
ACTA ARITHMETICALXXXIII.3 (1998)
Dedekind sums with predi
table signsbyKurt Girstmair (Innsbru
k)1. Introdu
tion and main results. Let b and n be integers, b 6= 0,with (b; n) = 1. The (inhomogeneous) Dedekind sum is de�ned bys(n; b) = jbjXk=1((k=b))((kn=b))where the symbol ((: : :)) has the usual meaning (
f., e.g., [8℄). We note therelations(1) s(n;�b) = s(n; b) and s(n+ b; b) = s(n; b):Hen
e we obtain all Dedekind sums if b is restri
ted to natural numbers andn to the range 0 � n < b. The general de�nition, however, will be usefullater.In general, it is not easy to guess what the sign of s(n; b) may be.Radema
her ([7℄, Satz 3) showed s(n; b) > 0 for 0 < n < pb� 1. In thisnote we give a 
onsiderable generalization of Radema
her's result. Roughlyspeaking, we shall show that there are a great many intervals I in [0; b[ su
hthat s(n; b) takes a predi
table and �xed sign for ea
h n 2 I.To this end we �x the natural number b for the time being. Let d < bbe another natural number. De�ne(2) �d = �b(d� 1)(d� 2)2(bd � 1) ; �d = (b� d)2bd� 1and(3) 
d = �d +q�d + �2d;the square root being positive. To ea
h fra
tion 
=d, 
 2 Z, (
; d) = 1, weatta
h an interval of length 2
d=d with midpoint b � 
=d, namely,I(
; d) = fx 2 R : jx� b � 
=dj < 
d=dg:1991 Mathemati
s Subje
t Classi�
ation: Primary 11F20.[283℄



284 K. GirstmairBoth \half-intervals"I(
; d)� = fx 2 I(
; d) : x < b � 
=dg; I(
; d)+ = fx 2 I(
; d) : x > b � 
=dgare nonempty. Moreover, ea
h number n 2 Z, (n; b) = 1, lying in I(
; d)belongs to one of these half-intervals. Otherwise n = b � 
=d, but then d j bbe
ause of (
; d) = 1, so b=d divides (n; b), whi
h is 1. This is impossiblesin
e b=d > 1. Our �rst main result isTheorem 1. As above, let d < b be natural numbers and 
 an integerwith (
; d) = 1. Let n be an integer in I(
; d), (n; b) = 1. Then s(n; b) < 0if n 2 I(
; d)�, and s(n; b) > 0 if n 2 I(
; d)+.If d = 1, then �d = 0 and �d = b � 1, so 
d=d = 
d = pb� 1 andI(0; 1)+ = ℄0;pb� 1[. Therefore, the 
ase d = 1 of Theorem 1 
ontainsRadema
her's above-mentioned result. In view of (1) and the well-knownidentity(4) s(�n; b) = �s(n; b);it is 
lear that Radema
her's theorem is equivalent to this spe
ial 
ase ofTheorem 1.We look at the intervals I(
; d) more 
losely. It suÆ
es, of 
ourse, to
onsider only those parts of them that are 
ontained in [0; b[. Apart fromthe half-intervals I(0; 1)+ and I(1; 1)� = ℄b�pb� 1; b[, these parts are justthe 
omplete intervals I(
; d), 2 � d < b, with 1 � 
 < d, (
; d) = 1. It willbe shown below that, if b � 4, then(5) pb=d3 � 1 < 
d=d <pb=d3(
f. Lemma 2, (20), (21)). This means that the length 2
d=d of an intervalI(
; d) is of order of magnitude � pb if d3 is small relative to b. In this
ase we say that I(
; d) is \large". Obviously, large intervals 
ontain manyintegers n. There is no reason, however, to rule out \small" intervals. Itfollows from (5) that I(
; d), (
; d) = 1, 
ontains at least one integer ifd < (3=4)b1=3 ; and it turns out that at least some of the intervals I(
; d)
ontain an integer as long as d < pb. Conversely, I(
; d) \ Z is empty ford � pb (see the remark following the proof of Theorem 1). In view of this,it is natural to study the subset(6) R(b) = I(0; 1)+ [ I(1; 1)� [ [2�d<pb [1�
<d(
;d)=1 I(
; d)of [0; b[. The set R(b) will be 
alled the region of predi
table sign. It wouldbe desirable to know the number(7) S(b) = jR(b) \ Zjof integers in R(b). We show



