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1. Let k be a number field. It is a fascinating problem to determine
the elliptic curves with everywhere good reduction over k. It is well known
that there is no such curve over the field of rational numbers. When k is
an imaginary quadratic field, Stroeker [Str] showed that such a curve does
not admit a global minimal model, and also that there is no such curve over
k provided that the class number of k is prime to 6. Hence the problem is
essentially solved in this case.

It is natural that we next turn to the case where k is a real quadratic field.
Another reason we are interested in this case is related to Shimura’s elliptic
curves obtained in the following way. Let N be a positive fundamental
discriminant and let χN be the associated Dirichlet character. When the
space S2(Γ0(N), χN ) of cuspforms of Neben-type of weight two has a 2-
dimensional Q-simple factor, Shimura [Shim] constructed an abelian surface
A defined over Q. Over the real quadratic field k = Q(

√
N), A splits as

B×B′, where B is an elliptic curve defined over k and B′ is the conjugate of
B. We call B Shimura’s elliptic curve over k. It is known that B is isogenous
to B′ over k ([Shim]), and that B has everywhere good reduction over k (cf.
[Ca], [DR], [KM]). Conversely, an elliptic curve E over a real quadratic
field k with the properties stated above is conjectured by Pinch [Pi1] to be
isogenous over k to Shimura’s elliptic curve. For related topics concerning
modularity of elliptic curves over number fields, see [Ha1], [HHM].

Hence the case of a real quadratic field is especially interesting. In this
case, the following is known:

• Several examples are known [Co], [Is], [Set], [Shio], etc.).
• There is a method of constructing Q-curves with everywhere good

reduction over real quadratic fields ([Um]). Recall that a Q-curve is
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an elliptic curve defined over Q which is isogenous over Q to any of its
Galois conjugates.

• There is no curve with everywhere good reduction over Q(
√

5) or
Q(
√

13) ([Pi1], [Is]).
• Determination of such curves has been made under certain conditions

([Co], [Ki1]).

However, as far as the author knows, there is no result determining all
elliptic curves with everywhere good reduction over a real quadratic field.

In the present paper, we shall determine all elliptic curves with every-
where good reduction over Q(

√
37) by means of diophantine equations.

2. The space S2(Γ0(37), χ37) is 2-dimensional and Q-simple by Shimura
[Shim]. Hence Shimura’s abelian variety is uniquely determined (up to Q-
isogeny) and we denote it by A37. The matrix

1√
37

(
0 −1
37 0

)
induces an automorphism η of A37 defined over k = Q(

√
37). Shimura’s

elliptic curve over k is defined as B37 := (1 + η)A37. A defining equation of
B37 is given in [Shio]:

B37 : y2 − εy = x3 +
3ε + 1

2
x2 +

11ε + 1
2

x, ∆ = ε6, j = 212,

where ∆ is the discriminant and j is the j-invariant. From this equation, we
see that B37(k)tors = 〈(0, 0)〉 ∼= Z/5Z. Kida ([Ki1]) proved that the elliptic
curves with everywhere good reduction over k with j ∈ Z are isomorphic
over k to either C1 := B37 given above or C2 := C1/〈(0, 0)〉 given by

C2 : y2 − εy = x3 +
3ε + 1

2
x2 − 1669ε + 139

2
x− 7(5449ε + 451),

∆ = ε6, j = 33763.

We see that C2(k)tors is trivial (Proposition A.3 of [Shio]; see also Table 8
in [MSZ]).

The purpose of the present paper is to determine all elliptic curves with
everywhere good reduction over k without any restriction on the j-invariant.
As a matter of fact, we prove:

Theorem. Up to isomorphism over k = Q(
√

37), C1 and C2 above are
the only elliptic curves with everywhere good reduction over k. In particular ,
Pinch’s conjecture is true for the field k.

Consequently, all such curves are the ones already obtained in [Ki1].

Remark. Shimura ([Shim]) showed that S2(Γ0(41), χ41) is also 2-dimen-
sional Q-simple, and hence Shimura’s elliptic curve over Q(

√
41) is unique,
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the one denoted by B41. Shiota [Shio] computed a defining equation of B41.
Kida and the author ([KK]) have recently determined all elliptic curves
with everywhere good reduction over Q(

√
41). They are the curves Ei (i =

23, . . . , 28) in the table in §5 of [Co] (E26 is isomorphic over Q(
√

41) to
B41), and they are isogenous over Q(

√
41). In particular, Pinch’s conjecture

is true also for Q(
√

41). We also find that there are no such curves over
Q(
√

N) (N = 17, 21, 73, 97, 149, 173, 181). Note that S2(Γ0(N), χN ) has no
2-dimensional Q-simple factor for these N and for N = 5, 13 ([Ha2], [Shim]).
Hence the conjecture is true also for these 10 values of N .

