that l(q) > 0 if and only if q is a Pisot number?
2. It would be interesting to determine the exact values of l(q) and L(q)

for the Pisot numbers. Is it possible to adapt the proof of Proposition 3 for
all Pisot numbers?
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Reáltanoda u. 13–15 7, rue René Descartes
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