Dedekind sums with predi
table signs 285Theorem 2. If b is large enough, then1:8 � b2=3 < S(b) < 4:75 � b2=3:A

ording to Theorem 2 the number of integers in the region of pre-di
table sign is substantially larger than the size of large intervals I(
; d).Both 
onstants in Theorem 2 are rather pessimisti
|the true order of mag-nitude of S(b) seems to be � 3:1 �b2=3. Further details on the growth of S(b)
an be found in Se
tions 3 and 4.The diagrams below may give an idea of the behaviour of the values ofs(n; b) inside and outside R(b). They display the 
ase b = 1009, a prime,where S(b) = 266. The small 
ir
les represent pairs (n; 12s(n; b)). Observethat j12s(n; b)j < bholds for arbitrary numbers n, b with (n; b) = 1 (
f. (14)). In the �rstdiagram the values n = 1 and n = b � 1 have been omitted|just to savespa
e, sin
e these are the only ones with j12s(n; b)j 
lose to b; for any othern, j12s(n; b)j < b=2. The diagrams suggest that R(b) 
ontains all integers nfor whi
h js(n; b)j is \large" but not only these; 
onversely, the 
omplement[0; b[ nR(b) seems to 
onsist only of numbers n with js(n; b)j small. Indeed,our 
omputations show that j12s(n; b)j seldom ex
eeds pb if n is not in R(b),whereas there are many numbers n in R(b) with j12s(n; b)j < pb.2. The proof of Theorem 1. Theorem 1 is based on a relation forDedekind sums (Lemma 1) that generalizes the usual three-term relation ofRadema
her [6℄. This lemma is a 
onsequen
e of the transformation law ofthe logarithm of Dedekind's �-fun
tion. Relations of this more general typewere given by Dieter [4℄ and frequently used by Bruggeman (
f., e.g., [3℄,formula (3.1); [2℄, part 2.3). Nevertheless it seems that these relations arenot 
ommonly known (
f. the redis
overy in [5℄). For the 
onvenien
e ofthe reader we in
lude a short proof, sin
e it may be toilsome to adapt theresults of [4℄ to the situation 
onsidered here.Let d, b be natural numbers and n, 
 integers with (n; b) = (
; d) = 1.We write(8) n� b � 
=d = q=d;where q is an integer. Suppose q 6= 0 and put" = sign(q) (2 f�1g):Moreover, let j and k be integers su
h that(9) �
j + dk = 1and put r = �bk + nj:
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ab = 1009: the values of 12s(n; b) for n 2 R(b), n 6= 1; b� 1Lemma 1. In the above situation,12s(n; b) = 12s(
; d) + " � 12s(r; q) + b2 + d2 + q2bdq � 3":P r o o f. The transformation law of the logarithm of Dedekind's �-fun
-tion says(10) �(AB) = �(A) + �(B)� 3 sign(A) sign(B) sign(AB)(
f. [8℄, pp. 49 �). Here A, B denote matri
es in SL(2;Z) and � and signare de�ned in the following way: IfA = �� �
 Æ � ;then sign(A) = sign(
) (2 f0;�1g), and�(A) = ��=Æ if 
 = 0;(�+ Æ)=
 � 12 sign(A)s(Æ; 
) otherwise.