3. Notation. For a number field F , we denote by OF (resp. O×F ) its
ring of integers (resp. its group of units). If F is a quadratic field and x ∈ F ,
we denote the conjugate of x by x′.

Throughout this paper, we denote the real quadratic field Q(
√

37) by k.
Set ω = (1 +

√
37)/2, and let π = (7 +

√
37)/2 be a prime element dividing

3 in k. Observe that ππ′ = 3. We denote by ε the fundamental unit of k
larger than 1, namely ε = 6 +

√
37. Observe that Nk/Q(ε) = −1.

Here we give the outline of the proof. Let E be an elliptic curve with
everywhere good reduction over k. Since the class number of k is 1, E has
a model

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with coefficients ai ∈ Ok (i = 1, 2, 3, 4, 6) and discriminant ∆ = ±εn ∈ O×k .
In view of the formulae for an admissible change of variables, we may assume
that −6 ≤ n < 6. The discriminant ∆ and the quantities c4, c6 ∈ Ok defined
as usual are algebraically dependent, namely c3

4 − c2
6 = 1728∆. This means

that (c4, c6) is an Ok-integral point of one of the elliptic curves

E±n : y2 = x3 ± 1728εn, −6 ≤ n < 6.

Thus to determine the elliptic curves with everywhere good reduction over
k, we first determine the sets

E±n (Ok) = {(x, y) ∈ Ok ×Ok | y2 = x3 ± 1728εn}.
We need not determine all the sets though, because the discriminant of E
is a cube, as will be proved in §4. Further, the map

E±n (Ok) → E±n+6(Ok), (x, y) 7→ (xε2, yε3)

is a bijection, and the map (x, y) 7→ (x′ε2, y′ε3) is also a bijection from
E±n (Ok) to E±6−n(Ok) (resp. from E±n (Ok) to E∓6−n(Ok)) if n is even (resp.
odd). Therefore it suffices to determine the following three sets:

E±0 (Ok), E+
3 (Ok).

The determination will be done in §5.
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Next in §7, for each (x, y) ∈ E±n (Ok), we check whether x, y occur as the
quantities c4, c6 of a Weierstrass equation with coefficients in Ok.

4. This section is devoted to the proof of the following proposition:

Proposition 1. An elliptic curve with everywhere good reduction over
k has cubic discriminant.

Note that the discriminant being a cube or not is independent of the
choice of a model.

To prove Proposition 1, suppose that, on the contrary, there is an elliptic
curve E1 with everywhere good reduction over k given by a global minimal
Weierstrass equation whose discriminant ∆ is not a cube.

Lemma 1. Let M be a real quadratic field. Assume that 3 is unramified
in M and the class number of M(

√
−3) is prime to 3. Let E be an elliptic

curve with everywhere good reduction over M given by a global minimal
equation whose discriminant ∆ is not a cube in M. Then E has ordinary
good reduction at all primes of M lying above 3.

P r o o f. (The essential part of the proof is due to Kida [Ki2].) Let p
be a prime ideal of M dividing 3, u0 a fundamental unit of M , and set
F = M(

√
−3) and K = M( 3

√
∆) = M( 3

√
u0). Also let L be the extension

of M generated by the coordinates of all points of order 3. Note that M ⊂
K ⊂ FK ⊂ L ([Ser], p. 305 and [Sil], p. 98), and that the extension L/M is
unramified outside 3 and the archimedean primes by the criterion of Néron–
Ogg–Shafarevich ([Sil], p. 184). Also note that p is ramified in K and F :
P2

F = pOF . Suppose that E has supersingular reduction at p. Then the
decomposition group of p is a 2-group (see §1.11 and §2.2 of [Ser]). Hence p
cannot be totally ramified in K/M . Therefore pOK = P2

KP′
K , where PK

and P′
K are distinct prime ideals of K. Since FK/M is a Galois extension,

we have pOFK = (PP′P′′)2 with three distinct prime ideals P,P′,P′′ of
FK. It follows that PF splits completely in FK.

Hence, if 3 remains prime in M , then FK/F is an unramified extension
of degree three. This is a contradiction.

Next consider the case where 3 decomposes in M : 3OM = pp′, 3OF =
(PF P′

F )2. Since FK = F ( 3
√

u0) is a Kummer extension of degree 3 over
F , we see, by Theorem 119 of [He], that PF splits completely in FK if and
only if the congruence

(1) X3 ≡ u0 (mod P4
F )

is solvable in OF . Let σ be an element of Gal(F/Q) such that σ|M is the
non-trivial element of Gal(M/Q). Applying σ to the congruence (1), we
have a solution N(u0)Xσ of the congruence

Y 3 ≡ u−1
0 (mod P′4

F ).
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This means that P′
F also decomposes in FK. Hence FK/F is again an

unramified extension of degree three.

