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Shifted primes without large prime factors
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R. C. BAKER (Provo, Ut.) and G. HARMAN (Cardiff)

1. Introduction. Let a denote a fixed non-zero integer, and let P*(m)
denote the largest prime factor of an integer m > 1. Let

m(x,y) = Z 1.

a<p<lx
P*(p—a)<y

Here and subsequently, the letter p is reserved for a prime variable.

THEOREM 1. For y > 2 we have
T

(log z)¢1

for © > xzo. Here f = 0.2961; xy may depend on a; Ci is an absolute
constant.

(1.1) m(x,y) >

The exponent 5 can be replaced by a very slightly smaller constant, as
will be apparent from our method. The previous best exponent is
1
20e +e=0.3032... (e > 0 arbitrarily small)
(Friedlander [8]). Earlier results in this direction were obtained by Pomer-
ance [11], Balog [3] and Fouvry and Grupp [7].
We note two corollaries of Theorem 1.

COROLLARY 1 (Erd6és—Pomerance). Let mi; < mo < ... denote
those positive integers m such that the equation ¢(n) = m has more
than m'~P solutions n. Then the sequence (m;) is infinite, and satisfies
lim; o logm; 41/ logm; = 1.

COROLLARY 2 (Alford, Granville and Pomerance). The number of
Carmichael numbers < x is > £/ for large .
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These results essentially follow from Theorem 1 taken in conjunction
with the arguments in [11] and [1].
Let @@ denote a number in (.'1;1/2,.7;11/20). Our work depends on good

bounds for
w(x,S) = Z Z 1

g€eS r<p<2
p=a(q)

where S is a sequence of the form {s1...s;:s; € S;} lying in (Q,2Q)]. The
elements of S are counted with multiplicity; with this in mind, write

SI=)"1.
seES

The quantity ¢ is absolutely bounded. We write u = v (q) as an abbreviation
for u =v (mod ¢). Theorem 1 follows from bounds of the shape

1 1
(1.2) m(z,S) < cal — w(z,8) >zl ! —
;; ¢(q) ; ¢(q)

where £ denotes logx and ¢, ¢ are constants not much greater than one.
Friedlander [8] also uses bounds of this shape, with S = (z'/2+9 £1/2+20)n7,
and § small, so that ¢, ¢’ may be taken arbitrarily close to 1. The basic idea
of his paper is to count solutions of the equation

p—a=mn, me (x> g2 0 <y <o,

which can be interpreted in terms of primes in congruence classes, and to
show that the m and n with a large prime factor cannot be responsible for
all solutions, via the upper bound in (1.2). This idea in somewhat different
form originates in Balog [3].

Starting from the Balog Friedlander construction, we found that flexi-
bility could be gained by following a similar procedure with the equation

p—a=Imn, z<p<2

where m,n are about z'~? in size, and [ is the product of many integer

factors of about z° in size. The best result was obtained by taking 6 =
0.516. The shape of our equation was suggested by the available ingredients
for results of type (1.2), which are mostly in Bombieri, Friedlander and
Iwaniec [4, 5].

In order to save space, we quote numerous results and arguments from [2].
Some of the ideas used carry over to improve by 1072 the exponent in [2],
Theorem 3:

THEOREM 2. For infinitely many primes p, we have

P+(p _ a) > p0.677.

The adaptation of [2] that yields this result will be discussed in §7.
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One can be more precise than (1.2) in the following example (which will
be applied in §2).

LEMMA 1. Let R < z'/1°=¢ and QR < z'~°. Then

G ID D DR T 7D D PP
" ¢(qr)

r~R q p~z a~Q
(r,a)=1 (q,a)=1 P=a(qr) (g,a)=1
Proof. This is a slight variant of [4], Theorem 9, and may be proved in
exactly the same way.

In this and subsequent statements, ¢ ~ () is an abbreviation for ) < g <
2@Q). Further, € is a sufficiently small positive constant, which we fix once
and for all, while B is a positive constant depending at most on €. We shall
frequently write A for a sufficiently large positive constant. If a statement
contains A, it is true with every choice of A. It is to be understood that
x > x7 where z1 depends at most on a,e and A.

When we use U = O(V') or the Vinogradov notation U < V', the implied
constant will depend on a,e and A. (Lemma 2 is an exception to this rule.)
The notation U < V means that U < V and V < U. On several occasions
we need a constant that may depend on a, but does not depend on the
choice of € or A. This will be denoted by C5. Finally, we emphasize that
A, B and C5 need not be the same at each occurrence.

2. The construction. Let 6, 1/2 < 6 < 0.55, be an absolute constant
specified later in this section. Let H be the integer such that

(2.1) 261 .. ®-1
H - H-1
Define u by: u > 0,
uH — p20-1

Clearly 2°/2 < u < z°. For each i = 1,..., H let I be the set {I : [ ~u,
(I,a) = 1}. Let G be the sequence {ly ...lg :l; € L}, so that

(2.2) it =2 (1eg).
leg

Now let A denote the number of solutions p, 1, m,n of

1-6

(2.3) p—a=Ilmn, 1€G m~z " (ma)=1,p~u.

The number of (p, [, m,n) counted by N for which p — a has no prime factor
> 2% is denoted by N’. Now

N' >N =Ny = No.
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Here N is the number of p, [, k, pg, n satisfying
(24) p—a=Ipokn, 1€G, 2° <py <227 k~a'"p,",
(k,a)=1,p~=x
and N5 is the number of p, 1, m,py, j satisfying
(2.5) p—a=Impyj, l€G, 2 < py <2270 m o~ 2t
(m,a) =1, p~x.

In order to establish Theorem 1 we bound N' — N; — A5 from below. By
Lemma 1,

26) N=> > > a=@a+oc ) Y

I€G mmgt—0 P™T 1€G me~z'—? £¢
(m,a)=1 P=a (Im) (m,a)=1
Now
1 1 w(m) < v*
= . with  w;(m) = 1— - .
om0 m = 113

It is an elementary exercise to show that

Z m~'w;(m) = Gylog2 + O(r(a)M ' log M),

m~ M
(m,a)=1

where

p}[la
We note that
(27) Gl > 023
B log 2 Gy
2.8 N = (140" o)’
(2.8) ( (L) =2 é (1)
Now
[ z¥<po L2210 jgl 0 o
leG za<po<2 a~ (.7’ )gpo p=a (fnodlpo]')

Let ¢(\) be a certain monotonic function on [3,1 — 6 + €] whose defi-
nition (involving multiple integrals) we defer to §6. Let Nj(\) denote the
contribution to A from po ~ x)‘ We shall show in §§4-6 that

T

(210) eqﬂ%ﬂ

leg p(]N:E JNz
(d,a)=
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for X € [B,1 — 0 +¢€]. Since ¢(Ipoj) = pod(l7)(1 + O(L™1)), an argument
similar to that leading to (2.8) yields

ngmlng Z Gi Z (h10g2> Z 1

leg p[)~2h pO

where the summation condition on A is
)2 <ot <2z 0.