Dedekind sums with predi
table signs 287In our situation we putA = �u vb n� ; B = ��
 �kd j � ;where u; v are integers su
h that(11) un� vb = 1:On applying (10) one readily obtains (observe (4))12s(n; b) = 12s(�j; d) + " � 12s(r; q)(12) + (u
� vd+ bk � jn)=q + (u+ n)=b+ (j � 
)=d� 3":Be
ause of (9), �
j � 1 mod d, and a well-known identity (
f. [8℄, p. 26)says s(�j; d) = s(
; d):Therefore, the right side of (12) has the desired shape if only the sum of thethree fra
tions equals (b2 + d2 + q2)=(bdq). But this follows from a short
al
ulation whi
h takes the identities (9) and (11) into a

ount.Proof of Theorem 1. We 
onsider the 
ase n > b � 
=d �rst. Let q bede�ned by (8), so q > 0 and " = 1. By the lemma, s(n; b) > 0 holds if, andonly if,(13) 12s(
; d) + 12s(r; q) + (b2 + d2 + q2)=(bdq) � 3 > 0:Next we apply the estimate(14) j12s(x; y)j � (jyj � 1)(jyj � 2)=jyj;whi
h holds for arbitrary 
oprime integers x; y, y 6= 0 (
f. [7℄). Thereby, theleft side of (13) is > 0 if only�(d� 1)(d� 2)=d � (q � 1)(q � 2)=q + (b2 + d2 + q2)=(bdq)� 3 > 0:This is the same as saying that f(d; q) < 0, where f(d; q) is the polynomialde�ned by(15) f(d; q) = bq(d� 1)(d� 2) + bd(q � 1)(q � 2)� (b2 + d2 + q2) + 3bdq:We 
onsider f(d; q) as a polynomial in q only and notef(d; q)=(bd � 1) = q2 � 2�d � q � �d(
f. (2)). Hen
e f(d; q) is negative if, and only if, q lies between the zeros�d �q�d + �2dof f(d; q). Sin
e q is positive, this means nothing but q < 
d (
f. (3)) andn 2 I(
; d)+.



288 K. GirstmairIn the 
ase n < b � 
=d we have q < 0 and " = �1. One shows, inthe same way, that s(n; b) < 0 if f(d; jqj) < 0, whi
h means jqj < 
d andn 2 I(
; d)�.Remark. We draw the reader's attention to the fa
t that the de�nition(15) of f(d; q) is symmetri
 in d and q. This allows rephrasing the assertion\n 2 I(
; d)" in another way. Indeed, let q be de�ned by (8). Then \n 2I(
; d)" is the same as saying jqj < 
d or f(d; jqj) < 0. This, however, isequivalent to f(jqj; d) < 0 or d < 
jqj. Now the (still unproved) estimate(5), applied to 
jqj, gives 
jqj <pb=jqj; so n 2 I(
; d) 
an hold only ifd <pb=jqj:In parti
ular, I(
; d) \Z is empty if d � pb|as we said in Se
tion 1.
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b = 1009: the values of 12s(n; b) for n 62 R(b), 1 � n < b3. The sums S1(b) and S2(b). Obviously, the sets I(
; d) \Z must bepairwise disjoint (otherwise we get a 
ontradi
tion to Theorem 1). Hen
e



Dedekind sums with predi
table signs 289the de�nitions (6) and (7) showS(b) = X1�d<pbSb;dwith(16) Sb;d = X0�
<d(
;d)=1 jI(
; d) \ Zj:The proof of Theorem 2 is based on the separate treatment of the sums(17) S1(b) = X1�d<b1=3 Sb;d; S2(b) = Xb1=3�d<pbSb;d:In fa
t, some of the estimates used for the �rst sum do not work in the 
aseof the se
ond and 
onversely. We shall showProposition 1. (a) For ea
h suÆ
iently large natural number b,18�2 b2=3 � 98pb < S1(b) < 27�2 b2=3:(b) If b is large enough, thenS2(b) < 2 � b2=3 + b0:51:Both parts (a) and (b) together yield1:8 �b2=3 < S1(b) � S(b) = S1(b)+S2(b) < 2:74 �b2=3+2:01 �b2=3 = 4:75 �b2=3and hen
e Theorem 2. Next we list some estimates needed for the proof ofProposition 1.Lemma 2. Let d < b be natural numbers and �d, �d, 
d as in (2) and(3). Then (d� 3)=2 < j�dj < d=2;(18) pb=d�pd=b <p�d <pb=d;(19) 
d=d >pb=d3 � 1=pbd� 1=2;(20) 
d=d <pb=d3:(21)Finally , if 12 � d < b,(22) 
d < �1 + 4d� bd2 :P r o o f. Observe that2j�dj = b(d� 1)(d � 2)bd� 1 � b(d� 1)(d � 2)bd > d2 � 3dd :