Suppose that E1 does not admit any 3-isogeny defined over k.

Lemma 2. Let M and E be as in Lemma 1 and let u0 be a fundamental
unit of M. If the class number of K = M( 3

√
u0) is odd , then E admits a

3-isogeny defined over M.

P r o o f. Let L be the extension of M generated by the coordinates of
all points of order 3 and let F = M(

√
−3). We may regard G = Gal(L/M)

as a subgroup of GL2(F3). Since L contains M( 3
√

∆) = K, which is a cubic
extension of M , the order of G is divisible by 3. Therefore G is contained
in a Borel subgroup of GL2(F3) or it contains SL2(F3) by Proposition 15
of [Ser]. The former case is equivalent to the assertion that E admits a
3-isogeny defined over M . Suppose that E does not admit any 3-isogeny
defined over M . Then G ⊃ SL2(F3), which is equivalent to the assertion
that G = GL2(F3), since det : G → F×3 is surjective by the commutative
diagram

G GL2(F3)

Gal(F/M) F×3

Res

��

//

det

��
∼ //

Hence Gal(L/K) is a 2-Sylow subgroup of GL2(F3). By an appropriate
choice of a basis of the group of 3-torsion points, we may assume that

Gal(L/K) = 〈σ, τ〉, where σ =
(

0 1
1 0

)
, τ =

(
1 −1
1 1

)
.

Since, by Lemma 1, E has ordinary good reduction at any primes of M
lying above 3, we can apply the argument in the proof of Proposition 5.6 of
[BK] to this case and we see that the fixed field of 〈σ, τ2〉 is an unramified
quadratic extension of K.

The class numbers of k(
√
−3), k( 3

√
ε) = Q( 3

√
ε) are 4, 1, respectively

(the computation of the class number of Q( 3
√

ε) takes less than 10 seconds
on Sparc station SS4 by using KASH Version 1.7). Therefore E1 admits a
3-isogeny defined over k. We show that this leads to a contradiction. More
precisely, we prove

Proposition 2. Let E1 be an elliptic curve with everywhere good reduc-
tion over k. Then E1 does not admit any 3-isogeny defined over k.
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To prove the proposition, suppose, on the contrary, that there exists a
3-isogeny f : E1 → E2 defined over k. We define a rational function J(x)
by

J(x) =
(x + 27)(x + 3)3

x
.

Then, by Pinch [Pi2], the j-invariant j(Ei) of Ei (i = 1, 2) can be written
as

j(E1) = J(τ1), j(E2) = J(τ2), τ1, τ2 ∈ k, τ1τ2 = 36

(the parametrization of the j-invariant used in [Ha1] and [Um] is J(27x),
which is given by Fricke [Fr]). Moreover, let c4, c6 be the usual quantities
associated with the defining equation of E1. Then

j(E1) =
c3
4

∆
=

(τ1 + 27)(τ1 + 3)3

τ1
,

j(E1)− 1728 =
c2
6

∆
=

(τ2
1 + 18τ1 − 27)2

τ1
.

Since E1 and E2 have everywhere good reduction over k, j(E1) and j(E2)
are integers in k and the principal ideals (j(Ei)) and (j(Ei)−1728) (i = 1, 2)
are a cube and a square, respectively. Thus we can write

τ1 = πaπ′bu, τ2 = π6−aπ′6−bu−1, a, b = 0, 6, u ∈ O×k .

Considering the dual isogeny f̂ : E2 → E1 and the conjugate f ′ : E′1 → E′2,
we may suppose that (a, b) = (0, 0) or (0, 6). We have τ1 6= −3, since an
elliptic curve defined over a quadratic field with j = 0 has at least one prime
of bad reduction ([Set]). In case (a, b) = (0, 0), if we put X = c4/(τ1 + 3),
u1 = ∆ and u2 = ∆/u, we obtain

(2) X3 = u1 + 27u2.

In case (a, b) = (0, 6), if we put X = c4π
′/(τ1 + 3), u1 = ∆ and u2 = ∆/u,

we obtain

(3) X3 = π′3u1 + π3u2.

Since u1, u2 ∈ O×k , we have X ∈ Ok in both cases.

Lemma 3. The map x + yω 7→ x (x, y ∈ Z) gives rise to a canonical
isomorphism Ok/π2 ∼= Z/9Z. In particular , ε ≡ 5 (mod π2) and ε is not a
cube modulo π2.

Lemma 4. Equations (2) and (3) have no solutions.

P r o o f. We prove the assertion only for equation (2) since a similar
proof works for (3).