A straightforward calculation gives

z log 2 170()()\) Gi
(2.11) Ni <=, (STd/\Jrs)ZW’).

B leg
Now define N3()) as the contribution to N3 from py ~ z* in (2.5).
Note that AN7(A) counts solutions of

p—a=lpojn
with p ~ 2, 1 € G, pg ~ z* and j,n integer variables, n running over an
interval whose endpoints are =< z'=%.  The last sentence is true if A; is
replaced by N5, although the interval in question is not the same. Never-
theless, the reader will readily verify that precisely the same constant will
arise from the sieve methods we employ below, that is,

DD DD D

l€G po~z? m~M
(m,a)=

for A € [8,1 — 0 + ¢]. By a slight variant of the argument leading to (2.11),
we obtain

zlog2 (7 ¢ G
(2.12) No <= (;ware)zm.

leg

With 8 = 0.516, we are able to obtain a definite upper bound less than
1/2 for

o ()
; =

(The corresponding bound is out of reach if 3 is replaced by 0.296, for any
choice of #.) Consequently, it is easy to see that

N'>ex/L
on combining (2.8), (2.11), (2.12), (2.7).
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Let I'(p) denote the number of occurrences of a particular p in the solu-
tions counted by A”’. Obviously I'(p) < 7(p — a)B. Since

=Yro<{ ¥ 150w 21

p~T p~T
I'(p)>0

we readily obtain the lower bound

Z > logm

b~z

I'(p)>0

required for Theorem 1.

The starting point for our sieve bounds is the following “fundamental
lemma”. Let P(z) =[[,., p.

LEMMA 2. Let z > 2, s > 2, y = 2°. There exist two real sequences
{)\j}dlp(z) such that

(i) AT =1, AT <1, Ag =0 for d > y;
(ii) for all D | P(z),

YA >0, > ;<0

d|D d|D

(iii) for all multiplicative functions f(d) satisfying

I (-75) > (i)

w<p<z
rta
for some q, some K > 1, some x > 0, and all z,w with z > w > 1, we have
> -1l (1 - ){1 +0(s7)}-
TARA f(p)
(d,q)=1 pfa

The implied constant depends only on K and x.

Proof. This follows from the proof of Lemma 5 of [9], with the error
e ® improved, as intimated there, to s %.
We also take a combinatorial identity from Heath-Brown [10].

LEMMA 3. Let J > 1 and n < 2X. Let A(n) be von Mangoldt’s function;
then

(2.13)  A(n) = i(_l)j_l(ﬁ

Jj=1

X Z p(my) . Z Z logny.

mi,..., m;<X1/J ni..njmi..m;=n
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3. Results on bilinear forms. It is convenient to assemble in this
section results from [4], [5] and [2] that we shall employ. For sequences o,
(m ~ M) and 8, (n ~ N) the convolution sequence y(k) = « x (k) is
defined by

y(k) =Y omBfn (MN <k <AMN).

mn=k

For an arithmetic function f we define

Af;q.a)= Y f(n M > fn).

n=a(q) (n,q)=1
n~T n~T

Let K, L, M be positive numbers, K LM = x and
min(K, L, M) > z"
with n = exp(—2/¢). For sequences v = (v), k ~ K, A = (A;), I ~ L and
o= (om), m~ M, we write
AK,L,M;Q) = |A(v* A+ 0;q,a)|.
~Q
Similarly if min(K, L) > 2" and KL = x, we write

AK L;Q) = Y AW+ Xig,a).

q~Q
(g,a)=1

We need to assume that one convolution factor is well distributed in
arithmetic progressions in the following sense:

(Ay)  Foranyd>1,k>1,b#0, (kb =1 we have

S on= L Z A+ O(|A B (d) L2 L),

1=b (k) (k) (1,dk)=
(1,d)=1

where [|X]| = (32, [X[*)*2.
The sequences that we need to consider satisfy the condition
(A2) ] < T(1)”
Some sequences are supported on “almost primes” in the sense that
(A3) A\ =0 whenever | has a prime factor less than exp(L/(log £)?).
In the next lemma we need the hypothesis

(As) Y < ()

l l
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LEMMA 4. Let MN = z, min(M,N) > z", and v = (vp,), m ~ M,
A= (An), n~ N. Suppose X satisfies (A1) (As) and v satisfies (Az). Then
A(M,N;Q) < zL£™4
provided that
(3.1) 2°71Q? « N < 2%/675Q=4/3,

Proof. This follows from Theorem 3 of [4].

LEMMA 5. Let KLM = z, min(K,L,M) > 2", v = (v), k ~ K,
A=N),l~L,0=(0,), m~ M. Suppose that \,o,v satisfy (As), (As),
and X satisfies (A1). Suppose further that

(3.2) Q< KLx™°,

(3.3) K’L* < Qz' ¢,
(3.4) K'L*(K + L) < 22°¢.
Then

(3.5) AK,L,M;Q) < zL 4.

Proof. This follows from [5], Theorem 3.

LEMMA 6. Let KLM = z, min(K,L, M) > 2", v = (v), k ~ K,
A=(N),l~L,o=(0m), m~ M. Suppose that v, \,o satisfy (As), (A3)
and X\ satisfies (Ay). Then we have (3.5) provided that (3.2) holds and

(3.6) KL?Q?* <« z%7¢,
(3.7) K°L? < * ¢,
Proof. This is Lemma 5 of [2], a variant of Theorem 4 of [5].

LEMMA 7. Let MN =z, min(M,N) > z". Let (8,), n ~ N, and (,),
q ~ Q, be sequences satisfying (As) such that (B,) satisfies (A1) and (Az).
Then

DD MR IR (S SRS )}

(Fam)=1  (qum)=1  mn=a(ar) (nyqr) =1
< ||B|PzR™ LA
provided that
(3.9) 2°R < N < 7 min{z'/2Q ™2 #2Q°R™',2Q2R™/?}.
Proof. This follows from Theorem 1 of [4].
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LEMMA 8. Let MN = x, min(M,N) > z". Let (5,), n ~ N, and (v,),
q ~ Q, be sequences satisfying (Az) such that (B,) satisfies (A1), (Az) and
(Ay). Then (3.8) holds provided that

) o R\ /2 2/5 2\ 1/4
(3.10) *R<K N <L x m1n{<g—2) , (%) , (%) }

Proof. This follows from Theorem 2 of [4].

LEMMA 9. Suppose that KLM = z, that (vg), k ~ K, and (o), m ~
M, satisfy (As) and

@311 = {0 e,
where Ly € [L,2L). Then (3.5) holds provided that
(3.12) Q < KLz™*,

(3.13) MK*Q < z*7°,
(3.14) MK?Q* <« 2=,

Proof. This follows from Theorem 5 of [5].
Let zg = exp(L/ log L).