290 K. GirstmairMoreover, if d = 1, j�dj < d=2 is true. For d � 2,2j�dj = (d� 1)(d � 2)d� 1=b � d� 2 < d:This proves (18). In order to prove (19), note�d = (b� d)2bd� 1 > (b� d)2bd ;hen
e p�d > (b� d)=pbd =pb=d�pd=b. Further,�d = b� dd � b� db� 1=d � b� dd < b=d:Assertion (20) is immediate from the de�nition (3) of 
d, the upper boundfor j�dj and the lower bound for p�d whi
h are displayed in (18), (19),respe
tively. In order to show (21) we useq�d + �2d �p�d + j�dj;whi
h 
an be veri�ed by squaring. This gives 
d � p�d < pb=d, by (19).Finally, (19) implies 
d < �j�dj+qb=d+ �2d:We show(23) qb=d+ �2d � (1 + 4=d) � b=d2 + j�dj;whi
h yields (22). However,��1 + 4d� bd2 + j�dj�2 � �2d + 2j�dj�1 + 4d� bd2 � �2d + (d� 3)�1 + 4d� bd2 ;by (19). One 
he
ks that (d� 3)(1 + 4=d) � d whenever d � 12 and obtains(23).Proof of Proposition 1(a). Sin
e I(
; d) is an open interval of length2
d=d, it is 
lear that2
d=d� 1 � jI(
; d) \Zj � 2
d=d+ 1:Therefore, (16) gives(24) '(d)(2
d=d� 1) � Sb;d � '(d)(2
d=d+ 1);where '(: : :) denotes Euler's fun
tion. Now the assertion follows from (17),(20), (21), and the following three formulas that hold for large b:X1�d<b1=3 '(d)d3=2 = 12�2 b1=6 +C +O(b�1=6 log b);



Dedekind sums with predi
table signs 291with �0:56 < C < 0,(25) X1�d<b1=3 '(d)pd = O(pb);and X1�d<b1=3 '(d) = 3�2 b2=3 +O(b1=3 log b):Of these, (25) is quite elementary sin
e its left side is� X1�d<b1=3pd = O((b1=3)3=2):The remaining two formulas are appli
ations of standard results (
f. [1℄,p. 62, Theorem 3.7, and p. 71, Exer
ise 7).The upper bound for Sb;d given in (24) is not good enough for the proofof Proposition 1(b). Instead, we shall useLemma 3. Let 1 � d < b. ThenSb;d � 2
d + (d; b):P r o o f. By (24), the assertion is true for d = 1. Suppose, hen
eforth,d � 2. Sb;d is the number of all integers n, 0 � n < b, su
h that n 2 I(
; d)holds for some 
, 0 � 
 < d, (
; d) = 1. But saying \n 2 I(
; d)" is the sameas saying(26) jnd� b
j < 
d:For every k 2 Z de�ne (k)b 2 Z by the 
onditions(k)b � k mod b; �b=2 � (k)b < b=2(so (k)b is a 
ertain representative of the 
ongruen
e 
lass of k mod b). Now(21), together with the inequalities 1 <pb=d < b=d � b=2, yields 
d < b=2.Consequently, (26) 
an hold only if j(nd)bj < 
d. But then(27) Sb;d � jfn : 0 � n < b; j(nd)bj < 
dgj:We write Æ = (d; b), d = d0Æ, and b = b0Æ. The identity(nd)b = (nd0)b0 � Æreadily shows(28) jfn : 0 � n < b; j(nd)bj < 
dgj= Æ � jfn : 0 � n < b0; j(nd0)b0 j < 
d=Ægj:Sin
e (d0; b0) = 1, the map n 7! (nd0)b0 is inje
tive on fn : 0 � n < b0g.Thus, jfn : 0 � n < b0; j(nd0)b0 j < 
d=Ægj � 2
d=Æ + 1:By (27) and (28), Sb;d � 2
d + Æ, as desired.



