ACTA ARITHMETICA
LXXXIIL4 (1998)

Imaginary quadratic fields
with small odd class number

by

STEVEN ARNO, M. L. ROBINSON and
FERRELL S. WHEELER (Bowie, Md.)

1. Introduction. Let —d be the discriminant of an imaginary quadratic
field with class number A(—d). As is well known, Gauss [9] conjectured
that h(—d) tends to infinity with d. Hence, for fixed m, it was natural to
ask for a complete list of negative fundamental discriminants —d such that
h(—d) = m. This problem is usually referred to as Gauss’ class number
problem or Gauss’ class number m problem.

In 1934, Heilbronn [14] succeeded in proving Gauss’ conjecture, thereby
placing the class number problem on firm ground. The following year,
Siegel [20] showed that for any € > 0 there exists a constant c. > 0 such that
h(—d) > c.d*/?=¢ as d — co. Unfortunately, neither result was effective,
and no further progress was made until the 1950’s when Heegner [13] of-
fered a solution for the class number 1 problem based on new ideas from the
theory of modular functions. It is interesting to recall that Heegner’s proof
was generally discounted until the “gaps” in his argument were explained
many years later (see [5], [8], [21], [24]). In the interim period, however, the
first accepted proof of the class number 1 problem was given by Stark [23]
in 1966. Shortly thereafter, Baker [2, 4] found another proof based on the
theory of transcendental numbers. In 1971, Baker [3, 4] and Stark [26 28]
independently resolved the class number 2 problem as well. However, there
seemed to be little hope of generalizing these methods to solve higher class
number problems.

In 1976, Goldfeld [10] presented a deep and entirely unexpected result
which provided the framework for a general attack on the class number
problem. He showed that if there exists a Weil curve whose associated
L-function has a zero of at least the third order at s = 1, then for any ¢ > 0
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there exists an effectively computable constant ¢, such that
(1.1) h(—d) > c.(logd)*~=.

Of course, the utility of Goldfeld’s result depended on finding an appropri-
ate elliptic curve. And though one would expect to find a Weil curve with
a high order zero at s = 1 based on the celebrated conjecture of Birch and
Swinnerton-Dyer [5], technical difficulties kept things on hold for several
years. Finally, in 1983 Gross and Zagier [11] were able to show that cer-
tain curves must have a zero of at least the third order at s = 1, thereby
completing the attack of Goldfeld.

Goldfeld’s proof was later simplified by Oesterlé [19], who provided,
among other things, explicit constants for Goldfeld’s theorem. As a re-
sult, Oesterlé was able to complete the class number 3 problem as well. The
class number 4 problem was solved by the first author [1] who combined
new techniques with the well-known methods of Stark [22], Montgomery—
Weinberger [18], and Oesterlé [19]. In hindsight, [1] contains a prototype
for the partitioning of minima (of reduced quadratic forms of discriminant
—d), which plays a crucial role in this paper.

The central concern of this paper is the class number m problem for
small, odd m. The aforementioned partitioning of minima enables us to
significantly improve on earlier estimates. Our results are summarized in
the following theorem.

THEOREM 1. For each odd integer m satisfying 5 < m < 23, the class
number m problem is solved. For each such m, a complete list of nega-
tive fundamental discriminants —d for which h(—d) = m can be found in
Appendiz A.

Let —d be the discriminant of an imaginary quadratic field with class
number A(—d). In Table 1 we present the number of fields satisfying
h(—d) = m and the largest such d for each odd m satisfying 1 < m < 23.

Table 1. Upper bound on d satisfying h(—d) = m

m F# ofd max. d

1 9 163
3 16 907
5 25 2683
7 31 5923
9 34 10627

11 41 15667
13 37 20563
15 68 34483
17 45 37123
19 47 38707
21 85 61483
23 68 90787
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The paper is organized as follows. In §2 we use Oesterlé’s [19] explicit
constants to produce a dz(m) such that if d > dz(m), then h(—d) # m.
In §3 we provide the theoretical justification for the partitioning of minima
mentioned above. In §4 we prove several technical lemmas concerning an
auxiliary function which are needed in §5.

We divide §5 into three subsections, each of which rules out a certain
range of fundamental discriminants. In §5.1, following the approach of
Montgomery Weinberger [18], we produce a da(m) such that if do(m) <
d < dsz(m), then h(—d) # m. At the end of §5.1 we note that the meth-
ods of §5.1, even when pushed to their limits, do not reduce the range
of admissible discriminants d to the point where a computationally inten-
sive sieve (like the one introduced in §6) can be used to complete the class
number m problem when m > 7. This shows that some new argument is
necessary. In §5.2 we exploit the partitioning of minima introduced in §3
to produce a dy(m) such that if dy(m) < d < dy(m), then h(—d) # m.
When m is odd and 5 < m < 13, di(m) is small enough to allow the
class number m problem to be completed with the computationally inten-
sive sieve of §6. In §5.3 we use a more sophisticated version of the ar-
guments in §5.2 to produce a do(m) such that if do(m) < d < di(m),
then h(—d) # m. When m is odd and 15 < m < 23, dy(m) is small
enough to allow the class number m problem to be completed with the
computationally intensive sieve of §6. We combine the partitioning of min-
ima with the aforementioned sieve to complete the proof of Theorem 1
in §6.

Notation. Let Z, Z*, Q, R and C denote the ring of integers, the set
of positive integers, the field of rational numbers, the field of real numbers,
and the field of complex numbers, respectively. Let p and g denote primes in
Z*. The Kronecker symbol is denoted by either (%) or (m|n), depending on
which is more convenient. As is customary, we let w(n) denote the number
of distinct prime divisors of n and d(n) the total number of positive divisors
of n. Finally, let e(1) = €2™7.

The number —d denotes a negative fundamental discriminant or, equiv-
alently, the discriminant of an imaginary quadratic number field. In other
words, we have either —d = 1 (mod 4) and d is square-free, or 4|d and
—d/4 =2 or 3 (mod 4) and d/4 is square-free. x; denotes the real primi-
tive character with x1(n) = (—d|n).

A binary quadratic form

Q(z,y) = ax® + bry + cy?
of discriminant —d = b? — 4ac is reduced if it satisfies either

(1.2) —a<b<a<c or 0<b<a=c (a,bc€Z).
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Note that this implies
(1.3) a < (d/3)Y2.
Let
Qa = {Q(x,y) = ax® + bxy + cy® : > — dac = —d, Q is reduced}

denote the finite set of reduced binary quadratic forms with discriminant —d.
Note h(—d) = |Qq|- The notation _, denotes a sum over all Q € @4 along
with the associated coefficients a, b, and c.
The modified Bessel function of the second kind of order zero is given by
oo
(1.4) KU(Z) _ S ef(z/2)(t+t,
1

BT

2. The high range. As mentioned in §1, Oesterlé [19] provided explicit
constants for the c. in Goldfeld’s inequality (1.1). Indeed, if —d is a negative
fundamental discriminant with class number h(—d) and

o =I1(1-35)

where the product is taken over all prime divisors p of d with the exception
of the largest prime divisor, then

¥(d)logd < Ch(—d)

where C = 55 if (d,5077) = 1 and C' = 7000 otherwise.

In order to evaluate 9(d) when h(—d) is odd, recall that the Fundamental
Theorem of Genera due to Gauss [9] implies that

2¢(@=1| h(—d).

If h(—d) is odd, then the preceding result implies that d has only one prime
divisor. Since —d is a discriminant, we see that —d is either —4, —8, or
—p for some odd prime p = 3 (mod 4). It follows that when h(—d) is odd,
¥(d) = 1. Since h(—4) = h(—8) = 1, we have

(2.1) h(—d) is odd and h(—d) > 1 = d is prime and d = 3 (mod 4).

Hence, when h(—d) is odd and h(—d) > 1, (2.1) implies that (d,5077) = 1
(for 5077 is a prime equal to 1 modulo 4), and we have

log d < 55h(—d).

Thus, for m € {5,7,...,23}, we have h(—d) > m if d > d3(m) where d3(m)
is given in Table 2.
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Table 2. h(—d) # m for d > ds(m)

m  dz(m)
7 10'6®
9 10%1°

11 10%%3

13 103!

15 107

17 10407

19 10%4

21 10°”

23 1077

Note that when h(—d) is even, d may be composite. This allows the
possibility that a minimum a of a reduced form could satisfy (a,d) > 1.
This introduces many technical difficulties, the least of which is a smaller
value of ¥(d). For these reasons, we confine our attention to the case where

h(—d) is odd.

3. Minima results. The coefficient «a is referred to as the minimum
of the form az? + bzy + cy? € Qg4, while the multiset of minima for a given
negative fundamental discriminant —d is denoted by

My = {a: az® + bzy + cy® € Qq}.

From (1.2) it is easy to see that 1 occurs in M, precisely once. We henceforth
refer to 1 € My as the principal minimum since 1 is the minimum of the
principal form (i.e., either 22+ (d/4)y? or z2+zy+((d+1)/4)y? depending on
the parity of d). Furthermore, we note that all elements of M, are positive
by (1.2).

LEMMA 1. If a € My, then any positive divisor of a is also in M.

