
ACTA ARITHMETICALXXXIII.4 (1998)
Shifted primes without large prime fatorsbyR. C. Baker (Provo, Ut.) and G. Harman (Cardi�)1. Introdution. Let a denote a �xed non-zero integer, and let P+(m)denote the largest prime fator of an integer m > 1. Let�(x; y) = Xa<p�xP+(p�a)�y 1:Here and subsequently, the letter p is reserved for a prime variable.Theorem 1. For y � x� we have(1:1) �(x; y) > x(log x)C1for x � x0. Here � = 0:2961; x0 may depend on a; C1 is an absoluteonstant.The exponent � an be replaed by a very slightly smaller onstant, aswill be apparent from our method. The previous best exponent is12pe + " = 0:3032 : : : (" > 0 arbitrarily small)(Friedlander [8℄). Earlier results in this diretion were obtained by Pomer-ane [11℄, Balog [3℄ and Fouvry and Grupp [7℄.We note two orollaries of Theorem 1.Corollary 1 (Erd}os{Pomerane). Let m1 < m2 < : : : denotethose positive integers m suh that the equation �(n) = m has morethan m1�� solutions n. Then the sequene (mi) is in�nite, and satis�eslimi!1 logmi+1= logmi = 1.Corollary 2 (Alford, Granville and Pomerane). The number ofCarmihael numbers � x is � x(5�5�)=12 for large x.1991 Mathematis Subjet Classi�ation: Primary 11N25.Researh of the �rst author partially supported by the National Seurity Ageny.[331℄



332 R. C. Baker and G. HarmanThese results essentially follow from Theorem 1 taken in onjuntionwith the arguments in [11℄ and [1℄.Let Q denote a number in (x1=2; x11=20). Our work depends on goodbounds for �(x;S) =Xq2S Xx�p<2xp�a (q) 1where S is a sequene of the form fs1 : : : st : si 2 Sig lying in (Q; 2Q℄. Theelements of S are ounted with multipliity; with this in mind, writejSj =Xs2S 1:The quantity t is absolutely bounded. We write u � v (q) as an abbreviationfor u � v (mod q). Theorem 1 follows from bounds of the shape(1:2) �(x;S) < xL�1Xq2S 1�(q) ; �(x;S) > 0xL�1Xq2S 1�(q)where L denotes log x and ; 0 are onstants not muh greater than one.Friedlander [8℄ also uses bounds of this shape, with S = (x1=2+Æ ; x1=2+2Æ)\Zand Æ small, so that ; 0 may be taken arbitrarily lose to 1. The basi ideaof his paper is to ount solutions of the equationp� a = mn; m 2 (x1=2+Æ ; x1=2+2Æ); x � p < 2x;whih an be interpreted in terms of primes in ongruene lasses, and toshow that the m and n with a large prime fator annot be responsible forall solutions, via the upper bound in (1.2). This idea in somewhat di�erentform originates in Balog [3℄.Starting from the Balog{Friedlander onstrution, we found that exi-bility ould be gained by following a similar proedure with the equationp� a = lmn; x � p < 2xwhere m;n are about x1�� in size, and l is the produt of many integerfators of about x" in size. The best result was obtained by taking � =0:516. The shape of our equation was suggested by the available ingredientsfor results of type (1.2), whih are mostly in Bombieri, Friedlander andIwanie [4, 5℄.In order to save spae, we quote numerous results and arguments from [2℄.Some of the ideas used arry over to improve by 10�3 the exponent in [2℄,Theorem 3:Theorem 2. For in�nitely many primes p, we haveP+(p� a) > p0:677:The adaptation of [2℄ that yields this result will be disussed in x7.



Shifted primes 333One an be more preise than (1.2) in the following example (whih willbe applied in x2).Lemma 1. Let R < x1=10�" and QR < x1�". ThenXr�R(r;a)=1 �(r)B���� Xq�Q(q;a)=1 Xp�xp�a (qr) 1� xL�1 Xq�Q(q;a)=1 1�(qr) ����� xL�A:P r o o f. This is a slight variant of [4℄, Theorem 9, and may be proved inexatly the same way.In this and subsequent statements, q � Q is an abbreviation for Q � q <2Q. Further, " is a suÆiently small positive onstant, whih we �x oneand for all, while B is a positive onstant depending at most on ". We shallfrequently write A for a suÆiently large positive onstant. If a statementontains A, it is true with every hoie of A. It is to be understood thatx > x1 where x1 depends at most on a; " and A.When we use U = O(V ) or the Vinogradov notation U � V , the impliedonstant will depend on a; " and A. (Lemma 2 is an exeption to this rule.)The notation U � V means that U � V and V � U . On several oasionswe need a onstant that may depend on a, but does not depend on thehoie of " or A. This will be denoted by C2. Finally, we emphasize thatA;B and C2 need not be the same at eah ourrene.2. The onstrution. Let �; 1=2 < � < 0:55, be an absolute onstantspei�ed later in this setion. Let H be the integer suh that(2:1) 2� � 1H < " � 2� � 1H � 1 :De�ne u by: u > 0, uH = x2��1:Clearly x"=2 < u < x". For eah i = 1; : : : ;H let L be the set fl : l � u;(l; a) = 1g. Let G be the sequene fl1 : : : lH : li 2 Lg, so that(2:2) Xl2G 1� x2��1; l � x2��1 (l 2 G):Now let N denote the number of solutions p; l;m; n of(2:3) p� a = lmn; l 2 G; m � x1��; (m;a) = 1; p � x:The number of (p; l;m; n) ounted by N for whih p�a has no prime fator� x� is denoted by N 0. NowN 0 � N �N1 �N2:



334 R. C. Baker and G. HarmanHere N1 is the number of p; l; k; p0; n satisfying(2:4) p� a = lp0kn; l 2 G; x� < p0 � 2x1��; k � x1��p�10 ;(k; a) = 1; p � xand N2 is the number of p; l;m; p0; j satisfying(2:5) p� a = lmp0j; l 2 G; x� < p0 � 2x1��; m � x1��;(m;a) = 1; p � x:In order to establish Theorem 1 we bound N � N1 � N2 from below. ByLemma 1,(2:6) N =Xl2G Xm�x1��(m;a)=1 Xp�xp�a (lm) 1 = (1 +O(L�1))Xl2G Xm�x1��(m;a)=1 xL�(lm) :Now 1�(lm) = 1�(l) � !l(m)m with !l(m) = Ypjmp - l �1� 1p��1:It is an elementary exerise to show thatXm�M(m;a)=1 m�1!l(m) = Gl log 2 +O(�(a)M�1 logM);where Gl = �(a)a Yp - la�1 + 1p(p� 1)�:We note that(2.7) Gl > C2;(2.8) N = (1 +O(L�1))x log 2L Xl2G Gl�(l) :Now(2:9) N1 =Xl2G Xx�<p0�2x1�� Xj�x1��p�10(j;a)=1 Xp�xp�a (mod lp0j) 1:Let (�) be a ertain monotoni funtion on [�; 1 � � + "℄ whose de�-nition (involving multiple integrals) we defer to x6. Let N1(�) denote theontribution to N1 from p0 � x�. We shall show in xx4{6 that(2:10) N1(�) � (�)xL Xl2G Xp0�x� Xj�x1��p�10(j;a)=1 x�(lp0j)



Shifted primes 335for � 2 [�; 1 � � + "℄. Sine �(lp0j) = p0�(lj)(1 + O(L�1)), an argumentsimilar to that leading to (2.8) yieldsN1 � x log 2L (1 +O(L�1))Xl2G Gl�(l)Xh �h log 2L � Xp0�2h 1p0where the summation ondition on h isx�=2 � 2h � 2x1��:A straightforward alulation gives(2:11) N1 � x log 2L � 1��\� (�)� d�+ "�Xl2G Gl�(l) :Now de�ne N2(�) as the ontribution to N2 from p0 � x� in (2.5).Note that N1(�) ounts solutions ofp� a = lp0jnwith p � x, l 2 G, p0 � x� and j; n integer variables, n running over aninterval whose endpoints are � x1��. The last sentene is true if N1 isreplaed by N2, although the interval in question is not the same. Never-theless, the reader will readily verify that preisely the same onstant willarise from the sieve methods we employ below, that is,N2(�) � (�)Xl2G Xp0�x� Xm�M(m;a)=1 xL�(lmp0)for � 2 [�; 1� �+ "℄. By a slight variant of the argument leading to (2.11),we obtain(2:12) N2 � x log 2L � 1��\� (�)� d�+ "�Xl2G Gl�(l) :With � = 0:516, we are able to obtain a de�nite upper bound less than1=2 for 1��\� (�)� d�:(The orresponding bound is out of reah if � is replaed by 0.296, for anyhoie of �.) Consequently, it is easy to see thatN 0 > "x=Lon ombining (2.8), (2.11), (2.12), (2.7).