292 K. GirstmairProof of Proposition 1(b). Lemma 3 yieldsS2(b) � 2 Xb1=3�d<pb 
d + Xb1=3�d<pb(d; b):The se
ond sum is dominated byX1�d<pb(d; b) �Xdjb d � jfn : 1 � n < pb; d jngj �Xdjb d � pb=d = pbXdjb 1;whi
h is � b0:51 as soon as b is large enough. As to the �rst sum, we assumeb1=3 � 12 and use (22) together with the formulasXd�b1=3 1=d2 = b�1=3 +O(b�2=3); Xd�b1=3 1=d3 = O(b�2=3)(
f. [1℄, pp. 55 �). This 
on
ludes the proof.4. Additional observations. The proof of Theorem 2 might suggestthat the sum S2(b) does not a
tually play a role for the growth of S(b)|forinstan
e, we did not even use S2(b) > 0. Numeri
al examples, however,indi
ate that S1(b) and S2(b) have the same order of magnitude, namelyb2=3 (
f. Table 1, whi
h displays some 
ases in whi
h b is a prime).If one assumes that the behaviour of the region R(b) relative to integersis \random", one expe
ts that its (usual) measure %(b) is 
lose to S(b). Thisis the 
ase in the examples listed below. Here we note that the intervalsI(
; d) are mutually disjoint|so this is true not only for the integers inthese intervals. Therefore,%(b) = X1�d<pb'(d) � 2
d=d:However, we abstain from proving the said disjointness, some details beingfairly toilsome. With the aid of Lemma 2 it is not diÆ
ult to show%(b) < 36�2 b2=3:The right side seems to be a more realisti
 upper bound for S(b) than thatof Theorem 2. Table 1b S(b) S1(b) S2(b) %(b) (36=�2) � b2=3105 + 3 6338 4378 1960 6308.8 7858.6106 + 3 30210 20716 9494 30123.4 36475.7107 + 19 143010 97536 45474 142693.3 169305.1108 + 7 672954 457150 215804 671954.9 785843.6109 + 7 3153674 2136180 1017494 3150637.2 3647562.6



Dedekind sums with predi
table signs 293One may ask whether the intervals I(
; d) of Theorem 1 are \largestpossible" or, 
onversely, whether they 
an be extended to larger intervalswith the same behaviour of the sign. Indeed, an extension is possible inindividual 
ases but not in general. Radema
her ([7℄, Satz 1) showed thats(n; b) = 0 if n = pb� 1, so the intervals I(
; 1) 
annot be enlarged if b� 1happens to be a square. In addition, we investigated many numbers d > 1and found numerous examples of sign 
hanges of s(n; b) as soon as n passesone of the boundaries of I(
; d).The behaviour of s(n; b) inside the intervals I(
; d) is explained, partiallyat least, by the following observation, whi
h is based on Lemma 1, too (
f.also [3℄, part 2.4): If d is small relative to b and n is 
lose to the midpointb � 
=d of I(
; d), the point (n; 12s(n; b)) is 
lose to the point (x; y) of thehyperbola (x� b � 
=d) � y = b=d2with x = n. In parti
ular, the sign of s(n; b) agrees with that of y. Whenn moves away from b � 
=d, the point (n; 12s(n; b)) may gradually leave its
ompanion (n; y)|however, it must not 
ross the asymptote y = 0 of thehyperbola as long as n remains inside I(
; d). The reader may inspe
t the
ases d = 2; 3 in the �rst diagram above.Finally, we observe that the estimate (21) impliesjn=b� 
=dj < 1=(2d2)for any n 2 I(
; d) if only b � 12 (re
all that d must be < pb if I(
; d) isnonempty). Therefore, the fra
tion 
=d is a 
onvergent of n=b a

ording toLegendre's 
riterion. In order to test whether a given number n, (n; b) = 1,is in the region R(b) one may pro
eed as follows: Compute the 
ontinuedfra
tion of n=b and 
he
k whether some 
onvergent 
=d, d < pb, satis�es(26). If this is the 
ase, n is in I(
; d) and hen
e in R(b), otherwise n liesoutside R(b). Referen
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