Proof. Let a; > 0 be a divisor of a. If a; = a there is nothing to prove.
Hence, we may assume a; < a/2. It follows from (1.3) that

(3.1) a < (d/12)Y2,

Let az? + bzy + cy? € Qg so that b2 — 4ac = —d. Tt follows at once that the
quadratic congruence 22> = —d (mod 4ay) is solvable. Hence, there exists
a by such that b2 = —d (mod 4a;), with —2a; < b; < 2a;. Further, this
range can be sharpened to ensure that —a; < by < ay by replacing b; with
bl — 2(1,1 if a1 < bl S 2(1,1 and bl with bl + 2(11 if *2(];1 < bl S —aj. Let
c1 = (b3 + d)/(4a1) and observe that ¢; > d/(4a;) > a; using (3.1). From
(1.2) we see that the quadratic form Q = a;2% + byzy + c19? is reduced. m
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LEMMA 2. Let a satisfy 2 < a < (d/4)'/? and gcd(a,d) = 1. Then
a € My if and only if every prime divisor p of a satisfies (—d|p) = 1.
Proof. First, assume that a € My. Since b> — 4ac = —d, we see that

(3.2) b> = —d (mod 4a).

If 2| a, then we see at once that b = —d (mod 8). We know that —d must
be odd because a is even and, by hypothesis, ged(a,d) = 1. Since 1 is the
only odd square modulo 8, we have d = —1 (mod 8). Thus (—d|2) = 1. If
p is any odd prime dividing a, it follows at once from (3.2) that > = —d
(mod p). Thus (—d|p) = 1, and the “only if” direction is proved.

Conversely, assume that (—d|p) = 1 for each prime divisor p of a. If p
is odd, then the congruence 22 = —d (mod p) is solvable, and by Hensel’s
lemma, the congruence z2 = —d (mod p®) is solvable for all a € Z*. If
p = 2, note that (—d|2) = 1 impliesd = —1 (mod 8). Hence, the congruence
22 = —d (mod 8) is solvable. Furthermore, it is well known that solutions
with z = +1 (mod 8) can be lifted to a solution of the congruence 2% = —d
(mod 2%) for all @ € Z*. Hence, by the Chinese Remainder Theorem, there
exists a b such that the congruence b> = —d (mod 4a) is solvable. Reasoning
as in the proof of Lemma 1, there is in fact such a b with —a < b < a. Let
c= (> 4d)/(4a). Tf b # 0, then ¢ > d/(4a) > a since a < (d/4)'/? by
hypothesis. If b = 0, then ¢ = d/(4a) > a. In every case, az® + bzy + cy? is
reduced, and a € My. m

LEMMA 3. Suppose h(—d) is odd. If a > 1 and ax® + bxy + cy? € Qq,
then ax? — bxy + cy? is a distinct member of Q.

Proof. Since a > 1 and a € M, we know that h(—d) > 1. Hence, (2.1)
implies that d is prime. Since az? + bxy + cy? is a reduced form, we know
that az? — bzy + cy? will be a distinct reduced form unless (i) b = 0, (ii)
b= a, or (iii) @ = c. If (i) is true, then 4ac = d, contradicting the fact that
d is prime. If (ii) is true, then a? — 4ac = a(a — 4c) = —d. Since a > 1 and
d is prime, we have a = d, which is impossible since a < (d/3)/2. If (iii) is
true, then b2 — 4a? = (b—2a)(b+2a) = —d. Since b > 0 in case (iii) and d is
prime, we know that 2 —b = a + (a — b) = 1. This leads to a contradiction
since a > 1 by hypothesis and ¢ > b by (1.3). =

LEMMA 4. Suppose h(—d) is odd. Let a € Z% be odd and satisfy
a < (d/4)'?. If a € My, then a appears in My ezactly 2°(*) times.

Proof. If a = 1, it is easy to see from (1.2) that a appears precisely
once in My. Thus, we may henceforth assume that a > 1. Of course, this
implies that h(—d) > 1 as well. We want to count the number of integers
b such that az? + by + ((b*> + d)/(4a))y? € Qq. By (1.2) this is just the
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number of integers b that satisfy (b +d)/(4a) € Z with either —a < b < a <
(> +d)/(4a) or 0 < b < a= (b*>+d)/(4a). Assume, for the moment, that
(b2 +d)/(4a) € Z. Since h(—d) > 1, we see from (2.1) that d =3 (mod 4).
It follows at once that b is nonzero. Using the hypothesis, a < (d/4)'/?, we
then deduce a < d/(4a) < (b?> + d)/(4a). Tt follows that we want to count
the number of integers b that satisfy b> = —d (mod 4a) with —a < b < a.
From (2.1), we know that d is prime. Since a < (d/4)'/? < d, we see that
ged(a,d) = 1. Let p be any prime divisor of a. By Lemma 2, we see that
(—d|p) = 1. Since a is odd, we know that p is also. Hence, the congruence
22 = —d (mod p) has exactly two solutions. By Hensel’s Lemma, we know
that the congruence 22 = —d (mod p®) has exactly two solutions for all
a € ZF. Also, since d = 1 (mod 4), we know that the congruence 2> =
—d (mod 4) has exactly two solutions. Thus by the Chinese Remainder
Theorem, we see that there are precisely 2¢(4)+1 integers b that satisfy both

(3.3) b> = —d (mod 4a)

and —2a < b < 2a. Now either both b and b+ 2a satisfy (3.3) or neither do.
Hence, the number of b that satisfy (3.3) with —2a < b < —a is equal to the
number of b that satisfy (3.3) with 0 < b < a. A similar argument with b
and b — 2a shows that the number of b that satisfy (3.3) with a < b < 2a
is equal to the number of b that satisfy (3.3) with —a < b < 0. It follows
that exactly 2¢(%) integers b satisfy (3.3) with —a < b < a, thereby proving
Lemma 4. m

LEMMA 5. If a > 1, a € My and (a,d) = 1, then a > (d/4)*/M=9),

Proof. Suppose p|a and p is an odd prime. Then b?> = —d (mod p)
implies (—d|p) = 1. Also, if 2|a, then b> = —d (mod 8). Hence, —d = 1
(mod 8), so that (—d|2) = 1. Thus, if p is any prime dividing a we have
(—d|p) = 1. This implies that p splits in Q(v/—d), (p) = 12 with p; # @o.

Thus, pfl"(_d) = (p) is a principal ideal, and 3 ¢ Z. It follows that p"(—%) =

N(p}f(_d)) = N((B)) > d/4. Since a > p, it follows that a > (d/4)'/"(=9),
Note that @ > 1 implies h(—d) > 1, so that (d/4)'/"(=9) ¢ 7. The lemma
follows. m

It follows from (1.3), (2.1) and Lemma 5 that

d

(3.4) <Z>1/h(d) <a< <§>1/2 (a € Ms\{1}, h(—d) > 1 is odd).

To improve on these bounds, we separate the minima to a certain extent

using the multiplicative structure of My developed in Lemmas 1 4.
Assume that h(—d) > 1 and h(—d) is odd. From Lemma 3 we know that

every a € M;\{1} appears an even number of times in M. Also, by (3.4)
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if d > 2"(=9+2_ then 2 is not a minimum. It then follows by Lemma 1 that
a must be odd if a € M,;. In the remainder of this section assume that
d > 2M=4)+2_ Define the multiset M by

(3.5) M; = {a:ax® +bry +cy® € Qq,a > 1,b > 0}.
From Lemma 3 we have
|Mg| = (h(=d) —1)/2.

DEFINITION 1. A partition for d is a list of (h(—d) — 1)/2 pairs of func-
tions (l4(d),uq(d)), each increasing in d, corresponding to the (h(—d)—1)/2
elements in M.

DEFINITION 2. We say a partition for d covers My if
la(d) < a < ug(d)
for every a € M.

We begin with a simple example. Suppose that h(—d) = 5. Let p be
the smallest nonprincipal member of M;. By Lemma 1, p is prime. In past
investigations of minima one generally used the result contained in Lemma 5,
which states that all minima a, except a = 1, must satisfy a > (d/4)'/°. In
particular, the minima could simultaneously be small, each minimum lying
close to the bound (d/4)'/°. However, using Lemma 2 and Lemma 4, we see
that if p is about (d/4)'/® in size, then there are exactly two reduced forms
with minimum p and two reduced forms with minimum p? and one reduced
form with minimum 1, which provides us with five reduced forms. This
excludes the possibility that any other minimum is simultaneously small.
Using similar reasoning it is not hard to see that if h(—d) = 5, then My is
covered by one of the following three partitions:

1 (d/4)° <p<(d/&)* (d/4)*° <p* < (d/4)')?
2 (/4 <p< (@A) (@) <a<(df3)V
3 (/4P <a<(@)3)'?  (d/4)'P <a<(df3)

For each fixed value of m =5,7,...,23, a set of partitions covering all
possible My is given in Appendix B. In these tables, p and ¢ denote the
first and second smallest prime minima in My, respectively, while a denotes
a generic member of My, v= d/4 and w = d/3. In order to simplify our
presentation of a covering partition, we now introduce some additional no-
tation. The notation (3p.), for example, denotes that the inequalities for the
first three powers of the prime are trivially inferred. Similarly, the notation
(3), for example, means the inequality is to be listed three times. In this
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notation, the covering partitions for My when h(—d) = 5 are given by
1 o5 <p <o/t (2p)
2 i/ <p< vt/3 pt/4 <a< w'/?
3 o <a<wl?(2)