Suppose that there exist X ∈ Ok and u1, u2 ∈ O×k satisfying (2). Then,
by Lemma 3, we see that u1 is a cube. Clearly, without loss of generality,
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we may suppose that u1 = 1. Writing (2) as

27u2 = X3 − 1 = (X − 1)(X2 + X + 1),
we have

X−1 = πaπ′bu3, X2+X+1 = π3−aπ′3−bu4, u3, u4 ∈ O×k , 0 ≤ a, b ≤ 3,

whence

(4) π2aπ′2bu2
3 + 3πaπ′bu3 + 3 = π3−aπ′3−bu4.

Without loss of generality, we may assume that a ≥ b. Each case of b =
0, 1 and a = 3 immediately leads to a contradiction. The remaining case
(a, b) = (2, 2) leads to a contradiction as follows. Taking the norms of both
sides of (4), we have

Nk/Q(u4) = 33 Trk/Q(u3)2 + (32 + 35Nk/Q(u3))Trk/Q(u3)

+ (36 + 1 + 33Nk/Q(u3)).

For all possible signs of the norms, Trk/Q(u3) cannot be rational, a contra-
diction.

Hence the assumption that E1 admits a 3-isogeny defined over k yields
a contradiction. This completes the proof of Proposition 2, and hence of
Proposition 1.

5. We now determine E±n (Ok).

Proposition 3. The Mordell–Weil group of E+
0 over k is 〈(−12, 0)〉 ∼=

Z/2Z. In particular , E+
0 (Ok) = {(−12, 0)}.

P r o o f. We first calculate the rank. In general, if E is an elliptic curve
defined over Q, then the rank of E(Q(

√
m)) is calculated from the formula

rank E(Q(
√

m)) = rank E(Q) + rank E(m)(Q),

where E(m) is the quadratic twist by m (for a proof, see [Ro]). Let E be
the curve E+

0 or its twist (E+
0 )(37) and let L(E/Q, s) be the Hasse–Weil

L-function of E. Since E has complex multiplication by Z[(1 +
√
−3)/2]

and

L(E/Q, 1) =
{

1.2143 . . . if E = E+
0 ,

3.1941 . . . if E = (E+
0 )(37)

(which are calculated by SIMATH Version 3.9), we have, by Theorem 1 of
Coates–Wiles [CW], rankE(Q) = 0. Therefore rankE+

0 (k) = 0.
Next, we compute the torsion subgroup. Let pp be a prime ideal lying

above a prime number p and let (E+
0 )pp

be the reduction modulo pp. Since

#(E+
0 )p7(Ok/p7) = 22, #(E+

0 )p41(Ok/p41) = 2 · 3 · 7,

we have, by Theorem 1 of [MSZ], #E+
0 (k)tors ≤ 2. This completes the

proof.
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Remark. The rank of E+
0 (Q) is easily computed by 2-descent, whereas

it is hard to compute the rank of (E+
0 )(37)(Q) by the same method, since

the (conjectural) order of the Shafarevich–Tate group X of (E+
0 )(37)/Q is

4. This is why the author resorts to L-functions.

Remark. E. Liverance pointed out that rank (E+
0 )(37)(Q) = 0 follows

from a result in [Sa] without using the L-function. By other results in
the same paper, we know that the 3-primary part of X is trivial. Hence,
combining this with the main result of [Ru], in which the above value of the
L-function appears, we see that the order of X is exactly 4.

Lemma 5. Let u1, u2 stand for units in k and A for an integer in k.
Then

(a) The equation 64u1 + u2 = A2 has no solution.
(b) The solutions of the equation 8u1 + u2 = A2 are

(u1, u2, A) = (w2, w2,±3w) (w ∈ O×k ).

(c) The equation 16u1 + 2u2 = A2 has no solution.
(d) The solutions of the equation u1 + u2 = A2 are

(u1, u2, A) = (w,−w, 0), (w2ε3, w2ε′3,±42w), (w2ε′3, w2ε3,±42w)
(w ∈ O×k ).

P r o o f. (a) is a special case of Lemma 2.1 of Ishii [Is]. A key point of
his proof is that 64 is divisible by 4. Hence (b) can be proved similarly to
(a). The assertion (c) is clear since 8u1 + u2 is prime to 2.

(d) If A 6= 0, then Proposition 2 of [Co] implies that

u1 = w2u0, u2 = w2u′0, w, u0 ∈ O×k , Trk/Q(u0) = x2, x ∈ Z.

We may suppose that u1 is positive, and hence u0 = εn for some n ∈ Z. By
Theorem 1 of [KT], Trk/Q(εn) = x2 holds only for n = 3, x = ±42.

Proposition 4.

E+
3 (Ok) = {(−12ε, 0), (12(588− ε−3),±3024(196 + ε−3))}.