336 R. C. Baker and G. HarmanLet � (p) denote the number of ourrenes of a partiular p in the solu-tions ounted by N 0. Obviously � (p) � �(p� a)B . SineN 0 =Xp�x� (p) � n Xp�x� (p)>0 1 Xp�x� (p)2o1=2;we readily obtain the lower boundXp�x� (p)>0 1 > 2x(log x)C1required for Theorem 1.The starting point for our sieve bounds is the following \fundamentallemma". Let P (z) =Qp<z p:Lemma 2. Let z � 2, s � 2, y = zs. There exist two real sequenesf��d gdjP (z) suh that(i) ��1 = 1, j��d j � 1, �d = 0 for d � y;(ii) for all D jP (z), XdjD �+d � 0; XdjD ��d � 0;(iii) for all multipliative funtions f(d) satisfyingYw�p<zp - q �1� 1f(p)� � 1K� logwlog z ��for some q, some K � 1, some � > 0, and all z; w with z > w > 1, we haveXdjP (z)(d;q)=1 ��df(d) = Yp<zp - q �1� 1f(p)�f1 +O(s�s)g:The implied onstant depends only on K and �.P r o o f. This follows from the proof of Lemma 5 of [9℄, with the errore�s improved, as intimated there, to s�s.We also take a ombinatorial identity from Heath-Brown [10℄.Lemma 3. Let J � 1 and n < 2X. Let �(n) be von Mangoldt's funtion;then �(n) = JXj=1(�1)j�1�Jj�(2:13) � Xm1;:::;mj�X1=J �(m1) : : : �(mj) X : : :Xn1:::njm1:::mj=n log n1:



Shifted primes 3373. Results on bilinear forms. It is onvenient to assemble in thissetion results from [4℄, [5℄ and [2℄ that we shall employ. For sequenes �m(m � M) and �n (n � N) the onvolution sequene (k) = � � �(k) isde�ned by (k) = Xmn=k�m�n (MN � k < 4MN):For an arithmeti funtion f we de�ne�(f ; q; a) = Xn�a (q)n�x f(n)� 1�(q) X(n;q)=1n�x f(n):Let K;L;M be positive numbers, KLM = x andmin(K;L;M) > x�with � = exp(�2="). For sequenes � = (�k), k � K, � = (�l), l � L and� = (�m), m �M , we write�(K;L;M ;Q) = Xq�Q j�(� � � � �; q; a)j:Similarly if min(K;L) > x� and KL = x, we write�(K;L;Q) = Xq�Q(q;a)=1 j�(� � �; q; a)j:We need to assume that one onvolution fator is well distributed inarithmeti progressions in the following sense:(A1) For any d � 1, k � 1, b 6= 0, (k; b) = 1 we haveXl�b (k)(l;d)=1 �l = 1�(k) X(l;dk)=1�l +O(k�k�B(d)L1=2L�A);where k�k = (Pl j�lj2)1=2.The sequenes that we need to onsider satisfy the ondition(A2) j�lj � �(l)B :Some sequenes are supported on \almost primes" in the sense that(A3) �l = 0 whenever l has a prime fator less than exp(L=(logL)2):In the next lemma we need the hypothesis(A4) L1�"Xl j�lj4 � �Xl j�lj2�2:



338 R. C. Baker and G. HarmanLemma 4. Let MN = x, min(M;N) > x�, and � = (�m), m � M ,� = (�n), n � N . Suppose � satis�es (A1){(A4) and � satis�es (A2). Then�(M;N ;Q)� xL�Aprovided that(3:1) x"�1Q2 � N � x5=6�"Q�4=3:P r o o f. This follows from Theorem 3 of [4℄.Lemma 5. Let KLM = x, min(K;L;M) > x�, � = (�k), k � K,� = (�l), l � L, � = (�m), m �M . Suppose that �; �; � satisfy (A2), (A3),and � satis�es (A1). Suppose further that(3.2) Q� KLx�";(3.3) K2L3 � Qx1�";(3.4) K4L2(K + L)� x2�":Then(3:5) �(K;L;M ;Q)� xL�A:P r o o f. This follows from [5℄, Theorem 3.Lemma 6. Let KLM = x, min(K;L;M) > x�, � = (�k), k � K,� = (�l), l � L, � = (�m), m � M . Suppose that �; �; � satisfy (A2), (A3)and � satis�es (A1). Then we have (3:5) provided that (3:2) holds andKL2Q2 � x2�";(3:6) K5L2 � x2�":(3:7)P r o o f. This is Lemma 5 of [2℄, a variant of Theorem 4 of [5℄.Lemma 7. Let MN = x, min(M;N) > x�. Let (�n), n � N , and (q),q � Q, be sequenes satisfying (A2) suh that (�n) satis�es (A1) and (A3).Then(3:8) Xr�R Xm�M(r;am)=1 � Xq�Q(q;am)=1 q� Xn�Nmn�a (qr) �n � 1�(qr) Xn�N(n;qr)=1 �n��2� k�k2xR�1L�Aprovided that(3:9) x"R� N � x�"minfx1=2Q�1=2; x2Q�5R�1; xQ�2R�1=2g:P r o o f. This follows from Theorem 1 of [4℄.