In order to give a better idea of how the partitions in Appendix B were
generated, we will go through the details of partition number 10 for class
number 23 (Table B10). The partition is given by

10 /10 <p< ol/8 (4p.) 03116 < g < ol/4 (2p.) p23/80 < pg < v3/8 2)
p31/80 < p%q < o1/? 2) 38 < < w2

Assume the smallest nonprincipal minimum p satisfies v/10 < p < o1/8;
then p?,p?,p* are all < (d/4)'/2, implying that p,p?,p°,p* € My, which
accounts for 8 minima. If the second smallest minimum ¢ satisfies ¢ <
(d/4)3/16, then ¢, q% pq,pq?, p>q are < (d/4)'/?, implying that they are in
M. But this accounts for 16 new minima, which would make 25 total. Thus,
v3/16 < q. Assume g < (d/4)/*. Now, q,q>, pq.p’q < (d/4)'/?, so we have
accounted for 21 minima. If any further minima a satisfy a < (d/4)%/8, then
pa < (d/4)'/? would imply that there are more than 23 minima. Therefore,
the remaining two minima must satisfy (d/4)%/® < a < (d/3)*2. All of the
partitions in the tables of Appendix B are computed in this same fashion.
By using a disjoint set of assumptions on the first and second largest prime
minima p and q, these sets of partitions can be seen to cover all possible M.

4. Properties of an auxiliary function. In this section we prove two
technical lemmas concerning the auxiliary function F' defined by

(4.1) \/_Zd VKo(nz) (z >0),

where K((z) is defined in (1.4).

On several occasions in §5.2 and §5.3 we will need to compute accurate
approximations to F' at certain small arguments. For such purposes, the
following crude generalization of [18, Lemma 7]) suffices.

LEMMA 6. If £ >0, N is a nonneqative integer, and

AN(. ) \/_Z KU ’I’I’I'

then
|[An(z)] < ( +1log(N + 14 2/z))e (N+1z/2

where the empty sum is undersfood to equal zero when N = 0.

S\
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Proof. Since x > 0, we see from (4.1) and (1.4) that

dt du
—1/2 —nzt/2 —u
0<z "*Ap(x) < g d(n) S e 5= E d(n) S et
n=N+1 1 n=N+1 nx/2

Using partial summation, we have

o0

272 AN () < S e_“‘< Z d(n))@

Uu
(N+1)z/2 n<l2u/x

For y > 1 we have

1
S =30 |2 <03 1 <t + o)
n<y n<y n<y
so that
< .2 d
e 2 An(z) < | e (1 + log(2u/z))
(N+1)z/2 x u

An integration by parts gives

2 T d
272 AN (z)] < —((1 +log(N +1))e” (NFD=/2 eu—“>.
r (N+1)z/2

Note that the function g, defined by

g(v) = S efud—u —e "log(1+1/v),
u

v

is increasing for v > 0, and lim,_,, g(v) = 0. Hence,

oo

du 2
el < e—(N-l—l)m/Q log <1+ >’
(N+§)$/2 u (N+ 1)z

and the lemma follows. m
The next lemma will play an important role in §5.2 and §5.3.
LEMMA 7. F(x) is a strictly decreasing function of x for x > 0.
Proof. From (4.1) we have
\/_Zd )Ko(nz) \/EZZKO(nx):\/EZZKO(dmx),
n=1d|n d=1m=1

where K| is the modified Bessel function of the second kind of order zero
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given by (1.4). Hence, we get

r =i | (X Lo (-0 )

1 d=1m=1

o § (Z (d(t+2t*1)m) . 1)7

d=1 exXp

For b > 0, define

fb(x) - ebz — 17

Since z + x/(e”® — 1) decreases on (0,00), we know that = ~ f;(z) also
decreases on (0, 00). Lemma 7 follows immediately. m

5. The medium range. Let x be a real primitive character modulo
k for some integer k > 1. In the case where —k is a negative fundamental
discriminant we take x(n) = (—k|n) (see [7, p. 40]). Define

() = Y x(a)a~
Qa

and

Pets) = [0 = %),
plk
In 1966 Stark [22] exploited a formula for the zeta function of a quadratic
number field (i.e., ((s)L(s, x1)) to show that if a tenth fundamental discrim-
inant —d of class number 1 existed, then d > exp(2.2 - 107). Later Stark
[25] developed a formula for L(s,x)L(s,xx1) analogous to the formula for
¢(s)L(s,x1).- Montgomery and Weinberger [18] exploited this formula to
obtain similar results for class numbers 2 and 3. Indeed, if (k,d) = 1, then

s—1/2
(5.1) (’“Q—f) ()L (s, %) (s, xx1) = Tals) + Ta(1 — 5) + Ua(s)

where

kvVd

s—1/2
) TR Ade)

Ty(s) = (

4\/7 _ > anvd s
(5.2) Ud(s):T\/_E:a 1/2§:K51/2< - )n 12V (s, ),
Qua n=1

a

Vo(s,n) =) y' > ?R{ ix(@(.ﬁ@)%%)%%) }

yln
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Let sg = 1/2 + itg, with ¢y > 0, be a zero of L(s,x). Substituting s = s
into (5.1) gives

Td(s[)) + Td(go) = *Ud(So).
Applying the Schwarz Reflection Principle to Ty implies
2|T4(s0)| cos(arg Ta(so)) = —Ua(so),
which, in turn, gives

Ua(s0)
2Td(80)

The method for the middle range consists in showing that this equality
is false for large intervals of d under the assumption that h(—d) is some fixed
odd integer. Indeed, for fixed k£ and ¢y, define the constants

(5.4) & =to/2,
(5.5) & = tolog <%> +arg{il(1/2 + ito)C (1 + 2ite) Py (1 + 2ito)},

(5.6) &5 = 2|T°(1/2 + ito)C(1 + 2ito) P (1 + 2ity)].

To show (5.3) is false, all we need to show is that

(5.3) |sinarg(iTy(s0))| =

(57) sin(é1 logd + &2 + arg Aa(so))| > ‘53|UAd—i5(_§i)| ‘

5.1. The range ds(m) < d < dz(m)

LEMMA 8. Let t € RT. Suppose m = h(—d) is odd and fized. Then
m— 1

@y

Furthermore, if d > max{4e®™ 4(m — 1)?™}, then

t(1 — 1/m)log(d/4)

(/D@ — (1 — 1)

Proof. Both (5.8) and (5.9) are trivially true if m = 1, so assume
m > 1. Using the lower bound in (3.4) gives

1Ag(1/2 +it) — 1| = ‘ S xla)a 2
Qa,a#l
(5.10) < > atthi?
Qa,a#1
m—1

= {@jayem
Now, (5.8) follows from (5.11) and the triangle inequality.

(5.8) |Aq(1/2 +it)| > 1 —

(5.9) larg Aq(1/2 +it)| <

(5.11)



Imaginary quadratic fields 307

For the remainder of the proof assume d > max{4e*™ 4(m — 1)?>™}.
Since d > 4(m — 1)?™, we know from (5.11) that

|Ag(1/2 +it) — 1] < 1,

so that A4(1/2 + it) lies in the right half plane. Hence, when we write
arg Aq(1/2414t) in (5.9) and below, we can, without loss of generality, assume
we are dealing with the principal value of the argument. Let L be the
line segment joining 1/2 to 1/2 + 4¢. Then an equation for L is given by
l(u) =1/2 +iu, 0 < u < t. Since d > 4(m — 1)*™, we know by (5.8) that
A4 does not vanish on L. Furthermore, A4(s) is an entire function of s. It
follows [17, p. 218] that

A (2) EAL(L)2 + i)
QAj(z) dz = (S)Ad(l/2+zu) i du

— log Aa(1/2 + iu)}.

Evaluating the right-hand side and taking imaginary parts yields

CAL(1)2 + i)

(5.12) arg Aq(1/2 +it)| = ‘ SAd(1/2+zu)

1du

<tm AL (1/2 +iu)

B O<u<f Ad(1/2 +’LU)
Note that
(5.13) |AL(1/2 +it)| = ‘ Z x(a)a=Y?* " loga

Qa,a#1

< Z a /2 log a.
Qa,a#1

Now, z~'/?log z is a decreasing function of = for z > e?. Using (3.4) and

the hypothesis d > 4e?™, it then follows from (5.13) that

s e < U

Using (5.14) and (5.8) in (5.12) yields (5.9), and the lemma is proved. m
LEMMA 9. Let t € R. If k > 1 is an odd square-free integer, then

3wr Quw (k)—w(r) v d r?
(5.15)  |Us(1/2 + it)] d1/4 Z Ve )3 F( ok )

a€EMy

Proof. From the definition of Uy in (5.2) we deduce at once that

(5.16)  |Ug(1/2 +it)| < \FZ 1/2ZKO<7r dn)VQ(1/2+n‘ n)|.
Qa
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Using an argument of Weil [30, his inequality (5)], Montgomery and Wein-
berger [18, Lemma 7] have shown that

1/2
Vo(1/2 +it,n)| < 22Wg7/23y " ] pT

yln p|(y,n/y.k)

