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Dedekind sums with predictable signs
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KURT GIRSTMAIR (Innsbruck)

1. Introduction and main results. Let b and n be integers, b # 0,
with (b,n) = 1. The (inhomogeneous) Dedekind sum is defined by
b
s(n,) = S ((k/8) (kn /b))
k=1
where the symbol ((...)) has the usual meaning (cf., e.g., [8]). We note the
relations

(1) s(n,—b) = s(n,b) and s(n+b,b) = s(n,b).

Hence we obtain all Dedekind sums if b is restricted to natural numbers and
n to the range 0 < n < b. The general definition, however, will be useful
later.

In general, it is not easy to guess what the sign of s(n,b) may be.
Rademacher ([7], Satz 3) showed s(n,b) > 0 for 0 < n < v/b—1. In this
note we give a considerable generalization of Rademacher’s result. Roughly
speaking, we shall show that there are a great many intervals I in [0, b[ such
that s(n,b) takes a predictable and fixed sign for each n € I.

To this end we fix the natural number b for the time being. Let d < b
be another natural number. Define

b(d — 1)(d — 2)

(2) ad:*W, Ba =

(b d)?
bd — 1

and

(3) Ya = aa + 1/ Ba + af;

the square root being positive. To each fraction ¢/d, ¢ € Z, (¢,d) = 1, we
attach an interval of length 2,/d with midpoint b - ¢/d, namely,

I(c,d) ={z e R: |z —b-c/d| <vq/d}.
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Both “half-intervals”
I(c,d)” ={z€l(c,d):z<b-c/d}, I(c,d)t ={xel(c,d):x>b-c/d}

are nonempty. Moreover, each number n € Z, (n,b) = 1, lying in I(c,d)
belongs to one of these half-intervals. Otherwise n = b- ¢/d, but then d|b
because of (¢,d) = 1, so b/d divides (n,b), which is 1. This is impossible
since b/d > 1. Our first main result is

THEOREM 1. As above, let d < b be natural numbers and ¢ an integer
with (¢,d) = 1. Let n be an integer in I(c,d), (n,b) = 1. Then s(n,b) <0
ifn € I(c,d)”, and s(n,b) >0 ifn € I(c,d)™.

If d =1, then ag = 0 and B3 = b — 1, so y4/d = 74 = Vb —1 and
I1(0,1)* = ]0,v/b—1[. Therefore, the case d = 1 of Theorem 1 contains
Rademacher’s above-mentioned result. In view of (1) and the well-known
identity

(4) s(—n,b) = —s(n,b),

it is clear that Rademacher’s theorem is equivalent to this special case of
Theorem 1.

We look at the intervals I(ec,d) more closely. It suffices, of course, to
consider only those parts of them that are contained in [0,b]. Apart from
the half-intervals I(0,1)* and I(1,1)” = ]b—+/b — 1,b|, these parts are just
the complete intervals I(c,d), 2 < d < b, with 1 < c¢ < d, (¢,d) = 1. Tt will
be shown below that, if b > 4, then

(5) VBB —1 < ya)d < \/b]d

(cf. Lemma 2, (20), (21)). This means that the length 2v,;/d of an interval
I(c,d) is of order of magnitude ~ /b if d® is small relative to b. In this
case we say that I(c,d) is “large”. Obviously, large intervals contain many
integers n. There is no reason, however, to rule out “small” intervals. It
follows from (5) that I(c,d), (¢,d) = 1, contains at least one integer if
d < (3/4)b'/3; and it turns out that at least some of the intervals I(c,d)
contain an integer as long as d < v/b. Conversely, I(c,d) N Z is empty for
d > /b (see the remark following the proof of Theorem 1). In view of this,
it is natural to study the subset

(6) Rp) =10, n*tuIrn v {J U I

2Sd<\/g 1<e<d

(e,d)=1

of [0,b]. The set R(b) will be called the region of predictable sign. It would
be desirable to know the number

(7) S(b) = |R(b) N Z|
of integers in R(b). We show
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THEOREM 2. If b is large enough, then
1.8 b?/% < S(b) < 4.75 - b*/3.

According to Theorem 2 the number of integers in the region of pre-
dictable sign is substantially larger than the size of large intervals I(c,d).
Both constants in Theorem 2 are rather pessimistic the true order of mag-
nitude of S(b) seems to be ~ 3.1-5*/3. Further details on the growth of S(b)
can be found in Sections 3 and 4.