Shifted primes 339Lemma 8. Let MN = x, min(M;N) > x�. Let (�n), n � N , and (q),q � Q, be sequenes satisfying (A2) suh that (�n) satis�es (A1), (A3) and(A4). Then (3:8) holds provided that(3:10) x"R� N � x�"min��xRQ2�1=2;� xQ�2=5;� x2Q3�1=4�:P r o o f. This follows from Theorem 2 of [4℄.Lemma 9. Suppose that KLM = x, that (�k), k � K, and (�m), m �M , satisfy (A2) and(3:11) �l = � 1; L � l < L1,0; otherwise,where L1 2 [L; 2L). Then (3:5) holds provided that(3.12) Q� KLx�";(3.13) MK4Q� x2�";(3.14) MK2Q2 � x2�":P r o o f. This follows from Theorem 5 of [5℄.Let z0 = exp(L= logL).Lemma 10. Let MN = x. Suppose that (q); q � Q, (Ær); r � R, and(�n), n � N , satisfy (A2). Then(3:15) Xq�QXr�R(qr;a)=1 qÆr� Xm�M Xn�Nmn�a (qr) �m�n � 1�(qr) Xm�M Xn�N(mn;qr)=1 �m�n�� k�kx1=2�"M1=2with either of the hoies(3.16) �m = 1 (M � m < M1); �m = 0 (M1 � m < 2M);(3.17) �m = � 1 for (m;P (z)) = 1,0 for (m;P (z)) > 1 for some z � z0,provided that(3:18) M � x"maxfQ;x�1R4Q;Q1=2R; x�2Q3R4g:P r o o f. This is a ombination of Theorem 5 and Theorem 5* of [4℄.Lemma 11. Let LMN = x. Suppose that(3.19) LR� x1=2�";(3.20) L1=2R�Mx�":



340 R. C. Baker and G. HarmanThen(3:21) Xr�R(r;a)=1 Xl�L(l;r)=1 ���� Xq�Q(q;al)=1 � Xm�M Xn�Nlmn�a (qr) 1� 1�(qr) Xm�M Xn�N(mn;qr)=1 1������ xL�A:The analogue of (3:21), in whih the summation is restrited to l;m; n freeof prime fators < z, holds for eah z � z0.P r o o f. This is a ombination of [4℄, Theorems 7 and 7*.Lemma 12. Let MN = x. Suppose that (Ær); r� R, (�m);m� M , and(�n); n� N , satisfy (A2). Suppose further that (�n) satis�es (A1) and (A3),q = 1 for Q < q � Q1 with Q < Q1 � 2Q; QR� x1�"and x"R� N � x�"(x=R)1=3:Then (3:15) holds.P r o o f. This follows from [4℄, Theorem 6.When we apply the lemmata of x3 below, the various onditions (A1),(A2) and so on are not diÆult to verify, and we shall omit the disussionof this.4. An asymptoti formula. In this setion we sharpen Theorem 8of [4℄ a little, so that we an take(4:1) (�) = 1 + " (� < � � 1=3 � 3"):Let �1 and �2 be onstants. We suppose " is suÆiently small in termsof �1 and �2.Theorem 3. Suppose that �1 < 1=3, �2 < 1=5, �1 + �2 < 29=56. Thenfor any numbers q � �(q)B ; Ær � �(r)B , we haveXq�x�1 Xr�x�2(qr;a)=1 qÆr� (x; qr; a) � x�(qr)�� xL�A:Here  (x; q; a) = Xn�xn�a (q) �(n):We remark that Theorem 8 of [4℄ has one extra ondition on �1; �2,namely 5�1 + 2�2 < 2.P r o o f. This follows [4℄, x15 relatively losely but we supply enoughdetails to make our proof somewhat self-ontained. As in [4, x15℄ we redue



Shifted primes 341the problem via Lemma 3 (with J = 7) to showing thatE = Xq�QXr�R(qr;a)=1 qÆr�(qr; a)� xL�Awhere Q = x�1 ; R = x�2 ,�(q; a) = X�m1:::mjn1:::nj�a (q) �(m1) : : : �(mj)� 1�(q) X�(m1:::mjn1:::nj ;q)=1mi2Mi;ni2Ni �(m1) : : : �(mj):Here and subsequently, P� is a summation restrited to numbers free ofprime fators less than z0, and we shall write(4:2) Mi = [(1��)Mi;Mi); Ni = [(1��)Ni; Ni)with(4:3) M1 : : :MjN1 : : : Nj = x; M1; : : : ;Mj < x1=7and(4:4) � = L�A:We may suppose that �1+ �2 > 1=2� ". As on p. 246 of [4℄, we simply haveto deompose eah produt M1 : : :MjN1 : : : Nj into bloks in the range ofthe variables of one of the lemmata of x3.Let Mi = x�i , Ni = x�i with0 � �j � : : : � �1 � 1=7; 0 � �j � : : : � �1;�1 + : : :+ �j + �1 + : : :+ �j = 1;%1 = 2(�1 + �2)� 1; %2 = 56 � 43 (�1 + �2); %3 = �2;%4 = min� 12 + 12�2 � �1; 25 (1� �1); 12 � 34�1	; %5 = �1; %6 = 12 (1� �2):We may suppose �1+ : : :+�j has no partial sum in [%1+"; %2�"℄[ [%3+"; %4 � "℄ [ [%5 + "; %6 � "℄. For [%1 + "; %2 � "℄ this follows from Lemma 4;for [%3 + "; %4 � "℄, from Lemma 8. After verifying that%6 < min(2� 5�2 � �1; 1� 2�2 � �1=2)the result for [%5 + "; %6 � "℄ follows from Lemma 7. (We must employCauhy's inequality in onjuntion with Lemmata 7{8.)Notie that%6 � " � "+maxf�1; �1 + 4�2 � 1; �1=2 + �2; 3�1 + 4�2 � 2g;