LEMMA 10. Let MN = z. Suppose that (v,),q ~ Q, (§,;),7 ~ R, and
(Brn), n ~ N, satisfy (As). Then

315) Y quar( S Y b @ > amgn)

g~Q r~R m~M n~N m~M n~N
(gr,a)=1 mn=a (qr) (mn,qr)=1

< [|Bllat 2= b2
with either of the choices
(3.16) =1 (M <m< M), a,=0(M <m<2M),

_J 1 for (m,P(z)) =1,
(3.17) m = {0 for (m, P(2)) > 1 for some z < z,
provided that
(3.18) M > 2° max{Q,z ' R*Q, Q?R, r72Q%R*).

Proof. This is a combination of Theorem 5 and Theorem 5* of [4].
LEmMA 11. Let LM N = z. Suppose that

(3.19) LR < z'/%7=,
(3.20) LY?R <« Mz~*.



340 R. C. Baker and G. Harman

Then

EEUED SHD SHED SN DD SRS )| <ae
r<R I<L <@ m<M n<N m<Mn<N
(ra)=1 (Lr)=1 (q,al)=1 Imn=a (qr) (mmn,gr)=1

The analogue of (3.21), in which the summation is restricted to I, m,n free
of prime factors < z, holds for each z < z.

Proof. This is a combination of [4], Theorems 7 and 7*.

LEMMA 12. Let MN = x. Suppose that (0,),7 ~ R, (), m~ M, and
(Bn)sn~ N, satisfy (Ag). Suppose further that (3,) satisfies (A1) and (Ajs),

Yg=1 forQ<q<Q1 with@Q<Q@Q1<2Q, QR z'" ¢
and
"R < N <z %(z/R)"/>.
Then (3.15) holds.

Proof. This follows from [4], Theorem 6.

When we apply the lemmata of §3 below, the various conditions (A;),
(A) and so on are not difficult to verify, and we shall omit the discussion
of this.

4. An asymptotic formula. In this section we sharpen Theorem 8
of [4] a little, so that we can take

(4.1) cAN=1+¢c (B<A<1/3—3e).

Let 81 and 65 be constants. We suppose ¢ is sufficiently small in terms
of 01 and 0,.

THEOREM 3. Suppose that 01 < 1/3, 5 < 1/5, 61 + 05 < 29/56. Then
for any numbers v, < 7(q)8,9, < 7(r)B, we have

S b, (w(w;qr, a) — L) < zL™A.
q<zf1 r<zf2 d)(qr)
7(qr,a);1

Here

P(x;q,a ZA

n<zx
n=a (q)

We remark that Theorem 8 of [4] has one extra condition on 64,05,
namely 5601 + 265 < 2.

Proof. This follows [4], §15 relatively closely but we supply enough
details to make our proof somewhat self-contained. As in [4, §15] we reduce
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the problem via Lemma 3 (with J = 7) to showing that

£ = Z Z Y0r Algr,a) < zL™4
g~Qr~R
(qr,a):l

where Q = 2%, R = 2%,

Aga)= 3o plma)..p(m)
mi...M;jnN1...Nj;=a (q)

*

- @ 3 plma) ... u(my).

(m1..mjny..nj,q)=1

m;EM;,n;EN;

X . . .
Here and subsequentl is a summation restricted to numbers free of
Y,
prime factors less than zy, and we shall write

(4.2) M; =[(1 - A)M;, M;),  N;=[(1-A)N;, N;)
with

(4.3) M,...M;jN,...N; =z, My,...,M;<z"/"
and

(4.4) A=L4

We may suppose that 6; +603 > 1/2—¢. As on p. 246 of [4], we simply have
to decompose each product M; ... M;N;... N, into blocks in the range of
the variables of one of the lemmata of §3.

Let M; = z#, N; = x¥* with

p1+ .ot =1,
01 =2(01+0)—1, 0= % - %(91 +62), 03 =0y,
04 = min{% + %92 — 04, %(1 - 91), % - %91}, 05 =01, 0= %(1 - 92)-
We may suppose 11 +. ..+, has no partial sum in [p1 +¢, p2 — €] U [o3 +

£,04 — €] U o5 + €,06 — €]. For [p1 + ¢, 02 — €] this follows from Lemma 4;
for [o3 + €, 04 — €], from Lemma 8. After verifying that

0 < m1n(2 — 592 — 01, 1- 292 — 01/2)

the result for [p5 + €, 06 — €] follows from Lemma 7. (We must employ
Cauchy’s inequality in conjunction with Lemmata 7 8.)
Notice that

O — € 2 €+max{91,91 +492 - 1,91/2+92,391 +492 *2},
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so if 1 > pg —e then Lemma 10 is applicable. Consequently, we may assume
that
v < o5 tE.
Since 2(p1 + €) < p2 — €, the terms of iy + ... + v; which are < g3 — ¢
give in total 7 with

T < 01+ E;
of course these terms contain all y1,..., p¢; and possibly some v;’s.
The remaining v; must be located either in I = [gy — £, 03 + €] or in

J = [p4 — €, 05 + €]. Any two numbers v/, v"’ in I give

o3 +e<v +1v" < pg— e

"

Thus v’ + v must be in J. Moreover, T together with any v'" from J give

T4+ < p5+01+2 < pg—¢

so 7 + """ must be in J. From the above discussion it follows that we can

arrange [i1 + ...+ v; as a sum of partial sums
Mt =1 A >.00> A,

each but at most one located in .J, the exceptional one being in /. In fact,
the exceptional one must exist because otherwise

k(g4*€) Sla k(@5+€) Zla
giving 3 < k < 4. We conclude that

(45) k =4, A1, Ag, Ag € J, A € 1.
Suppose now that
(46) Ao+ A3 > 01 + 605 +¢.

We find that Lemma 5 is applicable with K = 2?3, L = 2. We verify the
hypotheses (3.2) (3.4). Naturally (3.2) follows from (4.6). Next,

203+ 32 < S(A1+ A+ A3) = 2(1 - \y)
<31-pa+e)<1+6;+6;,—¢
because 01 + 02 < 29/56; this establishes (3.3). Next,
Az +3N < I+ A4+ X)=21-X) <I(1-02+e)<2—¢

because 0y + 03 < 29/56.
It remains to consider the case where (4.5) holds together with

(47) )\24‘)\3 §91+92+€.
We have \; > 1 —p3 —60; — 05 —2e =1 —60; — 205 — 2¢ and so
)\1+>\3>1*91*292*26+Q4*6

1
>-—0;—200> - — — — = > 014605 +e¢.
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Moreover, recalling (4.7), we have
A1 <1*(>\2+)\3)*Q2+6<%*92+8< %,
9221 + 5A3 = 2(A1 + 2A3) + As
01 + 0> 1

19
<2(1 —p2+¢€)+ 5 +6:§+€(91+92)+38<2—6,

1 3
201 + A3 = §(>\1 + 2X3) + §>\1

1 15 3 15
—(1 - <o+ —<2-2 —
<2( 92+a)+28<7+28< (61 + 63) — &,

because 0 + 63 < 29/56. We may now apply Lemma 6 to complete the
proof of Theorem 3.