P r o o f. Factorizing x3 = y2 − 1728ε3 in L = k(
√

3ε), we have

x3 = (y + 24ε
√

3ε)(y − 24ε
√

3ε).

Hence, to determine E+
3 (Ok), we use the following data for L obtained with

KASH:

(a) OL = Ok ⊕Ok

√
3ε.

(b) A system of fundamental units is ε, ε1 = ε + 2
√

3ε. Note that
NL/k(ε1) = 1.

(c) 2, π and π′ decompose as (2) = P2
2, (π) = P2

3 and (π′) = P′2
3 .

(d) The class number of L is 2.
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We denote the conjugation of L over k by . Let (y + 24ε
√

3ε) = AC3,
(y − 24ε

√
3ε) = BD3, where A,B,C,D are integral ideals in L such that

A,B are cube-free, AB is a cube and A = B. If a prime ideal P in L divides
A, then it divides both of (y± 24ε

√
3ε). Thus P | 48ε

√
3ε and we can write

A = Pa2
2 Pa3

3 P
′a′

3
3 , 0 ≤ a2, a3, a

′
3 < 3.

Since A = B and (c), we see that A = B. Moreover, since AB is a cube, we
have a2 = a3 = a′3 = 0. Hence

(y + 24ε
√

3ε) = C3.

By (a) and (d), we can write C = (a + b
√

3ε) with a, b ∈ Ok, and hence
y + 24ε

√
3ε = η(a + b

√
3ε)3 with η ∈ O×L . We may write η = εlεm

1 (−1 ≤
l, m ≤ 1) since −1, ε3 and ε3

1 can be absorbed in the cube. By (b), taking
the norm from L to k yields

x3 = ε2l{(a + b
√

3ε)(a− b
√

3ε)}3,

whence l = 0 and

y + 24ε
√

3ε = εm
1 (a + b

√
3ε)3, m = 0,±1.

If m = −1, then taking conjugation yields

−y + 24ε
√

3ε = ε1(−a + b
√

3ε)3.

Therefore it is sufficient to solve the following:

±y + 24ε
√

3ε = εm
1 (a + b

√
3ε)3, a, b, y ∈ Ok, m = 0, 1.

Case 1: m = 1. Equating the coefficients of
√

3ε yields

2a3 + 3εa2b + 18εab2 + 3ε2b3 = 24ε.

We see that a is divisible by 3, whence εb3 ≡ −1 (mod π2), which is impos-
sible by Lemma 3.

Case 2: m = 0. Equating the coefficients yields

(5) 8ε = b(a2 + εb2), ±y = a(a2 + 9εb2).

From the first equation of (5), we have b = u, 2u, 4u or 8u for some positive
unit u of k (note that 2 is prime in k). If b = 8u, then a2 = εu−1 − 64εu2,
which has no solutions by Lemma 5(a). If b = u, then Lemma 5(b) implies
that u3 = −1, which contradicts u > 0. If b = 4u, then a2 = −16εu2+2εu−1,
which has no solutions by Lemma 5(c). If b = 2u, then

(6)
(

a

2

)2

= εu−1 − εu2.

By Lemma 5(d), we see that (6) holds only for u = 1, ε−2, from which
we obtain (a, b) = (0, 2), (±84, 2ε−2). By the second equation of (5), the
corresponding values of y are 0, ±3024(196 + ε−3), respectively.
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Proposition 5. The set E−0 (Ok) consists of the following 15 elements:

(12, 0), (16,±8
√

37), (120,±216
√

37), (3376,±32248
√

37),

(44 + 4
√

37,±(320± 40
√

37)), (572 + 92
√

37,±(19040± 3128
√

37)).

P r o o f. Let L = k(
√
−3). To prove the proposition, we use the following

data for L obtained with KASH:

(a) OL = Ok ⊕Okζ, where ζ = (1 +
√
−3)/2.

(b) O×L = 〈ε〉 × 〈ζ〉 ∼= Z⊕ Z/6Z.
(c) 2, π and π′ decompose as (2) = P2P2 (P2 6= P2), (π) = P2

3 and
(π′) = P′2

3 .
(d) The ideal class group is a cyclic group of order 4 generated by the

class of P2.
(e) P4

2 = (1 + ω − 3ζ).

Arguing similarly to Proposition 4 over the field L, we see that it suffices
to solve

(±y + 24
√
−3) = Pa2

2 P
a2

2 C3

for (a2, a2) = (0, 0), (2, 1), y ∈ Ok and an integral ideal C of L.