— 2w(k)k;1/2227w(r),rl/2 Z 1’

r|k yln
(y:n/yyk):T

because k is square-free. Since (y,n/y, k) = r implies 2 | n, we have

Vo (1/2 +it,n)| < 2°WE/2 3" 97«pl/2(p).
r|k

r?|n
Inserting this into (5.16) gives
(5.17) |Ud(1/2 + 7'1‘)\

dn
<P T e 3 dwi )

a€Mgy r|k

r\n

Let n = r2m and note that d(n) < d(r?)d(m) = 3*(")d(m) since  is square-
free. From (5.17) we have

\Ud(1/2 + it)|
w(r) o0 2
w(k),.1/2 mvVdrtm
= k1/2 Z al/2 Z( ) 20t/ Zd(m)K[]( ak )
a€My r|k m=1 o
Applying definition (4.1) to the inner sum gives the result. m

COROLLARY. Let t € R and m = h(—d). If k > 1 is an odd square-free
integer, then

8k'/?log k

W( — 1 4 emm(@7=VE)/(20)) ]2 +3%2).

plk

|Ua(1/2 +it)| <

Proof. Replace F' in Lemma 9 with the upper bound given in Lemma 6
with N =0 to get

172 o)
Ua1)2 it < SE 3 <§> oo (), —3/2
- 7-(-1/2dl/2 2

r|k

2ak 1/2,..2
1/2 —nd *r*/(2ak)
X Z a (1+10g(1+7rd1/27"2>>6 }

a€EMy



Imaginary quadratic fields 309

In the inner sum, the ¢ = 1 term is treated separately. When a > 1 we
use the inequality a < (d/3)'/?. In both cases, we also use the inequalities
r>1,d> 3, and

2k 3
T+log [ 1+ ) Je V3@ < og k k>2
(1ems (175) om0 <toeh 2

to finish the proof of the corollary. m

For the remainder of §5.1, we assume there exists a discriminant —d with
the following properties:

(I) h(—d) = m, where m € {5,7,9,...,23} is fixed;
(IT) da(m) < d < 108°°, where da(m) is given in Table 3 near the end of
this subsection.

Our goal is to show that (5.7) is true for d with a suitable choice of k
and sg. For this purpose, we need a small zero, sg = 1/2 + itg, of L(s,x).
Weinberger [31] has computed several such zeros, each corresponding to a
different value of k. In this section, we use

k =115147 and ¢y = 0.003157614

where the absolute error in ¢ is less than 10~%, but we only make use of
the first 4 significant places. From (5.4)—(5.6) we then have

£ =0.001579, & = 0.02875, &; = 555.8,

where these approximations are accurate to the number of places shown.

Since m < 23 and d > dy(m) > 109 by Table 3, the right-hand side of
(5.8) is positive. Hence, letting ¢t = ¢ in Lemma 8, we see from (5.8) that
|Aa(so)| does not vanish. Thus, using (5.8) and the corollary to Lemma 9
with ¢t = 3, we have

[Ua(s0)]
AP0 < Ry(d),
Ealda(so)] = 21
where
8k1/2 log ki(m — 1+ e (@ =R/ ] (24 3p3/2)
Ro(d) =

EITATTRETA(T = (= 1) (d/4) =)
Clearly Ry(d) is decreasing in d so that
[Ua(so)|
————— < Ro(da(m
£ Aa(so)] = 2(da(m))
since d > ds(m). Upper bounds for Rs(ds(m)) are given in Table 3.
Since 5 < m < 23 we have max{4e?™ 4(m — 1)>™} = 4(m — 1)?™ <

1053 < dy(m). Hence, all of the hypotheses of Lemma 8 hold for ¢ = ¢ and
m € {5,7,...,23}. We deduce from (5.9) that

larg Aq(s0)| < az(d),

(5.18)
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where

t(1 — 1/m)log(d/4)

(d/4)r/Cm) — (m —1)°

It is easy to see that aso(d) is decreasing for d > 4e, so we certainly have
(5.19) jarg Au(s0)| < az(da(m)

since d > ds(m). Upper bounds for as(ds(m)) are given in Table 3.
Let f2(m) be defined by

Ba(m) = &1 logda(m) + &2 — az(da(m))
and ~2(m) be defined by
Y2(m) = &1 10g 10%°° + &5 + az(da(m)).

Lower bounds for fs(m) and upper bounds for v, (m) are given in Table 3.
Using Table 3, the fact that do(m) < d, and (5.19), we have

0< ,Bg(m) < 51 logd + 52 + argAd(so).
Using the fact that d < 108°°, (5.19), and Table 3, we have
&1logd + & + arg Ay(sg) < y2(m) < 7.

ag(d) =

Hence,
(5.20)  |[sin(&; logd + &2 + arg Ag(se))| > min{|sin Ba(m)], |siny2(m)|}.

Lower bounds for [sin 82(m)| and [sinvyz(m)| are given in Table 3.
From (5.20) and Table 3 we deduce that

[sin(&1 logd + &2 + arg Aq(so))| > Ra(d2(m)).

In light of (5.18), (5.7) follows immediately. Since (5.3) is false, we conclude
that h(—d) # m for m € {5,7,...,23} and do(m) < d < 1085°. Note that
from Table 2 in §2, we have certainly covered the range do(m) < d < d3(m).

Table 3. h(—d) # m for dy(m) < d < 10%5°

m da(m) Ra(d2(m)) aa(da(m)) Ba(m) [sinBa(m)| ~2(m) [sinya(m)]

5 10  22-107™  14-1077  0.264 0.26 3.121 0.020

7 10  33.107"™ 1.1-107° 0.264 0.26 3.121 0.020

9 10 25.107'" 99.107° 0.268 0.26 3.121 0.020
11 10  99.107'" 39.107* 0.275 0.27 3.121 0.020
13 10 68-107'% 82.107* 0.293 0.28 3.121 0.020
15 10  15.107'% 1.7.107% 0.303 0.29 3.122 0.019
17 10  31-107'7 29.107% 0.312 0.30 3.124 0.017
19 107 38-100'7 56-107% 0.310 0.30 3.126 0.015
21 10  48.107'7 1.1-1072 0.304 0.29 3.132 0.009

23 10  6.8-107'7 20-1072 0.295 0.29 3.141 59.1074
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The dy(m) listed in Table 3 are far too large to allow the completion of
the class number m problem using the computationally intensive sieve in
86 to investigate the range d < dy(m). Pushing the preceding arguments
to their limit, it is possible to produce a dj(m) (< da(m)) such that if
d5(m) < d < ds(m), then h(—d) # m. Approximate values of d3(m) are
given in Table 4. Note, however, that for odd m > 9, d5(m) is also far
too large to allow one to complete the class number problem by using a
computationally intensive sieve. Some type of further argument is necessary.
In §5.2 and §5.3, the idea of partitioning minima is introduced, which allows
us to reduce the range of admissible discriminants so that a computationally
intensive sieve can be used. It turns out that our new arguments are powerful
enough to rule out the range d5(m) < d < dz(m), obviating the need to push
the arguments of this subsection to their tedious limits.

Table 4. Lower bounds on d obtained without partition estimates

ds(m)  4(m—1)>™

m

5 4.5.10'2 4.2 . 108

7 4.4.10M 3.1-10""
2.2.10'8 7.2.10'6
11 7.0-10% 4.0-10%2
13 8.7-10%° 4.6-10%8
15 2.1-1036 9.7-10%
17 8.4-10*2 3.5-10%!
19 5.3 10% 2.0 - 10%®
21 5.0 -10°° 1.8-10%°
23 6.8-10%° 2.3-10%2

o]

The last column of Table 4 underscores the fact that the methods in this
subsection do not suffice when m > 9. This column arises from the fact
that the denominator on the right-hand side of (5.9) must be positive. In
other words, d > 4(m — 1)?™. Note that when m > 9, the last column of
Table 4 precludes the use of the computationally intensive sieve in §6, no
matter how sharp we make the other estimates in this subsection.

5.2. The range di(m) < d < ds(m)

LEMMA 10. Let t € RT. Assume that m = h(—d) is odd and the partition
P covers My in the sense of Definition 2. Then

(5.21) [Ag(1/2+it) > 12 3 1,(d)~1/2,
a€M;
Furthermore, if the right-hand side of (5.21) is positive, then

A f@)
(5.22) larg Ag(1/2 +it)| < 1_ QZ(IEM{; IL(d) 17
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where f is the nonincreasing function defined by
] 2/e for 0 <z < €2,
fla) = {x_1/2 logz  for = > €.