342 R. C. Baker and G. Harmanso if �1 > %6�" then Lemma 10 is appliable. Consequently, we may assumethat �1 < %5 + ":Sine 2(%1 + ") < %2 � ", the terms of �1 + : : : + �j whih are < %2 � "give in total � with � < %1 + ";of ourse these terms ontain all �1; : : : ; �j and possibly some �i's.The remaining �i must be loated either in I = [%2 � "; %3 + "℄ or inJ = [%4 � "; %5 + "℄. Any two numbers �0, �00 in I give%3 + " < �0 + �00 < %6 � ":Thus �0 + �00 must be in J . Moreover, � together with any �000 from J give� + �000 < %5 + %1 + 2" < %6 � "so � + �000 must be in J . From the above disussion it follows that we anarrange �1 + : : : + �j as a sum of partial sums�1 + : : :+ �k = 1; �1 � : : : � �k;eah but at most one loated in J , the exeptional one being in I. In fat,the exeptional one must exist beause otherwisek(%4 � ") � 1; k(%5 + ") � 1;giving 3 < k < 4. We onlude that(4:5) k = 4; �1; �2; �3 2 J; �4 2 I:Suppose now that(4:6) �2 + �3 > �1 + �2 + ":We �nd that Lemma 5 is appliable with K = x�3 , L = x�2 . We verify thehypotheses (3.2){(3.4). Naturally (3.2) follows from (4.6). Next,2�3 + 3�2 � 53 (�1 + �2 + �3) = 53 (1� �4)� 53 (1� %2 + ") < 1 + �1 + �2 � "beause �1 + �2 < 29=56; this establishes (3.3). Next,4�3 + 3�2 � 73 (�1 + �2 + �3) = 73 (1� �4) � 73 (1� %2 + ") < 2� "beause �1 + �2 < 29=56.It remains to onsider the ase where (4.5) holds together with(4:7) �2 + �3 � �1 + �2 + ":We have �1 > 1� %3 � �1 � �2 � 2" = 1� �1 � 2�2 � 2" and so�1 + �3 > 1� �1 � 2�2 � 2"+ %4 � "> 54 � �1 � 2�2 > 54 � 2956 � 15 > �1 + �2 + ":



Shifted primes 343Moreover, realling (4.7), we have�1 < 1� (�2 + �3)� %2 + " < 12 � %2 + " < 514 ;2�1 + 5�3 = 2(�1 + 2�3) + �3< 2(1� %2 + ") + �1 + �22 + " = 13 + 196 (�1 + �2) + 3" < 2� ";2�1 + �3 = 12(�1 + 2�3) + 32�1< 12(1� %2 + ") + 1528 < 37 + 1528 < 2� 2(�1 + �2)� ";beause �1 + �2 < 29=56. We may now apply Lemma 6 to omplete theproof of Theorem 3.In what follows, we often hoose a number � 2 [0; 2� � 1℄ and write theintegers l 2 G as(4:8) l = dhwhere d and h run over subsets of(4:9) d � D; h � x2��1D�1:Here(4:10) x� � D � x�+":In deriving (4.1) from Theorem 3 we hoose� = min(2� � 1; 1=3 � �)� 3":In (2.9), ombine p0 and d to give a variable � x�1 ,� + 2� � 1 � �1 � 1=3 � 3":Writing �2 = � � �1, we ombine h and j to give a variable � x�2 ,�2 � � � (� + 2� � 1) = 1� � � � < 1=5� ":Finally, � = �1 + �2 = 0:516 < 29=56:Thus Theorem 3 is appliable to N1(�) and gives (2.10) with (�) = 1 + ".5. The sieve proedure. Let Aq denote the arithmeti progressionfqk + a : (x� a)=q � k < (2x� a)=qg and let(5:1) Bq = fn : n � x; (n; q) = 1g:Let Ed = fn : dn 2 Eg and(5:2) S(Eqd ; z) = Xn2Eqd ; (n;P (z))=1 1for E = A or B (and later on, other sequenes of integers in [x; 2x)).