In what follows, we often choose a number v € 0,20 — 1] and write the
integers | € G as

(4.8) Il =dh

where d and h run over subsets of

(4.9) d=D, hx=z*"1D™!
Here

(4.10) ¥ < D < avte.

In deriving (4.1) from Theorem 3 we choose
v=min(20 —1,1/3 — X) — 3.
In (2.9), combine py and d to give a variable =< 2%,
B+20-1<6; <1/3 - 3e.
Writing 6, = 0 — 61, we combine h and j to give a variable < z

o <O—(B+20—1)=1-0—B<1/5—¢.

0>
)

Finally,
0 =0, + 0, = 0.516 < 29/56.
Thus Theorem 3 is applicable to N7(\) and gives (2.10) with ¢(\) =1 +¢.

5. The sieve procedure. Let A9 denote the arithmetic progression
{¢k+a:(x—a)/q<k<(2z—a)/q} and let

(5.1) B'={n:n~z, (n,q) =1}
Let & = {n :dn € £} and
(5.2) S(E%,2) = > 1

ne€y, (n,P(z))=1

for £ = A or B (and later on, other sequences of integers in [z, 2x)).
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Fix A,1/3 —3e < XA < 0 +e¢. It is convenient to write Q for the sequence

xlﬂ

Q= {lpgj:1€G, pg~z* j~ Do ",

so that

(5.3) Ni(A) =) S(A%, (22)'7?).
q€Q

We attack the right-hand side by comparing

(54)  So(z) =Y S(A%2) with Sy(z _Zf—
€Q

qeQ
and
(5.5) =Y > sS4, 2)
qg€EQ ajeC
with
(5.6) Z Z
aj;eC

Here C is a subset of R", ay, denotes £ !(logpi,...,logpy), and z is a
function of p;. We make the convention that the p; dividing ¢ are excluded
from the inner summations in (5.5), (5.6); the excluded terms are zero. We
shall prove that

(5.7) Solz) = (1+Ce)Sh(z), |0 < O,
(5.8) So(C.2) = (1+C2)S5(C,2). || < Cs,

under varying conditions on C and z.
It is now necessary to recall a good deal of notation from [2]. We write

T={s>0,t>0, s+t<1}
and
Aj = A;(Bo, p1)
={(a,...,a;): fp<a; <...<a1 <P1, o1 +...+a; <1}
Given any set H in R/ with a; € H = 0 < aj, a1 +...+ a; < 1, we say

that H partitions into D C T if for every a; € H, there exist Z, J with
ZTUJCA{l,....5},INnJ =0, and

(ZO[ﬁZO&j) e D.
i€T JjET

HZTUJ ={1,...,j} for every a; € H we say that H partitions ezactly
into D. We say that a subset of R’ is polyhedral if it is the union of at most
Cs convex polytopes.
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LEMMA 13. Let G' be the set of (s,t) in T satisfying

(5.9) 20 —1+e<s<(5—80)/6 —e.
Let G2 be the set of (s,t) in T satisfying

(5.10) s+t>60+e¢,

(5.11) 2+ 3t <1+0—e¢,

(5.12) Bs +26 <2 e

(5.13) 4s + 3t <2 —e¢.

Let G2 be the set of (s,t) satisfying (5.10), (5.12) and
(5.14) S+2 <220 €.

Let G be the set of (s,t) for which either (s,t) or (s,1 —s —t) belongs to
G'UG>UG3. Let G; = {a; € R : a partitions into G}. Let C be a
polyhedral subset of G; and suppose mina; > 1 (a; € C). Then

SQ(Capj) = (1 + O(‘C_A))SIQ(Cap7)

Proof. This is a variant of Lemma 7 of [2], and can be proved in exactly
the same way.

Let
(5.15) K:Ti%’ T=——" —¢.

Let S be the set of (s,%) in T for which
(516) s<1—-6—e, s4+20<2-20—¢, s+4<2—0—¢

In the remainder of this section, A, is an abbreviation for A;(n, 7). Let S;
be the subset of R? which partitions exactly into S. Let U; be the set of o
in A; such that (a1,...,@;,20 —1+¢) € S,41.

For s > 1 we write g(s) = exp(—slog s).

LEMMA 14. Let C be a polyhedral subset of S;. Then

(5.17) So(C,z") = (1+cg(%>)s'g(c,x").

We also have

So(z") = (1 + Cg(%))SIQ(m").

Here |C| < Cs.
Proof. This is a variant of Lemma 14 of [2]; it can be proved in exactly

the same way.

LEMMA 15. Let C be a polyhedral subset of U;. Then (5.8) holds with
z = z". Moreover, (5.7) holds with z = x".
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Proof. This is a variant of Lemma 15 of [2]. We give most of the details,
since we will be recycling this proof in a modified form later on. It suffices
to discuss (5.8). By Buchstab’s identity,

(5.18) So(C.a%) = So(C.a") — So(CY*Y, pji1)
with
C(j+1) = {a_7+1 € Aj+1 oy € C, ajp1 < Iﬁ‘,}.
Here, and henceforth, a; may be used for (o,...,a;) once ajy; = (a1, ...
ce Oy, ay) 1S glven,

We write C;4; for the part of CU+1) with
ajp1 <20 —-1+¢
and C; ., for the complementary part. Thus
So(C,z") = So(C,z") — SQ(C_;'+1apj+1) = S0(Cj+1:pj+1)-
Lemma 14 is applicable to So(C, ), and Lemma 13 to Sg(Cj+1,p,+1) (since
aj 1 < H).
We now apply Buchstab’s identity to So(Cj+1,pj+1). If we continue in

this fashion, we obtain a sequence of sums So(Cj11,pj+1), So(Cjt2,Pj+2),- -
with

Ck:{akEAk:ajEC, (}‘.j+1+...+(1k<29*1+6}.
We have

(5.19) Sa(Crspr) = So(Cr, ") — Sa(Chyrs Pr+1) — So(Cry1, Pri1)
with
C;c+1 = {ak+1 € Agy1:ap € Cr, apyq < K, Qjp1+.. . toppr > 29*14-6}.

Lemma 14 is applicable to Sg(Cg,z"), since a; € Uj, ajy1+ ...+ ap <
20 — 1+ ¢ gives ay € Sy. Lemma 13 applies to Sg(C; 1, pr+1), because

20 -1+e<ajp1+...+0, <20 -1+e+r=(5—-80)/6—c.