Proof. The proof is identical to the proof of Lemma 8 except that in-
equality (3.4) is replaced with the partition inequalities [,(d) < a < u,(d). =

LEMMA 11. Let t € R and m = h(—d) > 1. Suppose that m is odd and
the partition P covers My in the sense of Definition 2. If k is an odd prime,
then

< 24m(wfk+2)6_wﬁk/2
- d1/4( \/_)3/2k2

N 16VE(rvd + 2k) e Z
w3/2d d1/4

Ua(1/2 + it)

Proof. We use Lemma 9. In the outer sum of (5.15), r =1 or r = k.
By Lemma 7, F' is decreasing, so we can bound the inner summands from
above by using upper bounds on a. When r = k we use the general upper

bound a < (d/3)'/? of (3.4). When 7 = 1 and a > 1 we use the partition
inequality a < u,(d). Thus, we have

\Ud(1/2+z't)|
< gt/ () < e ()

Using Lemma 6 with N = 0 and z = 7v/3 k and the inequality log(1+z) < =
(valid for z > 0), we have

2 2
F(rV/3k)| < 1+ )-wﬁk/?
F(r )|ﬁ31/%( )

Similarly, for z = mv/d/k, we obtain

2vk 2k \ _.va
F(rVd/k)| < 1 o~V (2k)
ey 2 (14 2),

Lemma 11 follows easily. m

For the remainder of §5.2, we assume there exists a discriminant —d
satisfying the following properties:

(I) h(—d) = m, where m € {5,7,9,...,23} is fixed;
(I1) d1(m) < d < ds(m), where di(m) is given in Table 5 near the end
of this subsection and dy(m) is given in Table 3.
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Our goal is to show that (5.7) is true for d with a suitable choice of k
and so. In a manner similar to §5.1, we let so = 1/2 + ity and use

k=17923 and t; = 0.030985799.

Weinberger [31] has shown that the error in # is less than 1078 but we only
use the first 5 significant digits. From (5.4)—(5.6) we then have

£ =0.01549, & =0.2216, &5 =57.1,

where all approximations are accurate to the number of places shown.

As in §3, let M, denote the multiset of minima for —d. Turning to
Appendix B, note that each entry in Table BmT*?’ (e.g., when m = 15, refer
to Table B6) consists of (m — 1)/2 pairs of functions (I,(d),us(d)), each
increasing in d, corresponding to the (m — 1)/2 elements in Mj. In other
words, each entry of Table BmT_?’ is a partition for d according to Definition 1
in §3. Since d > di(m) > 2™*2 from Table 5, the arguments at the end
of §3 show that there is some partition for d in Table BmT_?’ which covers
My in the sense of Definition 2 in §3. We henceforth denote this partition
by Pl.

Applying the first part of Lemma 10 with ¢ = ¢y and P = P1, we have

(5.23) Ag(s0)] >1-2 Y u(d) 1/
(la,'u,a)E'P1
2min<1—2 3 la(d)_1/2),
(la:ua)ep

where the minimum is henceforth understood to be over all partitions P for
d occurring in Table BmT_3. Since l,(d) is increasing in d, we replace d with
dq(m) in the lower bound of (5.23) giving the new lower bound

(5.24) min (1 2 ¥ za(dl(m))*”?) >0,
(lg,ua)EP
with the positivity following from direct computation.
From (5.23), (5.24), and Lemma 11 with ¢ = ¢y, k = 17923, and P = P,

we have

Ua(so)|

£3|Ad(30)‘ S Rl(da Pl)a

where we define

R (d P) _ 24m(7r\/§k+2) P*ﬂ'\/gk/Q 16(7T\/E+2k) P*ﬂ'\/&/(Qk)
& r = dV/4(m/3)3/2k? : 3/2d g

van, 5 (o) /o0 3w}

(la,ua)€EP (la,ua)EP
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Thus from (5.23) and (5.24) we have
[Ua(s0)|
&3l Aa(s0)]

where the maximum is henceforth understood to be over all partitions P for
d occurring in Table BmT_3.

< max Ry (d,P),
P

Note that for each u, occurring in each of the partitions for d in
Table B2, Vd/u,(d) is a nondecreasing function of d. Tt follows from
Lemma 7 that F(nv/d/(u,(d)k)) is a nonincreasing function of d. There-
fore, the numerator of R;(d,P) is decreasing in d for any partition P for d
appearing in Table BmT*g. Thus, with the aid of (5.24), we have

[Ua(s0)]
&3 Aa(s0)|

since d > di(m). Upper bounds for maxp Ri(di(m),P) can be found in
Table 5. In order to produce these approximations, we need estimates for
the functions F' evaluated at small positive arguments. Such estimates are
easily obtained by applying Lemma 6 with suitably large N.

Note that from (5.23) and (5.24) we know the right-hand side of (5.21)
is positive for all partitions for d appearing in Table BmT*g. Applying the
second part of Lemma 10 with £ = ¢y and P = Py, we obtain

larg Aq(so)| < ai(d, Py),

(5.25) < max By (di(m), P)

where we define

on(d,P) = 2 20 ua)EP f(l(a(d))

1 — 2 Z(ln,ua)ep l(l d)_1/2 ’
It follows from the rightmost inequality in (5.23) and (5.24) that
(5.26) larg Ag(so)| < max a1(d, P),

where the maximum is over all partitions P for d occurring in Table BmT*g.
Now «; (d, P) is decreasing in d for any fixed partition P for d appearing

in Table Bm2_3. Hence,

(5.27) larg Aq(so)| < max a1 (di(m),P)

since d > d1(m). Table 5 contains upper bounds for maxp a;(di(m), P).
Let 51(m) be defined by

,61 (m) = 51 IOg d1 (m) =+ 52 — ngX al(dl (m), P)

and ~y;(m) be defined by
y1(m) = &1 log da(m) + &3 + max a1 (1037, P).
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Lower bounds for $;(m) and upper bounds for v, (m) are given in Table 5.
Using Table 5, the fact that di(m) < d and (5.27), we have

0 < Bi(m) <& logd + & + arg Ag(so).
In the other direction, we claim that
&1logd 4+ & + arg Ag(sg) < v1(m) < .
Note that from Tables 3 and 5 we have
dy(m) < 1037 < dy(m).

If 1037 < d, our claim follows from the fact that d < do(m), (5.26) coupled
with the fact that aq(d,P) is decreasing in d for any fixed partition P for d

appearing in Table BZ2=2 and Table 5. When d < 10%”, note that by (5.27)

we have
&1logd 4 € 4+ arg Ag(sg) < &1 log(1037) + &5 + max aq(di(m),P).
With the aid of Table 5, direct calculation shows that
£110g(10%7) + & + max a1(dy(m), P) < y1(m).

Thus our claim is also true when d < 1037. Hence,
sin(&1logd + §2 4 arg Aq(so))| > min{[sin 51 (m)], [siny1(m)|}.
From the preceding inequality and Table 5, we conclude that
|sin(&; logd 4 &9 + arg Ag(so))| > max Ri(d1(m),P).
In light of (5.25), (5.7) follows immediately. Since (5.3) is false, we conclude
that h(—d) # m for m € {5,7,...,23} and dy(m) < d < da(m).

Table 5. h(—d) # m for di(m) < d < da(m)

di(m) maxp Ri(di(m)) maxp ai(d(m),P) maxp a1 (10°7,P)  Bi(m) v (m)

m

5 3.6-10'1 0.555 0.041 2.39-107* 0.592  2.542
7 2.0-10"2 0.547 0.072 1.89 - 1073 0.588  2.543
9 7.9-10"2 0.519 0.134 5.70 - 1073 0.547  2.583
11 4.6-10' 0.444 0.245 1.15 - 1072 0.463  2.660
13 4.9-10" 0.291 0.448 1.89 - 1072 0.297  2.846
15 1.9-10'6 0.148 0.643 2.77 1072 0.158  2.961
17 1.2-10'8 0.062 0.794 3.82-1072 0.072  3.079
19 9.2-10' 0.024 0.906 5.06 - 1072 0.027  3.091
21 7.7-10%" 0.009 0.991 6.58 - 1072 0.010  3.107
23 6.6-10%3 0.004 1.065 8471072 0.005 3.125

For m € {5,7,9,11,13}, the d;(m) in Table 5 is small enough to allow the
class number m problem to be completed by the computationally intensive
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sieve of §6. However, for m € {15,17,19, 21,23}, we have to resort to further
refinements in §5.3.

5.3. The range do(m) < d < dq(m)

LEMMA 12. Let t € RY. Assume that m = h(—d) is odd and the partition
P covers My in the sense of Definition 2. Let p be the smallest nonprincipal
minimum in My. If | is a nonnegative integer such that the corresponding
set Sy = {p,p?,...,p'} C M} (where Sy is understood to be the empty set),
then

1— )\p(t)l+1 .
S lo(d)~'/?
(I,EM{;—SI
where A\y(t) = x(p)p~'/?7".  Furthermore, if RAq(1/2 +it) > 0 for
0 <7 <t and the right-hand side of (5.28) is positive, then
AN
2t(logp| 2251 32 @) + 22, f(la(d)))

1A (t) _
12| 250, La(d) /2

(5.28) |Ag(1/2 +it)] > |1 -2

(5.29) larg Aq(1/2 4+ it)| <

where f is as defined in Lemma 10 and the sums are over all a € Mj — 5.

Proof. The proof uses arguments similar to those in the proofs of
Lemmas 8 and 10. =

For the remainder of §5.3, we assume there exists a discriminant —d
satisfying the following properties:

(I) h(—d) = m, where m € {9,11,...,23} is fixed,;
(I1) do(m) < d < dq1(m), where dy(m) is given in Table 6 near the end
of this subsection and dy(m) is given in Table 5.

Our goal is to show that (5.7) is true for d with a suitable choice of k
and sg. Asin §5.2, let s = 1/2 + ity and use

k=17923 and ty = 0.030986.
From (5.4)—(5.6) we then have
£ =0.01549, & =0.2216, & =57.1,

where all approximations are accurate to the number of places shown.