Case 1: (a2, a2) = (0, 0). Since (±y + 24
√
−3) = C3 and, by (d), the

class number of L is prime to 3, we see that C is a principal ideal. Hence,
by (a) and (b), ±y + 24

√
−3 = εmζn(a + bζ)3, a, b ∈ Ok, m = 0,±1 and

n = 0,±1. Taking the norm from L to k of both sides, we obtain m = 0,
and considering the conjugate, we may suppose that n = 0 or 1.

If n = 0, equating the coefficients gives

±y =
1
2

(a− b)(2a + b)(a + 2b),(7)

16 = ab(a + b).(8)

From (8) we obtain

(a + b, ab) = (u, 16u−1), (2u, 8u−1), (4u, 4u−1), (8u, 2u−1), (16u, u−1)

for some unit u of k. If (a + b, ab) = (4u, 4u−1), then a and b are the roots
of the quadratic polynomial

X2 − 4uX + 4u−1.

The discriminant of the polynomial is 16(u2−u−1), which must be a square.
Then, by Lemma 5(d), (u2,−u−1) = (w,−w), (w2ε3, w2ε′3) for some unit w
of k. The first case leads to u = 1, a = b = 2, and we get y = 0 by (7). The
second case leads to w2 = ε, a contradiction. If (a + b, ab) = (2u, 8u−1),
then the quadratic polynomial satisfied by a and b is

X2 − 2uX + 8u−1,
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whose discriminant 4(u2 − 8u−1) must be a square. By Lemma 5(b), we
obtain u = −1, (a, b) = (2,−4), (−4, 2), and, by (7), y = 0. For (a, b) =
(u, 16u−1), (8u, 2u−1) or (16u, u−1), the discriminant of the quadratic poly-
nomials which a, b satisfy are

u2 + 64u−1, 4(16u2 − 2u−1), 4(64u2 − u−1),

respectively, none of which is a square by Lemma 5(a), (c).
If n = 1, then we obtain

a3 + 3a2b− b3 = 48.

We see that a ≡ b (mod 3). Letting a = 3A + b, A ∈ Ok and reducing
modulo π2, we obtain b3 ≡ 7 (mod π2), which contradicts Lemma 3.

Case 2: (a2, a2) = (2, 1). Multiplying both sides by (4) = (P2P2)2 and
considering (e) yields

(4)(±y + 24
√
−3) = P4

2(P2C)3 = (1 + ω − 3ζ)(P2C)3,

whence, by (d),

4(±y + 24
√
−3) = ζn(1 + ω − 3ζ)(a + bζ)3, a, b ∈ Ok, n = 0,±1.

If n = 0, then equating the coefficients yields

−64 = a3 − (ω − 2)a2b− (ω + 1)ab2 − b3,(9)
±4y − 96 = (ω + 1)a3 + 9a2b− 3(ω − 2)ab2 − (ω + 1)b3.(10)

As we will see later, the solutions of (9) are the following:

(4,−4), (0, 4), (−4, 0),

(−3 +
√

37,−2
√

37), (−2
√

37, 3 +
√

37), (3 +
√

37,−3 +
√

37),

(−40− 4
√

37, 8
√

37), (8
√

37, 40− 4
√

37), (40− 4
√

37,−40− 4
√

37),

(−2, 3 +
√

37), (−1−
√

37,−2), (3 +
√

37,−1−
√

37),

(−3 +
√

37, 2), (1−
√

37,−3 +
√

37), (2, 1−
√

37),

(−19− 3
√

37, 16 + 2
√

37), (16 + 2
√

37, 3 +
√

37), (3 +
√

37,−19− 3
√

37),

(−16+2
√

37, 19− 3
√

37), (−3+
√

37,−16+2
√

37), (19− 3
√

37,−3+
√

37).

Substituting them in (10), we get all the values of y except 0.
If n = 1 or n = −1, then we obtain

192 = (−2 + ω)a3 + 3(1 + ω)a2b + 9ab2 + (2− ω)b3,

−192 = (1 + ω)a3 + 9a2b + 3(1 + ω)a2b− (2− ω)b3,

respectively. They are shown to be impossible similarly to the case n = 1
in Case 1.

Remark. The rank of E−0 (k) = (E−0 )(37)(Q) is 2, which is easily seen
by 2-descent.



264 T. Kagawa

6. In [dW2], de Weger solves the Thue equation

x3 + (9 + 2
√

13)x2y − (12 +
√

13)xy2 − 11 + 3
√

13
2

y3 =
(

3 +
√

13
2

)n

with variables x, y in OQ(
√

13) and n in Z. To the author’s knowledge, this
is the only example in the literature where a Thue equation over a real
quadratic field is solved completely. By imitating his proof, we can solve
the Thue equation (9) as follows.

Let (a, b) ∈ Ok ×Ok be a solution of (9). Putting A = −a− (ω + 2)b we
have

A3 + (4ω + 4)A2b + (16ω + 48)Ab2 + (32ω + 80)b3 = 64.