After < [p~!] steps, Cr41 is empty. We now combine the main terms to
form the sum S5 (C,z") by applying the Buchstab identity to this sum.

The total of the moduli of the error terms is at most CeS’(C,x"); the
reasoning for this is exactly as on p. 69 of [2]. This completes the proof of
Lemma 15.

Let
T ={(s,t):3/T+e<s<1-0—¢, 0<t<(1-s)/2},
U; ={a; € Aj(n,1/2) : a; partitions exactly into 77" }.

LEMMA 16. Let C be a polyhedral subset of U} and let z(p;) be a contin-
uous function on H with n < z(p;) < 1/2. Then (5.8) holds. In particular,
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this estimation applies to
> > S(AZ . p1).
qeEQ $3/7+s<p1<$17975

Proof. This is a variant of Lemma 18 of [2]; it can be proved in exactly
the same way.

Let w(t) denote Buchstab’s function; compare [2], p. 61.
LEMMA 17. Let C =[1 — 0 —€,1/2]. Then

1
—So(C,p1) < —(1 4+ Cae)S5(C,p1) + L™y Z -
=5 ¢a)
Here
(65) 1-— a1 — (X9 — (X3 d()’.l d(]f,g d(]f,3
fo= Sw o )" o a?a’
D 1 3 103
and

D= {(a,02,03) €G3:6 <3 <0/2,1 -0 —a; <ay <0 —a,
k < az < min(ag, (1 — a; — az)/2)}.

Proof. This is a variant of (7.7) of [2], and can be proved in the same
way.

LEMMA 18. Let R be a polygonal subset of
{(s,t) :1/4 <t < s <min(3/7,4 — 70 — 3¢),70 — 3 + 3¢ < s + t}.
Then

1
So(R,2%) < (1+ Coe)Sh(R,2") + —(I + 1) Y ——.
KL ¢(q)
qeQ
Here
1-— 1 — g — (3 dOél da2 da3
Il = S w T T o
s €D K a1 Qg Of
1-— 1 — g — (3 d(]f,l d(]f,g d()’.3 d(]f,4
L= S w . o oy an ol
as@Ga ’ 1ot T T
aj >k

(1 4as,a5+a4)ER
D={as:a; >k, az ¢ Gs, (1, + a3) € R with ap > o
or (a1 + a,a3) € R with oy > as}.

Proof. This is a variant of Lemma 24 of [2], and can be proved in the
same way.
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We have not used in §5 the special properties of Q; we do this in the
next section.

6. The three-dimensional sieve. Let R’ be a polyhedral set in R?
such that

0-3

3 1-6 7
(6.1) 4—79—38§a1§?+6, T+25§a2§ + 2¢

for (a1, as) € R'. We aim to give a good upper bound for
S S(AL,, 1)
gEQ aER’
As in [2], §8, we approach this indirectly by sieving the sequences
HY = {mwn : (logm,logw) € LR, mwn ~ z, (mwn,q) =1},
Fl={ceH':c=a(q)}
The argument is rather close to that of [2], §8, except that Lemma 22 is

displaced by a combination of results from §3 above. The underlying idea
is to approximate the quantity

V:ZA(T)Z Z Zl/dZI

rexh 1€G k~ax'~0r—1d<K s
dsE]—'"‘”"
by
1
NS SRTC) S R P )
rexh 1€G b~ —0p—1 d<K s
dSG'HT”“'

Here (v4) obeys (As) and
(6.2) K = g20-1+2¢,
The following result plays the role of Lemma 22 of [2].
LEMMA 19. With V. V' as above, we have
V-V <zl

Proof. Ason p. 81 of [2], it suffices to prove the analogous result with
‘H? replaced by

{mun:weZ, meJ, nek, (muwn,q) =1},
I=[1-AM,M), J=[1-2A)W,W), K=[1-A4)Y,Y),
where MW N = z and, in view of (6.1),
(6.3) 2T o Mo 2T
(6.4) 2 (1=0)/2426 o 7 o L (10-3)/242¢
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We now employ (8.5) of [2]. We need to show that

DAY D D vy > wul)

re~xf 1€G k~ax'—9 d<K efg=d zle
t|fe

x{ Z 1_¢(71lk) Z B 1}<<x£_‘4.

mwndzt=a (rlk) (mwndzt,rlk)
em€Z,wzfeT,ntgeK em€L,wzfEJ,ntgeK

We use the combinatorial identity in Lemma 3, with J = 7, to replace
A(r) by the right-hand side of (2.13). By a further reduction analogous to
that employed in §4, we need to show that, with M;, N; as in (4.2),

M; <27 M,...M;N,...N; =<z, R=[1-A)P,P), P=<z' P

we have

D>

)

p(ma) ... p(m;) Z* Z Z D(mq...mjn; ...n;lk) < sL™A

m;EM; n;EN; IEG KER
Here
1
COEDITD D WICIUI D SN ET S SIS
d<K efg=d zle mwndzt=a (q) q (mwndzt,q)=1
t|fe em€L, wzfeT em€L,wzfeJ
ntge ntgeK

The portion of £ with zt > 2 is easily seen to be < ££~4, so we may
confine attention to &£’, the subsum of £ with

(6.5) 2zt < x°,

(6.6) wdzt € [(1— A)L,L), me[(1—A)N,N).
Here

(6.7) L < (T0-3)/2420 145 _ [.(116-5)/2+5¢

in view of (6.4), (6.2), (6.5); similarly,
(6.8) N> g4~ 70-(260-1)—6c _ ).5-96—6¢

It remains to show that, for any of the possible M, ..., M;, Ny,..., Ny,
one of the lemmata in §3 yields
(6.9) £ <zl ™A

Case 1: M;...M;N;...N;P has a subproduct U in [.'11180’9'*145,
2°799-7¢]. We choose v maximal in {1,..., H} such that

ULy...L, < x> %7,
Clearly Q = UL, ... L, satisfies
(610) m200710+146 < Q < 7}5790776

on examining separately the cases v = H, v < H.
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We apply Lemma 10, with this @, and R =< z/Q~'. We must verify
(3.18) with N in place of M; that is, since Q < x'/2,

N > max(Qz®, z~ 1FH0Q =3 gO+e-1/2),
This is a straightforward consequence of (6.8) and (6.10).
CASE 2: We have N; > 2°799=7%_ In this case, we apply Lemma 11 with
(6.11) R = 20 N1 « g100-5+7,
The conditions (3.19), (3.20) are readily deduced from (6.7), (6.8), (6.11).