344 R. C. Baker and G. HarmanFix �; 1=3� 3" � � � �+ ". It is onvenient to write Q for the sequeneQ = flp0j : l 2 G; p0 � x�; j � x1��p�10 g;so that(5:3) N1(�) = Xq2QS(Aq; (2x)1=2):We attak the right-hand side by omparing(5:4) SQ(z) = Xq2QS(Aq; z) with S0Q(z) = Xq2Q 1�(q)S(Bq; z)and(5:5) SQ(C; z) = Xq2Q X�j2C S(Aqp1:::pj ; z)with(5:6) S0Q(C; z) = Xq2Q 1�(q) X�j2C S(Bqp1:::pj ; z):Here C is a subset of Rh , �h denotes L�1(log p1; : : : ; log ph), and z is afuntion of pj . We make the onvention that the pi dividing q are exludedfrom the inner summations in (5.5), (5.6); the exluded terms are zero. Weshall prove that SQ(z) = (1 + C")S0Q(z); jCj � C2;(5:7) SQ(C; z) = (1 + C")S0Q(C; z); jCj � C2;(5:8)under varying onditions on C and z.It is now neessary to reall a good deal of notation from [2℄. We writeT = fs � 0; t � 0; s+ t � 1gand Aj = Aj(�0; �1)= f(�1; : : : ; �j) : �0 � �j < : : : < �1 < �1; �1 + : : :+ �j � 1g:Given any set H in Rj with �j 2 H ) 0 � �j , �1 + : : : + �j < 1, we saythat H partitions into D � T if for every �j 2 H, there exist I;J withI [ J � f1; : : : ; jg, I \ J = ;, and�Xi2I �i;Xj2J �j� 2 D:If I [ J = f1; : : : ; jg for every �j 2 H we say that H partitions exatlyinto D. We say that a subset of Rj is polyhedral if it is the union of at mostC2 onvex polytopes.



Shifted primes 345Lemma 13. Let G1 be the set of (s; t) in T satisfying(5:9) 2� � 1 + " � s � (5 � 8�)=6 � ":Let G2 be the set of (s; t) in T satisfying(5.10) s+ t � � + ";(5.11) 2s+ 3t � 1 + � � ";(5.12) 5s+ 2t � 2� ";(5.13) 4s+ 3t � 2� ":Let G3 be the set of (s; t) satisfying (5:10), (5:12) and(5:14) s+ 2t � 2� 2� � ":Let G be the set of (s; t) for whih either (s; t) or (s; 1 � s � t) belongs toG1 [ G2 [ G3. Let Gj = f�j 2 Rj : �j partitions into Gg. Let C be apolyhedral subset of Gj and suppose min�i � � (�j 2 C). ThenSQ(C; pj) = (1 +O(L�A))S0Q(C; pj):P r o o f. This is a variant of Lemma 7 of [2℄, and an be proved in exatlythe same way.Let(5:15) � = 5� 8�6 � 2"; � = 3(1 � �)5 � ":Let S be the set of (s; t) in T for whih(5:16) s � 1� � � "; s+ 2t � 2� 2� � "; s+ 4t � 2� � � ":In the remainder of this setion, Aj is an abbreviation for Aj(�; �). Let Sjbe the subset of Rj whih partitions exatly into S. Let Uj be the set of �jin Aj suh that (�1; : : : ; �j ; 2� � 1 + ") 2 Sj+1.For s � 1 we write g(s) = exp(�s log s).Lemma 14. Let C be a polyhedral subset of Sj. Then(5:17) SQ(C; x�) = �1 + Cg� "���S0Q(C; x�):We also have SQ(x�) = �1 + Cg� "���S0Q(x�):Here jCj � C2.P r o o f. This is a variant of Lemma 14 of [2℄; it an be proved in exatlythe same way.Lemma 15. Let C be a polyhedral subset of Uj . Then (5:8) holds withz = x�. Moreover , (5:7) holds with z = x�.