For each partition P for d in Table BmT*g, define /p to be the num-
ber of powers of the smallest minima in M that can be shown to appear
in P using the arguments of §3, if the number of such powers exceeds 2.
Otherwise, set £p = 0. Denoting the smallest minimum in M}j by p, let
Se, = {p,p%, ..., p'"} if £p > 0, and the empty set if £p = 0. Finally, let
P* denote the set of (I,(d),uq(d)) in P for which a ¢ S,,.
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Since d > dy(m) > 2™*2 by Table 6, the arguments at the end of §3
show there is some partition in Table Bm;3
Definition 2 in §3. We henceforth denote this partiton by Py. Applying the
first part of Lemma 12 with ¢ = ¢y, P = Py, [ = {p,, and letting A\, = A, (o),
we have

12t
(5:30) |Aa(so)] > ‘1 e et
P (layua)EPE
( 1 - Afipﬂ Z 1/2
> min [ [1-2—2 |2 lo(d)™ ),
P ‘ 1—Xp

(la 7“0,)6?*

where the minimum is henceforth understood to be over all partitions P for
d appearing in Table BmT_3. Let A, = x(q)g~*/? " and note that I,(d)
and u,(d) are increasing in d. Note that we can find a further lower bound
for the lower bound in (5.30) by evaluating the bound at all possible primes
p. To this end, let

Q= {q prime : lp(do(m)) <g< Up(dl(m))a (lpaup) € P}'

Now, a new lower bound for (5.30) is given by

2 Y ) ) >0,

1 AbpHt
(5.31) mmmm<b2——éL—
(lg,uq)EP*

P qeQ 1—)\q

with the positivity following from a direct computation. From (5.30), (5.31),
and Lemma 11 with ¢ = ¢, k = 17923, and P = Py, we have

[Ua(s0)|
—— < Ry(d,Po),
EalAa(s) L)
where we define
Ry(d,P)
24m(nvV/3k+2) _x 16(nvVd+2k) —7\/d/(2k)
A7 (ny/3)372k2 VEE2 4 + =g € /8 d1/4 >op F (Ua(d)k)

fa(mingeo (|1~ 2225 ] 2 5. La(do(m)) 1/2))
Thus from (5.30) and (5.31) we have

[Ua(s0)]
&3 Aq(s0)]

where the maximum is henceforth understood to be over all partitions P for
d occurring in Table BmT_3.

< max Ry (d,P),
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Note that for each u, occurring in each of the partitions for d in Ta-
ble B™=3, \/d/u,(d) is a nondecreasing function of d. Let P be any of the
partitions for d appearing in Table BmT*?’. It follows from Lemma 7 that
F(mvVd/(u,(d)k)) is a nonincreasing function of d. Therefore, the numer-
ator of Ry(d,P) is decreasing in d for any partition P for d appearing in
Table B~2. Hence with the aid of (5.31) we have

[Ua(s0)]
&3 Aa(so)|

Upper bounds for maxp Ry(dy(m),P) can be found in Table 6. In order
to produce these approximations, we need estimates for the functions F
evaluated at small positive arguments. Such estimates are easily obtained
by applying Lemma 6 with suitably large V.

Note that from (5.30) and (5.31) we know the right-hand side of (5.28)
is positive for all partitions for d appearing in Table Bmng. Suppose that
0< 71 <ty Iflbp, =0, then we have

(5.32) < max Ry(do(m), P).

Ag(1/2+im) 1| <2 Y g(d)
(la ua)€EPo
<max2 Y la(do(m)) V2 <1,
(la uq)EP
by a direct calculation. Hence, RA4(1/2 +i7) > 0 when ¢p, = 0. On the
other hand, suppose ¢p, # 0. It follows from Table BmTf‘o’ and Table 5 that

the smallest minimum p € M} satisfies p < (dy(m)/4)'/¢ < 7406. Hence,
0 < 2tglogp < m, and it is not difficult to see that

RAG(1/2 + iT)

tpy
. 2+2 2t 1

2 1725 pfj/2+ + COS( 0 ng) 722 la(do(m))ilﬂ

._1 p *

J= Ps

Lp
. . . 2 + 2 cos(2tg log q) B

> minmin |1 — 2 2 4 -2 lo(do(m 172
> iy > L > taldo(m)

It then follows by direct computation that RA4(1/2 + it) > 0 for
0 < 7 < tg. Hence, we may apply the second part of Lemma 12 with
t=1to9, P ="Py, and | = ¢p, to obtain

V4 )
200 (10 o] 2075 3N+ X0, e £ 0a(d))
)\ep0+1 -

1-2p —
‘1 -2 I-X, ‘ - 2Z(la,ua)epg lo(d) 172

larg Ag(so)| <
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Hence, since [,(d) and u,(d) are increasing in d, we have
larg Aq(so)| < ao(d, Po),

where we define

d =
ao(d, P) max

Z . .
(2to(10g 4122550 32+ 2w f(la(d)))>
1212

)\ﬂrp+l
1—q>\,1 ‘ - QZ(la,ua)E’P* lo(d)~1/2
It follows from (5.30) and (5.31) that
larg Ag(so)| < mgxao(d, P).
Since f is nonincreasing and I,(d) is increasing in d, we know aq(d, P)

is decreasing in d for any fixed partition P for d appearing in Table Bm;3.
Hence,

(5.33) larg Aq(so)| < mgx ag(do(m),P)

since d > do(m). Table 6 contains upper bounds for maxp ag(do(m), P).
Let Bo(m) be defined by

,6() (m) = 61 IOg d() (m) + 52 - mgx (Io(d() (m), P)
and ~yo(m) be defined by
0(m) = & log dy(m) + & + max ag(do(m), P).

Lower bounds for fy(m) and upper bounds for v, (m) are given in Table 6.
Using Table 6, the fact that do(m) < d, and (5.33), we have

0 < Bo(m) < &ilogd + & + arg Aa(so).
Using the fact that d < dy(m), (5.33), and Table 6, we have
&1logd 4+ & + arg Ag(sg) < yo(m) < .
Hence,
[sin(&1 log d + &> + arg Ag(so))| > min{sin By (m)|, [sin v ()|}
From the preceding inequality and Table 6, we conclude that
|sin(&1 log d + & + arg Agq(se))| > max Ro(dg(m), P).

In light of (5.32), (5.7) follows immediately. Since (5.3) is false, we conclude
that h(—d) # m for m € {9,11,...,23} and do(m) < d < di(m).
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Table 6. h(—d) # m for dg(m) < d < dy(m)

m  do(m)  maxp Ry(dg(m)) maxp ag(do(m),P) Bo(m) ~yo(m)

9 6.4-10"2 0.553 0.089 0.589  0.771
11 22-10" 0.555 0.100 0.597  0.810
13 42-10" 0.556 0.116 0.591  0.862
15 9.4-10" 0.557 0.128 0.591  0.931
17 1.9-10™ 0.556 0.138 0.592  1.005
19 35-10M 0.555 0.149 0.591  1.083
21  6.5-10" 0.542 0.173 0.576  1.176
23 10.6-10"* 0.548 0.177 0.580  1.249

A comparison of Tables 5 and 6 shows that the gap between dy(m) and
dy(m) is increasing rapidly as m increases from 9 to 23.

6. The low range. In this section, we complete the proof of Theo-
rem 1, the statement of which appears in §1. Using the results of §2 and §5
(see Tables 5 and 6 in particular), it suffices to find all negative fundamental
discriminants —d with h(—d) € {5,7,...,23} such that d < 1.1-10'5.

To this end, we first consider the small discriminants d < 7.5 - 10° for
which an exhaustive search is employed. For each d in this range, we com-
puted the class number by counting the number of reduced forms of dis-
criminant —d. In other words, we searched for integers a, b, and ¢ with
0 <a< (d/3)"? and ¢ = (b*> — d)/(4a) such that either —a < b < a < cor
0 < b < a = c. This straightforward approach required only 32 minutes on
a Cray C90, rendering further optimization unnecessary. A complete listing
of the negative fundamental discriminants with odd class numbers m in the
range 1 < m < 23 that we found in this search is given in Appendix A.
It is worth noting that Buell [6] had previously computed class numbers
of imaginary quadratic number fields for d < 4 - 10%, and our results agree
perfectly with his in this range. Furthermore, in recent unpublished work,
Buell has independently verified our results up to 7.5-108, using our method
of separating minima that was introduced in §3.

The largest value of d found in the above search was d = 90787. Thus, to
complete the proof of Theorem 1 we need to show that there is no negative
fundamental discriminant —d with odd h(—d) < 23 in the range

(6.1) 7.5-10° < d < 1.1-10%.
It is infeasible to directly check all d in the range (6.1). Instead we used
partition-type information in the following form.

LEMMA 13. If d > 8 and h(—d) < 23 is odd, then

(i) (—d|p) # 0 for all primes p < d;
(ii) (—d|p) = —1 for all primes p < (d/4)'/?3;
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(iii) (—d|p) = —1 for all primes p < (d/4)Y/® with at most one exception;
and
(iv) (—d|p) = —1 for all primes p < (d/4)'/* with at most two exceptions.