CASE 3: Case 1 and Case 2 do not hold. Since My ... M;N;...N;P =<
2'=% there is no subproduct in [0 =448 £10-199=15¢] Now M; <« z(1=0)/7
P < 2%/379, Either there is a subproduct in [0 190152 180-9+14=] p )]
M;, N;, and P are < z80~4+8_ In the latter case we may form a subprod-

uct in [80— 4485 166-8+16] anqd this subproduct must lie in [£10~190-15¢

$160—8+16ﬂ_

)

In either case, we obtain a subproduct z# in [g!07190—15 ;180-0+1de]

Taking the complementary subproduct if need be, we may suppose that
(6.12) g10-190—155 < Ji o ((1-6)/2
At this point we use a simple result in real analysis.
LEMMA 20. Let F, H be continuous real functions on [0,c], F < H. Then
[F(0).H(e)) C | [F(5),H(5)].
0<6<c

Proof. Let y € [F(0),H(c)]. We must show that y € [F(d), H(J)] for
some 0 € [0,c]. We may suppose that y > H(0). Since y < H(c), we have
y = H(0) for some § € [0, ¢|; the result follows.

Let ¢ be any number in [0,26 —1]. Using (4.8) (4.10) we see that Lemma
7 is applicable with some R, z#%% < R « z#t%*+¢ Let F, H be defined on
0,26 — 1] by

F(0) =pu+ 0+ 2¢,

H0)=min(3 20 -—p—-0)—e2-50—pn—105) — (u+6) —e,

1-2(0—p—0)— S(u+0)—e
::rnin(]?1(5),112(5),113(5)L

say. If W lies in [zF(®) zH ()] then Lemma 7 yields (6.9).

It is a straightforward consequence of (6.11) that F/(20—1) < H,(20—1),
F(0) < min(H,(0), H3(0)) and so F' < H. Now Lemma 20 yields (6.9) if W
lies in [zF(0) 2z H(20-1)],

It is an easy deduction from (6.12) that
H20-1)>1-0—p+e,
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0 (6.9) holds when

(6.13) ohr2E < W < gltmfonte
We now obtain the analogous conclusion for

(6.14) plo0-nte o < g (T6-3)/242¢

by taking Q =< z#*+2°~1 R < 2'7%~# in Lemma 7. This completes the proof
of Lemma 19.

LEMMA 21. Suppose that o, € [0,1] (r < 2?71%). Then

S Y s
qEQ r<Lp20-1+¢
1
— 1+Cg(£>> — o.S(HL, ")
( n QGZQWJ) SZ

r<lgp20—1+e

with |C| < Cs.
Proof. From Lemma 19 it is easy to see that

IR DI NEFD D7D 9 BT

g€EQ * d<K s d<K s
dseF4 dseH

Let

SR
=
Il
A~
w
\
D lw
_l_
"BM|
~——

Then, for d < K,

S =(1+ O(c—A))i(f) D

dseHa

by a variant of [2], (8.5). We apply Lemma 2 with z = 2", y = z°; com-
pare [2], proof of Lemma 23. We have

Z Z o, S(FL z")
qGQTSzQ(}—l—}—E
DI I IR I

qEQ r<Lp20—1+e d<z*® dseF1
d|P(z")
(d,g)=1
1 —A
LY 0 S Y ot
qeEQ q TSzQ(}—l—}—s dsms S q
d|P (") ds€H

(d,q)=1
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+
SZQS(Q) Z o, Z Ad#(d)mq

qeQ r<z20-1+e d<z*®
d|P (")
(d,q)=1
¢*(q) ¢
<> POy e T (1-22) (140
q€Q r<p20-1+s p<z” 77
pla

with |C] < Cs. Applying the lower bound sieve in similar fashion to
Z ¢ Y. o.S(H "),
qEQ <m2971+5

we obtain

Y Y oS
qEQ r< 20— 14¢
(1+09< ))Z > o S(HE ")
('Zs ) r<p20—1+e

with |C] < C5. A lower bound of the same quality is obtained by a similar
argument.

LEMMA 22. We have
1
ZS(]—'q,x”‘ 1+ Ce) Z— , ")
q€Q €Q #la
where |C| < Cs.

Proof. This is a slight variant of the proof of Lemma 15; the role of
So(Ck,x") is now played by

(6.15) > > S(FL  per "),

q€eQ ap €A
ar+...+ap<20—-1+¢

which by Lemma 21 is

(I—I-Cg(%)) %ZQ@ > S(HY, .p ")

ap€Ay
a1+...+ak<2971+6

with |C] < Cy. The remainder of the proof may be carried through with
virtually no change.

LEMMA 23. The statement of Lemma 18 remains true if R is replaced
by R'.

Proof. In view of Lemma 22 this may be proved in exactly the same
way as Lemma 24 of [2].
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We now need to note that Lemmata 13, 17, 18 and 23 can be enhanced
by replacing G; by a larger set G;()) that depends on A; in Lemma 13, we
weaken the conclusion to

(6.16) S(Cp;) = (1+Ce)S'(C.pj), |C| < Co.
Let
a(A) = max(20 — 1,1 — 6 — X),

) 14+60—-3x 2—-3X
b()\)HllD( 5 - ),

Let G*(A) be the union of G', [a(N),b(N)] and [A, d())]. Let G;(\) be defined
in the same way as G, except that G!()\) replaces G'. The replacement of
G, by G;(\) is an application of Lemmata 7 and 8. For any given p in
A, A+ 20 — 1], we may take

(6.17) * <Rz, Q=a2'R?
in Lemma 7; see (4.8)—(4.10). Now (3.9) holds whenever (log N)/L lies in
[F1(p), H1(p)], where
Fi(p) = p+ 2,
Hy () = min(1/2 = (0 = 1)/2,2 = 5(0 — ) — 1 = 2(0 — ) — u/2) — .
The condition F; < Hy of Lemma 20 is satisfied provided that
p<1—60-—6¢

and the union of the [Fy(u), Hi(u)] taken over the permissible y contains
[A + 2¢,d(A\) — Ce] with C < C3. We may ignore the terms in €, in view of
the shape of the bound (6.16), for example.

In applying Lemma 8, we use (6.17) with g in [1 — 6§ — X\,6 — A]. Now
(3.10) holds whenever (log N)/L lies in [Fy(u), Ha(n)], where

(
Fo(p) = p+2e, Hao(p) = min (5+5p—(0—p), 2 —2(0—n), 5 —5(0—p)) —¢.
The condition Fy < H is satisfied provided that
©w>20—1+6¢

and the union of [Fy(u), Ho(u)] over the permissible p contains [a(A) +
6e,b(A\) — €], leading to the enhancement of Lemmata 13, 17, 18 and 23 that
we claimed.