346 R. C. Baker and G. HarmanP r o o f. This is a variant of Lemma 15 of [2℄. We give most of the details,sine we will be reyling this proof in a modi�ed form later on. It suÆesto disuss (5.8). By Buhstab's identity,(5:18) SQ(C; x�) = SQ(C; x�)� SQ(C(j+1); pj+1)with C(j+1) = f�j+1 2 Aj+1 : �j 2 C; �j+1 < �g:Here, and heneforth, �j may be used for (�1; : : : ; �j) one �j+l = (�1; : : :: : : ; �j ; : : : ; �j+l) is given.We write Cj+1 for the part of C(j+1) with�j+1 < 2� � 1 + "and C0j+1 for the omplementary part. ThusSQ(C; x�) = SQ(C; x�)� SQ(C0j+1; pj+1)� SQ(Cj+1; pj+1):Lemma 14 is appliable to SQ(C; x�), and Lemma 13 to SQ(Cj+1; pj+1) (sine�j+1 < �).We now apply Buhstab's identity to SQ(Cj+1; pj+1). If we ontinue inthis fashion,we obtain a sequene of sums SQ(Cj+1; pj+1), SQ(Cj+2; pj+2); : : :with Ck = f�k 2 Ak : �j 2 C; �j+1 + : : :+ �k < 2� � 1 + "g:We have(5:19) SQ(Ck; pk) = SQ(Ck; x�)� SQ(C0k+1; pk+1)� SQ(Ck+1; pk+1)withC0k+1 = f�k+1 2 Ak+1 : �k 2 Ck; �k+1 < �; �j+1+ : : :+�k+1 � 2��1+"g:Lemma 14 is appliable to SQ(Ck; x�), sine �j 2 Uj , �j+1 + : : :+ �k <2� � 1 + " gives �k 2 Sk. Lemma 13 applies to SQ(C0k+1; pk+1), beause2� � 1 + " � �j+1 + : : :+ �k � 2� � 1 + "+ � = (5� 8�)=6� ":After < [��1℄ steps, Ck+1 is empty. We now ombine the main terms toform the sum S0Q(C; x�) by applying the Buhstab identity to this sum.The total of the moduli of the error terms is at most C"S0(C; x�); thereasoning for this is exatly as on p. 69 of [2℄. This ompletes the proof ofLemma 15.Let T �� = f(s; t) : 3=7 + " � s � 1� � � "; 0 � t < (1� s)=2g;U�j = f�j 2 Aj(�; 1=2) : �j partitions exatly into T ��g:Lemma 16. Let C be a polyhedral subset of U�j and let z(pj) be a ontin-uous funtion on H with � � z(pj) � 1=2. Then (5:8) holds. In partiular ,



Shifted primes 347this estimation applies toXq2Q Xx3=7+"<p1<x1���" S(Aqp1 ; p1):P r o o f. This is a variant of Lemma 18 of [2℄; it an be proved in exatlythe same way.Let !(t) denote Buhstab's funtion; ompare [2℄, p. 61.Lemma 17. Let C = [1� � � "; 1=2℄. Then�SQ(C; p1) � �(1 + C2")S0Q(C; p1) + xL�1I0Xq2Q 1�(q) :Here I0 = \D!��2�1�!�1� �1 � �2 � �3�3 � d�1 d�2 d�3�21�23andD = f(�1; �2; �3) 62 G3 : � � �1 � �=2; 1� � � �1 � �2 � � � �1;� � �3 � min(�1; (1� �1 � �2)=2)g:P r o o f. This is a variant of (7.7) of [2℄, and an be proved in the sameway.Lemma 18. Let R be a polygonal subset off(s; t) : 1=4 � t � s � min(3=7; 4 � 7� � 3"); 7� � 3 + 3" � s+ tg:Then SQ(R; x�) � (1 +C2")S0Q(R; x�) + x�L (I1 + I2)Xq2Q 1�(q) :Here I1 = \�32D!�1� �1 � �2 � �3� � d�1�1 d�2�2 d�3�23 ;I2 = \�4 62G4�j��(�1+�2;�3+�4)2R !�1� �1 � �2 � �3� �d�1�1 d�2�2 d�3�3 d�4�24 ;D = f�3 : �j � �; �3 62 G3; (�1; �2 + �3) 2 R with �2 � �3or (�1 + �2; �3) 2 R with �1 � �2g:P r o o f. This is a variant of Lemma 24 of [2℄, and an be proved in thesame way.



348 R. C. Baker and G. HarmanWe have not used in x5 the speial properties of Q; we do this in thenext setion.6. The three-dimensional sieve. Let R0 be a polyhedral set in R2suh that(6:1) 4� 7� � 3" � �1 � 37 + "; 1� �2 + 2" � �2 � 7� � 32 + 2"for (�1; �2) 2 R0. We aim to give a good upper bound forXq2Q X�2R0 S(Aqp1p2 ; x�):As in [2℄, x8, we approah this indiretly by sieving the sequenesHq = fmwn : (logm; logw) 2 LR0; mwn � x; (mwn; q) = 1g;Fq = f 2 Hq :  � a (q)g:The argument is rather lose to that of [2℄, x8, exept that Lemma 22 isdisplaed by a ombination of results from x3 above. The underlying ideais to approximate the quantityV = Xr�x� �(r)Xl2G Xk�x1��r�1 Xd�K �dXsds2Frlk 1by V 0 = Xr�x� �(r)Xl2G Xk�x1��r�1 1�(rlk) Xd�K �dXsds2Hrlk 1:Here (�d) obeys (A2) and(6:2) K = x2��1+2":The following result plays the role of Lemma 22 of [2℄.Lemma 19. With V;V 0 as above, we haveV � V 0 � xL�A:P r o o f. As on p. 81 of [2℄, it suÆes to prove the analogous result withHq replaed byfmwn : w 2 I; m 2 J ; n 2 K; (mwn; q) = 1g;I = [(1��)M;M); J = [(1��)W;W ); K = [(1��)Y; Y );where MWN � x and, in view of (6.1),x4�7��3" �M � x3=7+";(6:3) x(1��)=2+2" �W � x(7��3)=2+2":(6:4)