Proof. Item (i) follows directly from (2.1) and item (ii) follows from
Lemmas 1 and 5. If two odd primes p,q < (d/4)'/° satisfy (—d|p) = 1
and (—dlg) = 1, then p,p* p® q,¢°,¢°, pq,p*q,pq°> € Mgy, which implies
h(—d) > 25 by Lemmas 1 and 4. Thus, item (iii) is true. Lastly, if three
primes p,q,r < (d/4)'/* satisty (—d|p) = (—d|q) = (~d|r) = 1, then Lem-
mas 1 and 4 give p,p2, q, >, 7,72, pq, pr,qr € My, which implies h(—d) > 25.
This proves item (iv). m

Now, we can build up a substantially smaller set (than (6.1)) of pos-
sible d by using the Chinese Remainder Theorem on the residue require-
ments implicit in (i) (iv) for a set of small primes. Consider an interval
dy < d < d;. Let p; denote the ith prime number and choose k£ such that
m = 81_[;6:2 p; > dy. Here, m is the Chinese Remainder Theorem modu-
lus when constructing integers d based on the vector of Kronecker symbols

((=dlpi))1<i<k- Let
S(d) = {&€ {1, -1}" : &= ((—d|pi))1<i<k satisfies (i)-(iv)}
and for each &€ {1, —1}* let
D:={0<d<m:((—dlpi))i<i<k =€}

To search all possible d in dy < d < d; we use the Chinese Remainder Theo-
rem to construct Dz for each £ € Si(dy). The requirement that (—d|p) = —1
(or (—d|p) = 1) implies that d is in one of (p — 1)/2 residue classes mod
p for odd primes p, and in one residue class mod 8 for p = 2. Thus,
D: = TIEo(pi — 1)/2 = dy /242, Bach d € Uszes, (g D= is then checked
using the necessary conditions (i) (iv) for the primes {pg41,...,p} for [ suit-
ably chosen whereby no d satisfies the conditions. If [ exists, then there is no
fundamental discriminant —d with dy < d < d; and h(—d) € {1,3,...,23}.
We use this approach on (6.1) by dividing it up into 3 subintervals corre-
sponding to k£ = 10,12, 13.

First, consider 2.9 - 103 < d < 1.1 -10'%. Take k& = 13 so that m =
1217001054108840 > 1.1 - 10'5. The bounds in (ii), (iii) and (iv) applied
to dy = 2.9 - 10 are 3, 137, and 1604, respectively. Therefore, (—d|2) =
(—d|3) = —1 and at most one of the 11 primes in {ps,...,p13} satisfies
(—d|p) = 1. Hence, |S13(dp)] = 12 resulting in at most 1.3 - 10!! possible
occurrences of d mod m. Using [ = 56, these were eliminated in 95 minutes
on a Cray C90. As a check on the accuracy of the computer program,
we printed out the last holdout, namely d = 123461955393043. Note that
(—d|p) = —1 for all primes p < psg = 263 except for p = 19, 179 and 263.
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Next, consider 2.58 - 101 < d < 2.9 -10'3. Take k = 12 so that m =
29682952539240 > 2.9 - 10'3. The bounds in (ii), (iii) and (iv) applied to
dy = 2.58-101% are 2, 43, and 283, respectively. Therefore, (—d|2) = —1 and
at most one of the 11 primes in {ps,...,p12} satisfies (—d|p) = 1. Hence,
|S12(do)| = 12 resulting in at most 6.5-10° possible occurrences of d mod m.
Using | = 51, these were eliminated in 7.4 minutes on a Cray C90. Again
as a check, note that for d = 7647157072003 we have (—d|p) = —1 for all
primes p < ps; = 233 except for p = 43, 67 and 233.

Lastly, consider 7.5 - 10 < d < 2.58 - 10'°, Take & = 10 so that m =
25878772920 > 2.58 - 101°. The bounds in (ii), (iii) and (iv) applied to
do = 7.5-10° are 1.8, 11, and 37, respectively. In this case, |S1o(dg)| = 46
since among the first 10 primes there are 11 ways to have at most one
exception and 5 -5 + (g) ways to have exactly two exceptions. In order to
eliminate the 9.2-107 constructed values of d with primes greater than 37, we
actually count the number of minima constructed with the primes satisfying
(—d|p) = 1. Note that Lemmas 2 and 3 imply that a prime in the range
37 < p < 1369 < (dy/4)"/? satisfying (—d|p) = 1 accounts for an additional 2
minima in My. When the count exceeds 23, the value of d can be eliminated.

Appendix A. Negative fundamental discriminants for
class numbers 1,3,5,...,23

Table A1l. Values of d with h(—d) =1

3 4 7 8 11 19 43 67 163

Table A2. Values of d with h(—d) = 3

23 31 59 83 107 139 211 283
307 331 379 499 547 643 883 907

Table A3. Values of d with h(—d) =5

47 79 103 127 131 179 227 347 443
523 571 619 683 691 739 787 947 1051
1123 1723 1747 1867 2203 2347 2683

Table A4. Values of d with h(—d) =7

71 151 223 251 463 467 487 587 811

827 859 1163 1171 1483 1523 1627 1787 1987

2011 2083 2179 2251 2467 2707 3019 3067 3187
3907 4603 5107 5923




Imaginary quadratic fields

Table A5. Values of d with h(—d) =9

199 367 419 491 563 823 1087 1187 1291
1423 1579 2003 2803 3163 3259 3307 3547 3643
4027 4243 4363 4483 4723 4987 5443 6043 6427
6763 6883 7723 8563 8803 9067 10627

Table A6. Values of d with h(—d) =11

167 271 659 967 1283 1303 1307 1459
1531 1699 2027 2267 2539 2731 2851 2971
3203 3347 3499 3739 3931 4051 5179 5683
6163 6547 7027 7507 7603 7867 8443 9283
9403 9643 9787 10987 13003 13267 14107 14683
15667

Table A7. Values of d with h(—d) =13

191 263 607 631 727 1019 1451 1499
1667 1907 2131 2143 2371 2659 2963 3083
3691 4003 4507 4643 5347 5419 5779 6619
7243 7963 9547 9739 11467 11587 11827 11923
12043 14347 15787 16963 20563

Table A8. Values of d with h(—d) =15

239 439 751 971 1259 1327 1427 1567
1619 2243 2647 2699 2843 3331 3571 3803
4099 4219 5003 5227 5323 5563 5827 5987
6067 6091 6211 6571 7219 7459 7547 8467
8707 8779 9043 9907 10243 10267 10459 10651
10723 11083 11971 12163 12763 13147 13963 14323
14827 14851 15187 15643 15907 16603 16843 17467
17923 18043 18523 19387 19867 20707 22003 26203
27883 29947 32323 34483

Table A9. Values of d with h(—d) =17

383 991 1091 1571 1663 1783 2531 3323
3947 4339 4447 4547 4651 5483 6203 6379
6451 6827 6907 7883 8539 8731 9883 11251
11443 12907 13627 14083 14779 14947 16699 17827
18307 19963 21067 23563 24907 25243 26083 26107
27763 31627 33427 36523 37123

323
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Table A10. Values of d with h(—d) = 19

311 359 919 1063 1543 1831 2099 2339
2459 3343 3463 3467 3607 4019 4139 4327
5059 5147 5527 5659 6803 8419 8923 8971
9619 10891 11299 15091 15331 16363 16747 17011

17299 17539 17683 19507 21187 21211 21283 23203
24763 26227 27043 29803 31123 37507 38707

Table A11l. Values of d with h(—d) = 21

431 503 743 863 1931 2503 2579 2767
2819 3011 3371 4283 4523 4691 5011 5647
5851 5867 6323 6691 7907 8059 8123 8171
8243 8387 8627 8747 9091 9187 9811 9859

10067 10771 11731 12107 12547 13171 13291 13339
13723 14419 14563 15427 16339 16987 17107 17707
17971 18427 18979 19483 19531 19819 20947 21379
22027 22483 22963 23227 23827 25603 26683 27427
28387 28723 28867 31963 32803 34147 34963 35323
36067 36187 39043 40483 44683 46027 49603 51283
52627 55603 58963 59467 61483

Table A12. Values of d with h(—d) = 23

647 1039 1103 1279 1447 1471 1811 1979
2411 2671 3491 3539 3847 3923 4211 4783
5387 5507 5531 6563 6659 6703 7043 9587
9931 10867 10883 12203 12739 13099 13187 15307

15451 16267 17203 17851 18379 20323 20443 20899
21019 21163 22171 22531 24043 25147 25579 25939
26251 26947 27283 28843 30187 31147 31267 32467
34843 35107 37003 40627 40867 41203 42667 43003
45427 45523 47947 90787

Appendix B. Covering partitions for class numbers 5,7,9,...,23.
The following tables give a set of partitions covering all possible multisets
M, under the assumption that h(—d) = m for m = 5,7,...,23. Let p and
q denote the first and second smallest prime minima in My, respectively,
and let a denote a generic member of M,. Let v = d/4 and w = d/3. The
notation (np.) implies that inequalities for the first n powers of the prime
are to be inferred. The notation (n) simply means the inequality is to be
listed a total of n times.
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Table B1. Partitions for class number 5

1 o7 <p<ol/t (2p)
2 1)]/4§p§1)]/3 1)]/4§a§w]/2
3 v]/3§a§w]/2 (2)

Table B2. Partitions for class number 7

1 o'/7<p<o'/f (3p.)
2 1)1/6§p§1)1/4 (2p.) 1)1/4§a§ 1/2
3 o/t <p<ol/B W <a< 1/2()
4 B <a<w'’? 3)

Table B3. Partitions for class number 9
1 o'/ <p<o'/® (4p.)
2 1)]/8§p§1)]/6 (3p.) 1)]/3§a§w]/2
3 o/ <p<ot/t (2p.) v/t <a < wl/? (2)
4 Mt <p<olB o/ < a < w'/? (3)
5 0'/%<a<w'/? (4)

Table B4. Partitions for class number 11

1 /1 < p< /10 (5p)

2 1)]/]0<p§1)]/8 (4p.) 1)3/8§a§w]/2

3 /8 <p< v!/6 (3p.) v'/? <a< wl/? (2)
4 WS <p<o/t (2p) WM <a<w!/?(3)
5 o'/t <p<al/s '/t <a<w'/? ()
6 v'/? <a<w'/? (5)

Table B5. Partitions for class number 13

© 00 N O Ot A W N =

—_
o

p1/13 <p<1)1/12 (6p.)

o112 < p<o/10 (5p)) 2/5 < < w!/?