The diagrams below may give an idea of the behaviour of the values of
s(n,b) inside and outside R(b). They display the case b = 1009, a prime,
where S(b) = 266. The small circles represent pairs (n, 12s(n,b)). Observe
that

[12s(n,b)| < b

holds for arbitrary numbers n, b with (n,b) = 1 (cf. (14)). In the first
diagram the values n = 1 and n = b — 1 have been omitted—just to save
space, since these are the only ones with [12s(n, b)| close to b; for any other
n, [12s(n,b)| < b/2. The diagrams suggest that R(b) contains all integers n
for which |s(n,b)| is “large” but not only these; conversely, the complement
[0,6] \ R(b) seems to consist only of numbers n with |s(n,b)| small. Indeed,
our computations show that |12s(n, b)| seldom exceeds Vb if n is not in R(b),
whereas there are many numbers n in R(b) with [12s(n,b)| < Vb.

2. The proof of Theorem 1. Theorem 1 is based on a relation for
Dedekind sums (Lemma 1) that generalizes the usual three-term relation of
Rademacher [6]. This lemma is a consequence of the transformation law of
the logarithm of Dedekind’s n-function. Relations of this more general type
were given by Dieter [4] and frequently used by Bruggeman (cf., e.g., [3],
formula (3.1); [2], part 2.3). Nevertheless it seems that these relations are
not commonly known (cf. the rediscovery in [5]). For the convenience of
the reader we include a short proof, since it may be toilsome to adapt the
results of [4] to the situation considered here.

Let d, b be natural numbers and n, ¢ integers with (n,b) = (¢,d) = 1.
We write

(8) n—b-c/d=q/d,
where ¢ is an integer. Suppose ¢ # 0 and put
e = sign(q) (€ {£1}).
Moreover, let 7 and k be integers such that
(9) —cj+dk =1
and put
r = —bk + nj.
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b = 1009: the values of 12s(n,b) for n € R(b), n #1,b—1
LEMMA 1. In the above situation,
b2 +d? +¢?
12s(n,b) = 12s(c,d) + € - 128(r,q) + —————— — 3e.

bdq

Proof. The transformation law of the logarithm of Dedekind’s n-func-
tion says

(10) P(AB) = P(A) + ¢(B) — 3sign(A) sign(B) sign(AB)

(cf. [8], pp. 49 ff). Here A, B denote matrices in SL(2,Z) and ¢ and sign
are defined in the following way: If

_(a B
A<7 5)’

then sign(A) = sign(y) (€ {0,%£1}), and

(v +0)/vy — 12sign(A)s(d,y) otherwise.
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In our situation we put

u v —c —k
a=(5n) 2= )

where u, v are integers such that
(11) un —vb = 1.
On applying (10) one readily obtains (observe (4))
(12)  12s(n,b) = 12s(—j,d) + ¢ - 12s(r, q)
+ (uec —vd + bk — jn)/qg+ (u+n)/b+ (j — ¢)/d — 3e.

Because of (9), —¢j = 1 mod d, and a well-known identity (cf. [8], p. 26)
says

s(—7,d) = s(c,d).

Therefore, the right side of (12) has the desired shape if only the sum of the
three fractions equals (b + d? + ¢?)/(bdg). But this follows from a short
calculation which takes the identities (9) and (11) into account. m

Proof of Theorem 1. We consider the case n > b- c/d first. Let g be
defined by (8), so ¢ > 0 and € = 1. By the lemma, s(n,b) > 0 holds if, and
only if,

(13) 12s(c,d) + 12s(r, q) + (b> + d* + ¢°)/(bdg) — 3 > 0.
Next we apply the estimate
(14) [12s(z,y)| < (lyl = D(lyl —2)/lyl,

which holds for arbitrary coprime integers x,y, y # 0 (cf. [7]). Thereby, the
left side of (13) is > 0 if only

—(d—1)(d-2)/d—(q—1)(q —2)/q+ (b" + d* + ¢*)/(bdg) — 3 > 0.

This is the same as saying that f(d,q) < 0, where f(d,q) is the polynomial
defined by

(15)  f(dq) = ba(d — 1)(d — 2) + bi(g — 1)(q — 2) — (b +d® + ¢*) + 3bd.
We consider f(d,q) as a polynomial in ¢ only and note

fld,q)/(bd = 1) = ¢* =204 - g — Ba
(cf. (2)). Hence f(d,q) is negative if, and only if, ¢ lies between the zeros

(}{diwﬁd—l-(l{?l

of f(d,q). Since g is positive, this means nothing but ¢ < 4 (cf. (3)) and
n € I(c,d)*.
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In the case n < b-c¢/d we have ¢ < 0 and ¢ = —1. One shows, in
the same way, that s(n,b) < 0 if f(d,|q|) < 0, which means |g| < vz and
ne€l(lcd™ n

REMARK. We draw the reader’s attention to the fact that the definition
(15) of f(d,q) is symmetric in d and g. This allows rephrasing the assertion
“n € I(c,d)” in another way. Indeed, let ¢ be defined by (8). Then “n €
I(c,d)” is the same as saying |q| < 4 or f(d,|q|) < 0. This, however, is
equivalent to f(|g|,d) < 0 or d < 74. Now the (still unproved) estimate

(5), applied to 7|q), gives | < \/b/|q|; s0 n € I(c,d) can hold only if

d < \/b/|ql.