It is easy to see that 4 |A and 2 | b. By putting A = 4X, b = 2Y , we have

(11) X3 + 2(ω + 1)X2Y + 4(ω + 3)XY 2 + 2(2ω + 5)Y 3 = 1.

Hence it suffices to prove the following:

Proposition 6. The only (X, Y ) ∈ Ok ×Ok satisfying (11) are

(−2− 9ω, 22− 4ω), (−23− 8ω,−4 + 8ω), (25 + 17ω,−18− 4ω),
(21 + 8ω,−8− 3ω), (−9− 3ω, 1 + ω), (−12− 5ω, 7 + 2ω),
(9 + 2ω, 1− 2ω), (−3− ω,−2 + ω), (−6− ω, 1 + ω),
(−5− 2ω, 1 + ω), (1 + ω,−1), (4 + ω,−ω),
(−2− ω, 2), (1, 0), (1 + ω,−2),
(3 + ω, 1− ω), (−ω, 1), (−3,−2 + ω),
(7− 2ω, 11− 3ω), (1 + ω,−9 + 2ω), (−8 + ω,−2 + ω).

P r o o f. Let F (X, Y ) be the left hand side of (11), θ a root of the
polynomial F (X, 1) and let L = Q(θ). Then k ⊂ L, [L : Q] = 6 and
OL = Z[ξ], where ξ = (12 + 18θ − 4θ3 − θ4)/20. In particular, θ = 4ξ −
5ξ2 − 4ξ3 + 4ξ4 + ξ5 and

√
37 = 3 − 12ξ − 8ξ2 + 8ξ3 + 2ξ4. The extension

L/Q is Galois with Galois group 〈σ, τ〉, where σ and τ are given by

σ(ξ) = − 14− 6ξ + 49ξ2 + 9ξ3 − 28ξ4 − 6ξ5,

τ(ξ) = − 1− 3ξ + 5ξ2 + 4ξ3 − 4ξ4 − ξ5,

and they satisfy σ3 = 1, τ2 = 1 and στ = τσ2. Thus Gal(L/Q) is isomorphic
to the symmetric group of degree 3. The conjugates of ξ in L are numbered
as follows:

ξ(1) = ξ = −4.6017164 . . . ,

ξ(2) = σ(ξ) = −0.5284180 . . . ,

ξ(3) = σ2(ξ) = −0.4112467 . . . ,

ξ(4) = τ(ξ) = −1.2776453 . . . ,
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ξ(5) = τσ(ξ) = 0.6985045 . . . ,

ξ(6) = τσ2(ξ) = 1.1205221 . . .

The conjugates of θ are numbered in accordance with the numbering of the
conjugates of ξ. A system of fundamental units of L is given by

ε1 = − ξ,

ε2 = − 5− 4ξ + 18ξ2 + 5ξ3 − 9ξ4 − 2ξ5,

ε3 = − 6− 8ξ + 23ξ2 + 9ξ3 − 13ξ4 − 3ξ5,

ε4 = 1 + 3ξ − 5ξ2 − 4ξ3 + 4ξ4 + ξ5,

ε5 = − 16− 15ξ + 63ξ2 + 18ξ3 − 36ξ4 − 8ξ5.

The actions of σ and τ on the units are as follows:

σ(εi) =


ε−1
3 if i = 1,

ε−1
4 if i = 2,

ε1ε
−1
3 if i = 3,

ε2ε
−1
4 if i = 4,

ε1ε
−1
2 ε−1

3 ε4ε5 if i = 5,

τ(εi) =


ε4 if i = 1,
ε3 if i = 2,
ε2 if i = 3,
ε1 if i = 4,
−ε−1ε2ε3ε

−1
4 ε−1

5 if i = 5.

Since (11) is equivalent to NL/k(X − Y θ) = 1, we have η := X − Y θ =
εa1
1 εa2

2 εa3
3 εa4

4 for some a1, . . . , a4 ∈ Z (note that NL/k(εi) = 1 (i = 1, 2, 3, 4)
and NL/k(ε5) = ε). Eliminating X, Y we obtain

(σ(θ)− σ2(θ))η + (σ2(θ)− θ)σ(η) + (θ − σ(θ))σ2(η) = 0,

hence
θ − σ2(θ)
θ − σ(θ)

· σ(η)
σ2(η)

− 1 = −σ(θ)− σ2(θ)
σ(θ)− θ

· η

σ2(η)
,

or equivalently

(12) −εb1
1 εb2

2 εb3
3 εb4

4 − 1 = εd1
1 εd2

2 εd3
3 εd4

4 ,

where
b1 = a1 + 2a3, b2 = a2 + 2a4 − 1, b3 =−2a1 − a3 + 1, b4 =−2a2 − a4,

d1 = −b3, d2 = −b4, d3 = b1 + b3, d4 = b2 + b4.