We are now in a position to establish the desired bound (2.10), start-
ing from the identity (5.3). For the sake of clarity we shall suppress the
dependence of sets A?, A , etc., on ¢. It will be tacitly assumed that the
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following expressions are to be summed over g € Q. We will also omit & for
brevity. We use Buchstab’s identity to write

S(A, (273)1/2) = S(A,z") - Z S('Apupl)

k<a1<3/7
(65 EG] (}\)
- Z Z S(Ap17p1) - Z S(Apupl)
q€Q 3/7<a1 <14 1-6<a;1<1/2
- Z S(Ap17p1)
k<a1<3/7

(I]EG] (}\)
230—51—52—53—5’4, s5ay.

We treat Sy, S2 and S3 in exactly analogous fashion to Si ¢, S12 and S 3
in [2], pp. 86-88, using the enhanced lemmata of §5 in place of the corre-
sponding lemmata in [2]. By the definition of G1()), Ss can be evaluated
asymptotically in the same sense as Sy, Ss.

We now turn to Sy. In §9 of [2] the part of the corresponding sum with

a1 € [3(1 — 0)/5, (310 — 15)/3] U [4 — 76, 3/7]

is simply discarded. It is vital for our bound on ¢(\) that none of this
region is discarded; we must only discard sums with three or more variables.
Lemma 23 covers the interval [4 — 76,3/7] immediately. We shall discover
that a simple role-reversal in the variables allows us to apply Lemma 23 for
the lower interval as well.

Let 7 = [k,3/7]. Asin (9.2) of [2],

=-S5 = — Z S(-prxn) + Z S(Ampzap?)
a1 €T as €(AUC)\Ga(N),a1 €T
+ Z S(‘Aplap2) + Z S(Ap1p2ap2)'
as€G2(A) aeX
(65 EI

Here A, C are defined as on p. 54 of [2], while X is the set of (a1, as) with
k< ap <min(ag, (1 —a1)/2), a1 €Z, (a,02) & AUCUG(N).

We shall show that one of Lemmata 16, 18 or 23 is applicable through-
out X. Lemma 18 covers the part X; of X with

3(1—9)/5§a1§4—79, 051—1—052270—3.

Lemma 23 covers that part Xs of X with ay € [4 — 76,3/7]. For the
remainder of X (compare p. 84 of [2]) we have

3(1-6)/5<ay < (310 —15)/3, o1+ ay <70 —3.
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Writing Dy = X\ (X1 U X3), we note that
Z S(Apipy:p2) = [{p1paps € A: (logp1,logps) € LD }]
as €D,

since p1p3 > 2z for as € D;. We may now exchange the roles of the
variables to give

(618) Z S(‘Aplpzap2) = (1 + CE) Z S(‘Apspzap2)
as€ D, (a2,03)EDy

where a3 = (logp3) L7, |C| < Cy. The sum on the right-hand side extends
over those po, p3 such that

(log <i>,10gp2> € LD;.
p2ps3

Since ay € AU C UG5 (A) forces ap > (1 - 0)/2, a1 + az > £(1 - 60) > 4/7,
we see that Lemma 23 is applicable.
The reasoning on pp. 59-61, 86-88 of [2] now leads to

So((22)'?) < ¢(A)Sg((22)'/?).

Here

(619) C()\) 14+ Il(Xl U X2) + I2(X1 U X2) + Il(D2) + I2(D2)

+ E1,3()\) + E3,4(>\) + E5’1()\) + Ce
(IC| < C3) with the following definitions:

(i) I1(Z) and I5(Z) are defined in the same way as I; and I5 of Lemma
18 with R replaced by Z and

(6.20)  G,(A) removed from the domain of integration of each j-dimensio-
nal integral,

(ii) Ep.n(A) is defined in the same way as F,,, on p. 88 of [2], subject
to the additional condition (6.20).

Now, by arguing as in §2 we find that
/ 1/2 _ — f _1
Sh((2) GZQ Zl (1+0(L Ezgd)

Now (2.10) follows with ¢(A) defined as in (6.19).
Recall that (2.10) holds with ¢(A\) = 1+ ¢ for § < A < 1/3 — 3e.
A computer calculation yields

1-6

0.484
c(A) 1/3 c(N)
2 an<] 22 dx 4999.
; A< 0g<0.2961>+ 1§ o A+ O < 0.4999

As explained in §2, Theorem 1 now follows.
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7. Shifted primes with a large prime factor. In order to obtain
Theorem 2 we must show that

(7.1) > w(mp.a)logp < (1/2 - 3e)x;
z1/2<p<g0-677

compare [2], p. 43.
For § € [1/2,0.6], let P = P(f) be the set of primes p ~ 2. We shall
show that

(7.2) D S(A1 (20)7) < GO) Y

qEP q€EP

1
dlq)

Here G(#) is a monotonic function, identical with Cy(#) in [2] except for
0 e L=[25/49 — ¢, 92/175 — £] = [0.5102...,0.5257.. ], and

0.6
(7.3) | G(6)do < 0.2391.
1/2
According to Fouvry [6],
1 12
74) - ; 1 81 —_ 0.26088.
(7.4) Z m(z;p,a)logp < 0g(155_0.677>+5<

T
23/5 <p<p0-677

It is now a straightforward matter to deduce (7.1) from (7.2) (7.4).
In L, the function G(#) will be obtained by subtracting a one-dimensional
integral from C5(#), while adding much smaller three-dimensional and four-
dimensional integrals. This will be made precise below. A computer cal-
culation shows that the one-dimensional integral, after integration over L,
yields a saving just in excess of 2 - 1072, while the corresponding loss from
three-dimensional and four-dimensional integrals is < 4 - 105, Since
0.6
| Ca(0)d0 < 0.241
1/2

by [2], (1.2), we readily obtain (7.3).

We now establish (7.2), beginning with the observation that Lemmata
13 18 hold (with the same proofs) if Q is replaced by P.

Let # € L. Let Ry be a polygonal region in R? such that

1960 —7 5060 —19 3
. <p <=
(7.5) max( = T )4—246_51_74-6,
(7.6) 261/3 —e < P2 < (1-51)/2,
(7.7) Pr+4P2 >3 —-30 —¢

for (81, 82) € Ry. (For orientation, note that 0.384 < 3; < (0.429.)
LEMMA 24. Lemma 18 holds with Q, R replaced by P, Ry.
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Proof. Let
Ho = {mwn : (logm,logw) € LRy, mwn ~ z,(mwn,q) = 1},
Fi={ceHl:c=al(q)}
Our strategy is to establish the analogues of Lemmata 21-23, with P, H3, F{

in place of @, H?, F49. The only ingredient of this argument for which details
need be supplied is the following variant of Lemma 19.

LEMMA 25. With K as in (6.2) we have

DI R D75 i1 PR
gEP “d<K s ¢(q) d<K s
dse Fd dseH!?