In particular, I(c,d) N Z is empty if d > v/b—as we said in Section 1.

b = 1009: the values of 12s(n,b) for n € R(b), 1 <n < b

3. The sums S;(b) and S5(b). Obviously, the sets I(c,d) N 7Z must be
pairwise disjoint (otherwise we get a contradiction to Theorem 1). Hence
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the definitions (6) and (7) show

Sy = > Spa
1<d< Vb
with
(16) Spa= Y. |I(c,d)nZl
0<e<d
(e,d)=1

The proof of Theorem 2 is based on the separate treatment of the sums
(17) Si(b) = Z Sh,as  Sa2(b) = Z Sb,d-
1<d<bl/3 b1/3§d<\/5

In fact, some of the estimates used for the first sum do not work in the case
of the second and conversely. We shall show

PROPOSITION 1. (a) For each sufficiently large natural number b,
18 o7
2 2
(b) If b is large enough, then
So(b) < 2 p2/3 4 p0-51,
Both parts (a) and (b) together yield
1.8-6%/% < 81(b) < S(b) = S1(b)+ S2(b) < 2.74-b*/3 +2.01-b*/3 = 4.75.p*/3

9
23 — g\/E < S1(b) < Sb?/3.

and hence Theorem 2. Next we list some estimates needed for the proof of
Proposition 1.

LEMMA 2. Let d < b be natural numbers and agq, Bq, va as in (2) and

(3). Then

(18) (d—3)/2 < |ag| < df2,
(19) Vb/d —/d[b < /s < /b/d,
(20) Yad > BB~ 1/Vbd —1/2,
(21) Ya/d < /b]d?.
Finally, if 12 <d < b,

(22) Ya < <1 + %) d_bz

Proof. Observe that
b(d—1)(d—2) S b(d—1)(d —2) S d? — 3d
bd — 1 - bd d

2|(J/d| =
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Moreover, if d =1, |ag| < d/2 is true. For d > 2,
(d—1)(d—2)
d—1/b

This proves (18). In order to prove (19), note
b— d)? b— d)?
Fa = (bd)l >4 bd) ’
hence /By > (b — d)/Vbd = \/b/d — \/d/b. Further,

b—d b-d b—d
= . < .
Pa d b—1/d = d <b/d

Assertion (20) is immediate from the definition (3) of 7,4, the upper bound
for |a4| and the lower bound for +/B; which are displayed in (18), (19),
respectively. In order to show (21) we use

\/Ba+ % < V/Ba+ o,

which can be verified by squaring. This gives 74 < /B4 < /b/d, by (19).

Finally, (19) implies
Ya < —|og| +4/b/d + o3
We show

(23) Vb/d+al < (1+4/d) - b/d* + ol

which yields (22). However,

4\ b 2, ANb _ 4\ b
1+E ﬁ_i_‘ad‘ Z(J(d+2‘(l{d‘ 1—|—5 ﬁ20d+(d—3) 1+E ﬁ,

by (19). One checks that (d —3)(1+44/d) > d whenever d > 12 and obtains
(23). =

2long| = <d-2<d.

Proof of Proposition 1(a). Since I(c,d) is an open interval of length
27y4/d, it is clear that

2va/d — 1 < |I(c,d) N7Z| < 2v4/d + 1.
Therefore, (16) gives
(24) p(d)(2ya/d — 1) < Spa < @(d)(2va/d + 1),

where @(...) denotes Euler’s function. Now the assertion follows from (17),
(20), (21), and the following three formulas that hold for large b:

SD(d) 1216 —1/6
> a7 :Fb/ +C+ 0~ Y logh),
1<d<b!/3
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with —0.56 < C' < 0,

(d)
(25) £ — o),
1S(§1/3 \/E

and
3
Z o(d) = —2()2/3 + O(b*3logh).
1<d<b!/? m
Of these, (25) is quite elementary since its left side is
< Y V=),
1<d<b!/?

The remaining two formulas are applications of standard results (cf. [1],
p. 62, Theorem 3.7, and p. 71, Exercise 7). m

The upper bound for S 4 given in (24) is not good enough for the proof
of Proposition 1(b). Instead, we shall use

LEMMA 3. Let 1 < d < b. Then
Sp,a < 2va + (d,b).