W10 <p <ol (@p) W <a<w!? (2)

o8 <p<ol/f (3p) W/t <g <ol v*/® < pg <0'/? (2)
vl/8 <p< v /0 (3p.) v'/? <a< w'/? (3)

O <p <ot (@2 WO <q <ot (2p) /P <pg<ot/? (2)
v1/6 <p< vl/4 (2p.) vl/4 <g< vl/3 vl/4 <a< wl/? (3)
/0 < p < pl/t (2p.) /P <a < w!/? (4)

1)]/4§p§1)]/3 1)]/4§a§w]/2 (5)

W3 <a<w'/? (6)
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. Partitions for class number 15

1 o'/18 <p< v/ (7p.)
2 /M <</ (6p) W3/12 < g < /2
3 pl/12 <p< /10 (5p.) v2/P <a< w'/? (2)
4 o0 <p<otp) W <a<w!? )
5 08 <p<ol/C @p) w0 <q<olt (2p) WP <pg <o (2)
6 v'/8<p<o/C (Bp) v/ <g<o/? v/ <pg<o'/? o (2)
vl/3 <a Swl/Q
7 WS <p<o/S (3p) o'/ <a<w!/? (1)
WO <p <ot () WME<g <ot (@2p) 0P <pg <ol ? o (2)
o'/4 <a SU]]/Q
9 o/ <p<ol/t (2p) WP <g<o!B o/t <a<w'/? ()
10 o/S<p<o/t (2p) 0/ <a<w'/?(5)
11 o'/ <p<o'/? o'/t <a <w'/? (6)
12 0P <a<w!? ()
Table B7. Partitions for class number 17
1 o1 < p< o116 (3p)
2 /16 < p< /M (7)) BT << w!/?
3 /M <p<pt/1? (6p.) /1% < g < w'/? (2)
4 012 << /10 (5 B30 < g < l/2 (3)
5 ol/10 < p<ol/8 (4p) Wi/t < g <o¥/B 0T/20 < pg <012 (2)
v3/8 <a<w'/?
6 /10 <p<o (p) M <a<w!? (4)
7 !/ <p< v!/0 (3p.) v!/6 <qg< /4 (2p.) o7/ <pg < vP/12 (2)
v/3 <aq < w'/?
8 ol/8 <p< v /0 (3p.) o/t < q < vl/3 38 < pg < v1/2 (2)
B <a<w/? (2
9 v/ <p<o/t @p) WP <a<w’? (5)
10 /8 <p<ol/t (2p) WO <g <Vt (2p) WP <pg<ol? ()
v/t < a < w!/? (2)
1 o/ <p<ol/t (2p.) ot < g <ol/3 o't <a < w'/? (5)
12 o0 <p<o/t (2p) oM <a<w!’? (6)
13 “]/4SPSU]/3 o'/t <a<w!/? (7)
14 o'/ <a<w!? (8)
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Table B8. Partitions for class number 19

1 o /19 < p<yl/18 (9p.)
9 1/18 <p< p1/16 (8p.) LT/16 <a< wl/?
3 1/16 Sp<v1/14 (7p.) 37 <a< w/? (2)
4 o1 < p < pt/12 (6p.) 03 <a<w'/? (3)
5 ol/12 << yl/10 (5p.) 0310 < g < w1 /? (4)
6 v/ <p<ol/fo(p) WM <g<B vT/20 < pg <0l/?(2)
v <a<w!/? (2
7 /0 <p<o/f (ap) W <a<w!? (5)
8 o/F<p<ol/f (3p) WM <g<o/t (2p) W7/ <pg <012 (2)
v'/? <a < w!/? (2)
9 /B <p<o/C (Bp) WP <g<o/? o8 <pg <o/ (2)
S < g < wl/? (3)
10 o'/8<p<ol/f @Bp) WP <a<w!/? (6)
11 oS <p <o/t (2p) WM <g<ot/t (2p) WP <pg<ol/? o (2)
v/t <a<w'/? (3)
12 /6 <p< o1/4 (2p.) J1/4 < q< o1/3 174 <a< wl/? (6)
13 o8 <p<ol/t (2p) WP <a<w!’? (7)
14 ol/4 <p< ol/3 pl/4 <a< wl/? (8)
15 o'/3<a<w'’? (9)
Table B9. Partitions for class number 21
10! <p<ol/20 (10p)
9 1/20 <p< L1/18 (9p.) A9 <a< wi/?
3 l/18 <p< L1/16 (8p.) L7/16 <a< wi!/? 2)
4 /16 <p< o1/14 (7p.) L3/14 <a< w'/? (3)
AL <p§v1/]2 (6p.) o1/3 SaSwl/z (4)
6 o'/ <p <o/l (5p) WM/t <g <o o' <pg <o (2)
V12 < p2g <ol/?(2)
7 /12 <p< o1/10 (5p.) 3710 <a< w!/? (5)
8 v/ <p<ol/S (ap) o0 <q <ol (2p) 0P <pg<PP(2)
,31/80 <p?q < o1/2 (2)
9 o1 <p <ot op) W <q < o0 <pg <o (2)
o1/4 <a< wl/? (3)
10 o0 <p<olf (4p) P <a<wl? (6)

327
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Table B9 (cont.)
11 o'/8<p<o'/f (3p) o0 <qg <ot (2p) 0T/ <pg <012 (2)
oM < < w!/? (3)
12 o/ <p <ol @3p) Wt <g <o 8 <pg<ol? o (2)
v]/4§a§w]/2 (4)
13 o/ <p<o'/f 3p) W/ <a<w!/?(7)
14 oS <p<ol/t (2p) WS <g <o/t (2p) WP <pg<ot? (2)
oM < g < w!/? (4)
15 08 <p<ol/t (2p) WP <g<w!' 't <a<w'/? o (7)
16 /5 <p<o'/* (2p) v/ <a<w'/?(8)
17 ol/4 <p< o1/3 o1/4 <a< wi/? (9)
18 v/ <a<w!/? (10)
Table B10. Partitions for class number 23
1 o'/B <p<o'/? (11p)
9 l/22 <p< o1/20 (10p.) 29/20 <a< wi!/?
3 0/ <p<ot(0p) WP <a<w!? ()
4 o <p <o/t gp) W <a<w!F o (@3)
5 wl/16 < p<pl/14 (7p.) W1 < g < w2 (4)
6 /14 <p< o112 (6p.) o174 <gq Svl/a‘ 09/28 <pg< 05/12 (2)
o128 < 20 < 1/2 (2)
7 WM << /12 (6p.) 013 < g < wl/? (5)
g pl/12 <p< H1/10 (5p.) o1/5 <g< ,3/10 L17/60 <pg< v2/5 (2)
1)11/30 Sp2q S 1)1/2 (2) 1)2/5 S a S “)1/2
9 v]/]Z SIJ S U]/]O (5p) ,US/]O S a S 11)]/2 (6)
10 o100 <p <o/ (p) WO <g <ot (2p) 0P <pg <o (2)
,31/80 <p%q < o1/2 (2) v3/8 <a< wt/?
11 o0 <p<ol/ (4p) W' <g<PB V20 <pg <ot? o (2)
o <o < w'/? (4)
12 o/10 < < yl/8 (4p.) 038 < a < wl/? (7)
13 '8 <p<al/f @Bp) W0 <</t (2p) 0T/ <pg < PP (2)
o4 < < wl/? (4)
14 M <p<ol/f o @3p) WM <g <ot V8 <pg<ol? o (2)
o1/4 <a< w!'/? (5)
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Table B10 (cont.)

15 08 <p<ot/f (3p) WP <a<w'/?(8)

16 vl/6 <p<ol/t (2p) M6 <qg<ol/t (2p) o1/3 <pg<ol/? (2)
oA < g < w'/? (5)

17 o/ <p <o/t (2p) WMt <g<o'/B o/t <a <w'/? (8)

18 o9 <p<ol/t (2p) WP <a<w!/?(9)

19 o'/t <p<ol/ !/t <a<w'/?(10)

20 o'/3 <a<w'/? (11)

Note added in proof. C. Wagner has independently solved the class number 5 and 7

problems (and the class number 6 problem as well) in a paper: Class number 5, 6 and 7,
Math. Comp. 65 (1996), 785 800.
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