Proof. As in §6 we reduce the proof to showing that

(7.8) > u(ma) . oulmy) Y D'(may.omyng . ng) <z LA
m; EM; n; EN;

with M;, N; as in (4.2),

(7.9) My...M;N,...N; =<z M <%

Here D'(q) is defined similarly to D(q) in §6, with

T=1[1- AP 2%), T=[1-A)2%,2%), K=[1-A4)Y,Y);
(B1, B2) satisfies (7.5) (7.7); while (6.5) and
(7.10) m ~ P
are additional conditions imposed on the variables in D’(g). We note that
(7.11) Br—20+1— 3¢ < fs < Br.

It remains only to show that the variables fall within ranges to which we
may apply one of Lemmata 7, 10 and 11. Let

(7.12) v =max((60 — 1 —2)/3,60 —2 — 2/31) + 8¢.

CASE 1: My ...M;N;...N; has a subproduct 2% in [z7, zf1—20+1-4¢],
In this case Lemma 10 is applicable, since #; < 1/2 and

,63 2 max(91,49 — 391 — 1,9 — 91/2) +e

in view of (7.11) and the definition of .

CASE 2: We have N; > z#1=20+1-4¢ 1p this case, we apply Lemma 11
with

R < ngl_l < $3071761+467
while, recalling (6.6), (6.5), (6.2), (7.6),
L < gPrt20-143 p20-B1/2-1/2+3¢
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Thus
RL <« m5973/27361/2+76 < .’111/276
since B > (1960 — 7)/7 > (106 — 4)/3; while
RIY? « g20=5/4=581 /446 1 f1=20+1-4c o fs—c

since 8, > (190 — 7)/7 > (86 — 3)/3.

Suppose that neither Case 1 nor Case 2 holds. We shall show that
M; ... M;N;...Nj has a subproduct 2% with

(7.13) 0—v—e<6,<0/2+c¢.

For suppose this is not the case. Then M; ... M;N; ... N; clearly has no sub-
product in [z?777% 2] U [z7, 2P 7201748 = [gf—v—E gFi—20+1-48] ©More-
over, there is no subproduct in [#30=1=81+5¢ 20=7=¢] " and hence none in
[30-1=Fri+5e gF1—20+1-42]  Gince Case 2 does not hold, all M; and N; are
less than £3¢~1=#173¢ We now readily obtain a contradiction since
230 —1— 1 +5e) <Py —20+1— 4e

from (7.5).
We shall now show (with #; as in (7.13)) that Lemma 7 is applicable
with R = 2%, Q =< 2z%~% and 2?2 in place of N. It suffices to show that

(7.14) 0/24+2e<py<g—c¢
where
g=min(l —20+360,/2,(1 —0+61)/2,2 — 560 + 46,).
The left-hand inequality in (7.14) is an easy consequence of
B2 >201/3 —e > (380 —14)/21 — «.
As for the right-hand inequality in (7.14), it suffices to verify that

1 -5
2

< min <129—|—

(7.15)

3O0—v—¢e) 1—0+(0—v—¢)
2 ’ 2
because of (7.6) and (7.13).

For clarity, we separate the cases § < 14/27 and 6 > 14/27. 1f 0 < 14/27,
then

,259+4(9’)’6)> —€

190 — 7 1- 5 14 — 196
> 24 < —12
frz ——+2e, 2 = 14 ©
60 —2 190 -7 380 — 14 40
< — — _— = —
fy_max< o1 ,60 — 2 7 ) 7
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0 3y 1—v
A 20 4y -
m1n<1 5 5 g 7) o€
1
> min 1797@,1729, Hfie — be
2 72 7 7
14— 190 1- 6
— —12e >
> 14 € ,
which establishes (7.15). If # > 14/27, then
500 — 19 18, 18 250
> — 424 < — 12
e T R T ©
660 —2 5060 —19 1008 — 38 20+ 4
< _ _9_ -
7max< 3 s 17 ) 17
) 0 3y 1—~
LA S A Y I
mm(l 5 5 g 7) o€
0 30+6 1 6+2 80 + 16
> min (12— L 2 6 -
—mm(l 7 2 17 17 > b
18 — 250 1- 6
— —12e > .
T =T

Thus (7.15) holds in both cases, and the proof of Lemma 25 is complete.
Indeed, the proof of Lemma 24 now goes through in the same fashion as

that of Lemma 23.
We now turn to the estimate (7.2), which is our final objective. We have

> S(AL (20) ) = YT S(A% e ) =Y Y S(AL L)

q€EP q€EP q€P k<a1<3/7+e

-> > S(AZ ,p1)

q€P 3/7+e<a1<1-f—¢

-2 X S
4€EP 1-0—e<a1<1/2
:T[)*Tl 7T27T3’ say.

We treat Ty, T>, and T3 in exactly analogous fashion to Sy, 512 and S 3
in [2], pp. 86—88, using the lemmata of §5 with Q replaced by P.

We now turn to 77. Let D(#) be the set of ay in [k,3/7] for which
S(AZ ,p1) is simply discarded in treating Sy in [2]. Disregarding ¢ as
in §6,

4 70,3/7] for 25/49 < 6 < 21/41,
Doy — 3 (3= 30)/5,(310-15)/3]U[4-76,3/7) for 21/41 < 0 < 16/31,
0)=19 1(3 - 30)/5.3/7] for 16/31 < 0 < 11/21,

[

2/7,3/17] for 11/21 < 6 < 92/175.
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We can “salvage” the intersection of D(6) with

gy~ { (196 - 7)/7.3/7  for 25/49 < 0 < 14/27,
(6) = { [(500 — 19)/17,3/7] for 14/27 < 6 < 92/175.

Of course 92/175 is the value of 6 at which I(#) vanishes. That is, we have

2 ) S

qEP a1 €D(0)NI(H)

S SHD SRV OSSR DR

qEP a1 €D(0)NI(H) qEP a1 €D(A)NI(H)
axeCUD
+ Z Z S(.Aglm,lh) - Z Z S(Aglpgp;;ap?))
g€EP a1€D(0)NI(H) g€EP a1€D(0)NI(H)
as€BUE r<az<as
QQGCUD

= —Ti1+Tio+T3—T4, -say.

We can give asymptotic formulae for 7% ; by Lemma 15, and for T3 3 and
that part of T3 4 for which a3 € G3, by Lemma 13. We apply Lemma 15 to
the part of T » with ay € C. We then apply Lemma 24 to the part of T} »
with ay € D; thus Ry = {as € D : a3 € D(0)NI(0)}. (It is readily verified
that (7.5) (7.7) hold.) We simply discard the portion of T} 4 with a3 € Gj.
Thus G(0) is obtained from the upper bound C5(#) of [2] by subtracting

S d()’.l

D(8)NI(8) on(l — o)

and adding (i) the integrals corresponding to x 'I;, s 'I5 in Lemma 18
with Ry in place of R; (ii) the integrals arising from the discarded portion
of Ty 4. This establishes (7.2), and Theorem 2 follows.
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