Proof. By (24), the assertion is true for d = 1. Suppose, henceforth,
d > 2. Sp,q4 is the number of all integers n, 0 < n < b, such that n € I(c,d)
holds for some ¢, 0 < ¢ < d, (¢,d) = 1. But saying “n € I(c,d)” is the same
as saying
(26) |nd — be| < vq.
For every k € Z define (k), € Z by the conditions

(k)p =k mod b, —b/2<(k), <b/2

(so (k)p is a certain representative of the congruence class of £ mod b). Now

(21), together with the inequalities 1 < \/b/d < b/d < b/2, yields y4 < b/2.
Consequently, (26) can hold only if |(nd)| < 4. But then

(27) Spa <H{n:0<n<b, |(nd)y <4}l
We write 0 = (d,b), d = d'd, and b = b'5. The identity
(nd)y = (nd')y - 6
readily shows
(28) Hn:0<mn<b, [(nd)s] <4}
=6-{n:0<n<?, |(nd)y| <va/d}|

Since (d',b’) = 1, the map n — (nd’)y is injective on {n : 0 < n < b'}.
Thus,

{n:0<n<?t, |(nd)y| <va/d} <2v4/0 + 1.
By (27) and (28), Sp,qa < 2794 + J, as desired. m
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Proof of Proposition 1(b). Lemma 3 yields
Sh<2 Y ot Y (db)

b1/3<d< b b1/3<d< Vb

The second sum is dominated by

Y o(db) <Y d-{n:1<n< Vb din} <) d-Vb/d=Vb) 1,

1<d<vb dlb dlb dlb

which is < b°-°! as soon as b is large enough. As to the first sum, we assume
b'/3 > 12 and use (22) together with the formulas

Yooyd=bv"Brom 2R, Y 1/d*=00b )

del/x del/x
(cf. [1], pp. 55 ff). This concludes the proof. m

4. Additional observations. The proof of Theorem 2 might suggest
that the sum Sy(b) does not actually play a role for the growth of S(b) for
instance, we did not even use S5(b) > 0. Numerical examples, however,
indicate that S;(b) and S3(b) have the same order of magnitude, namely
b%/3 (cf. Table 1, which displays some cases in which b is a prime).

If one assumes that the behaviour of the region R(b) relative to integers
is “random”, one expects that its (usual) measure p(b) is close to S(b). This
is the case in the examples listed below. Here we note that the intervals
I(c,d) are mutually disjoint so this is true not only for the integers in
these intervals. Therefore,

od) = Y o(d)-2v4/d.
1<d<Vb
However, we abstain from proving the said disjointness, some details being
fairly toilsome. With the aid of Lemma 2 it is not difficult to show
36
o(b) < =073,
™

The right side seems to be a more realistic upper bound for S(b) than that
of Theorem 2.

Table 1
b S()  Si(b)  S2(b)  e(b)  (36/x%) b3
10° + 3 6338 4378 1960 6308.8 7858.6

105 + 3 30210 20716 9494 301234 36475.7
107 +19 143010 97536 45474 142693.3 169305.1
108 + 7 672954 457150 215804 671954.9 785843.6
10° + 7 3153674 2136180 1017494 3150637.2 3647562.6
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One may ask whether the intervals I(c,d) of Theorem 1 are “largest
possible” or, conversely, whether they can be extended to larger intervals
with the same behaviour of the sign. Indeed, an extension is possible in
individual cases but not in general. Rademacher ([7], Satz 1) showed that
s(n,b) =0 if n = +/b— 1, so the intervals I(c, 1) cannot be enlarged if b — 1
happens to be a square. In addition, we investigated many numbers d > 1
and found numerous examples of sign changes of s(n,b) as soon as n passes
one of the boundaries of I(c,d).

The behaviour of s(n, b) inside the intervals I(c, d) is explained, partially
at least, by the following observation, which is based on Lemma 1, too (cf.
also [3], part 2.4): If d is small relative to b and n is close to the midpoint
b-c/d of I(c,d), the point (n,12s(n,b)) is close to the point (z,y) of the
hyperbola

(x—b-c/d)-y=0b/d?
with = n. In particular, the sign of s(n,b) agrees with that of y. When
n moves away from b - ¢/d, the point (n,12s(n,b)) may gradually leave its
companion (n,y) however, it must not cross the asymptote y = 0 of the
hyperbola as long as n remains inside I(c¢,d). The reader may inspect the
cases d = 2,3 in the first diagram above.

Finally, we observe that the estimate (21) implies

In/b—c/d| < 1/(2d%)

for any n € I(c,d) if only b > 12 (recall that d must be < Vb if I(c,d) is
nonempty). Therefore, the fraction ¢/d is a convergent of n/b according to
Legendre’s criterion. In order to test whether a given number n, (n,b) = 1,
is in the region R(b) one may proceed as follows: Compute the continued
fraction of n/b and check whether some convergent ¢/d, d < /b, satisfies
(26). If this is the case, n is in I(c,d) and hence in R(b), otherwise n lies
outside R(b).
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