As in [Ki1], [TdW], [dW1] or [dW2], we estimate linear forms in the loga-
rithms

Λi =
4∑

j=1

bj log |ε(i)
j | =


log

∣∣∣∣θ(i) − σ2(θ(i))
θ(i) − σ(θ(i))

· σ(η(i))
σ2(η(i))

∣∣∣∣ (1 ≤ i ≤ 3),

log
∣∣∣∣ θ(i) − σ(θ(i))
θ(i) − σ2(θ(i))

·σ
2(η(i))

σ(η(i))

∣∣∣∣ (4 ≤ i ≤ 6).

Let i0 ∈ {1, . . . , 6} be the index such that |η(i0)| = min1≤i≤6{|η(i)|}. By a
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similar argument to that given in [dW2] (we omit the details) we find that

|Λi0 | < 4.1069 exp(−0.24457B),

subject to the condition B := max{|b1|, |b2|, |b3|, |b4|} ≥ 100. As explained
in [dW1], §3.2, we may suppose that i0 = 1. By the main result of [BW]
(again we omit the details), we find

log |Λ1| > −4.1810 · 1018 log(B).

Combining these bounds we have B ≤ 1.5142 · 1021.
Applying Proposition 3.1 of [TdW] to our case by taking the parameter

c0 appearing there to be 10100, we get a much smaller bound B ≤ 719. We
again apply the same proposition by taking c0 = 1018 and we get B ≤ 141.

We search this range for solutions of (12) and find 39 solutions, 21 of
which give integral (a1, a2, a3, a4); following the argument in [dW2], p. 860,
the search takes less than 15 minutes on Sparc station SS4 with a C-program.
For each (a1, a2, a3, a4), we see with KASH that the unit εa1

1 εa2
2 εa3

3 εa4
4 is of

the form X − Y θ. We list the solutions in Table 1.

Table 1. The solutions of (11) and (12)

a1 a2 a3 a4 b1 b2 b3 b4 X Y

−3 −4 −1 5 −5 5 8 3 −2−9ω 22−4ω
0 4 4 0 8 3 −3 −8 −23−8ω −4+8ω
5 −1 −4 −3 −3 −8 −5 5 25+17ω −18−4ω
4 −1 −4 1 −4 0 −3 1 21+8ω −8−3ω

−3 0 0 1 −3 1 7 −1 −9−3ω 1+ω
1 0 3 0 7 −1 −4 0 −12−5ω 7+2ω
3 −3 −3 3 −3 2 −2 3 9+2ω 1−2ω

−2 2 0 1 −2 3 5 −5 −3−ω −2+ω
1 0 2 −2 5 −5 −3 2 −6−ω 1+ω
2 0 −2 1 −2 1 −1 −1 −5−2ω 1+ω

−1 0 0 0 −1 −1 3 0 1+ω −1
1 −1 1 1 3 0 −2 1 4+ω −ω
1 0 −1 1 −1 1 0 −1 −2−ω 2
0 0 0 0 0 −1 1 0 1 0
1 −1 0 1 1 0 −1 1 1+ω −2
1 1 −1 1 −1 2 0 −3 3+ω 1−ω
0 0 0 −1 0 −3 1 1 −ω 1
1 −2 0 2 1 1 −1 2 −3 −2+ω
1 −4 −1 4 −1 3 0 4 7−2ω 11−3ω
0 3 0 1 0 4 1 −7 1+ω −9+2ω
1 0 0 −3 1 −7 −1 3 −8+ω −2+ω

7. In his paper [Kr], Kraus gives local conditions on (x, y) ∈ E±n (Ok)
which guarantee the existence of a Weierstrass equation with (c4, c6) =
(x, y). It turns out that only the following two satisfy the conditions of his
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results:

(16ε−2, −8
√

37ε−3), (3376ε−2, 32248
√

37ε−3) ∈ E−−6(Ok).

The former corresponds to Shimura’s elliptic curve C1 and the latter to C2.
Instead of using Kraus’ results, computing the conductor of the elliptic

curve
Y 2 = X3 − 27xX − 54y

by Tate’s algorithm ([Ta]) also gives the result (each (x, y) ∈ E±n (Ok) other
than the above gives an elliptic curve with good reduction outside 2). Tate’s
algorithm over quadratic fields is implemented by A. Umegaki on Sparc work
station using PARI/GP Version 1.39. A similar algorithm is implemented
in SIMATH Version 3.9, but it does not work in some cases, including ours.

Thus we complete the proof of Theorem.
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