Shifted primes 349We now employ (8.5) of [2℄. We need to show thatXr�x� �(r)Xl2G Xk�x1�� Xd�K �d Xefg=dXzjetjfe �(z)�(t)�� Xmwndzt�a (rlk)em2I; wzf2J ; ntg2K 1� 1�(nlk) X(mwndzt;rlk)=1em2I; wzf2J ; ntg2K 1�� xL�A:We use the ombinatorial identity in Lemma 3, with J = 7, to replae�(r) by the right-hand side of (2.13). By a further redution analogous tothat employed in x4, we need to show that, with Mi;Ni as in (4.2),Mi � x�=7; M1 : : :MjN1 : : : Nj � x� ; R = [(1��)P; P ); P � x1���� ;we haveE := X�mi2Mi �(m1) : : : �(mj) X�ni2NiXl2G Xk2RD(m1 : : : mjn1 : : : njlk)� xL�A:HereD(q) = Xd�K �d Xefg=dXzjetjfe �(z)�(t)� Xmwndzt�a (q)em2I; wzf2Jntg2K 1� 1�(q) X(mwndzt;q)=1em2I; wzf2Jntg2K 1�:The portion of E with zt � x" is easily seen to be � xL�A, so we mayon�ne attention to E 0, the subsum of E with(6.5) zt < x";(6.6) wdzt 2 [(1��)L;L); m 2 [(1��)N;N):Here(6:7) L� x(7��3)=2+2��1+5" = x(11��5)=2+5"in view of (6.4), (6.2), (6.5); similarly,(6:8) N � x4�7��(2��1)�6" = x5�9��6":It remains to show that, for any of the possibleM1; : : : ;Mj ; N1; : : : ; Nj ,one of the lemmata in x3 yields(6:9) E 0 � xL�A:Case 1: M1 : : : MjN1 : : : NjP has a subprodut U in [x18��9+14";x5�9��7"℄. We hoose v maximal in f1; : : : ;Hg suh thatUL1 : : : Lv � x5�9��7":Clearly Q = UL1 : : : Lv satis�es(6:10) x20��10+14" � Q � x5�9��7"on examining separately the ases v = H, v < H.



350 R. C. Baker and G. HarmanWe apply Lemma 10, with this Q, and R � x�Q�1. We must verify(3.18) with N in plae of M ; that is, sine Q � x1=2,N � max(Qx"; x�1+"+4�Q�3; x�+"Q�1=2):This is a straightforward onsequene of (6.8) and (6.10).Case 2: We have N1 � x5�9��7". In this ase, we apply Lemma 11 with(6:11) R � x�N�11 � x10��5+7":The onditions (3.19), (3.20) are readily dedued from (6.7), (6.8), (6.11).Case 3: Case 1 and Case 2 do not hold. Sine M1 : : :MjN1 : : : NjP �x1��, there is no subprodut in [x8��4+8"; x10�19��15"℄. NowMi � x(1��)=7,P � x2=3��. Either there is a subprodut in [x10�19��15"; x18��9+14"℄, or allMi; Ni, and P are < x8��4+8". In the latter ase we may form a subprod-ut in [x8��4+8"; x16��8+16"℄ and this subprodut must lie in [x10�19��15";x16��8+16"℄.In either ase, we obtain a subprodut x� in [x10�19��15"; x18��9+14"℄.Taking the omplementary subprodut if need be, we may suppose that(6:12) x10�19��15" � x� � x(1��)=2:At this point we use a simple result in real analysis.Lemma 20. Let F;H be ontinuous real funtions on [0; ℄, F � H. Then[F (0);H()℄ � [0�Æ�[F (Æ);H(Æ)℄:P r o o f. Let y 2 [F (0);H()℄. We must show that y 2 [F (Æ);H(Æ)℄ forsome Æ 2 [0; ℄. We may suppose that y > H(0). Sine y � H(), we havey = H(Æ) for some Æ 2 [0; ℄; the result follows.Let Æ be any number in [0; 2��1℄. Using (4.8){(4.10) we see that Lemma7 is appliable with some R; x�+Æ � R � x�+Æ+". Let F;H be de�ned on[0; 2� � 1℄ byF (Æ) = �+ Æ + 2";H(Æ) = min �12 � 12 (� � �� Æ) � "; 2� 5(� � �� Æ)� (�+ Æ)� ";1� 2(� � �� Æ) � 12 (�+ Æ)� "�= min(H1(Æ);H2(Æ);H3(Æ));say. If W lies in [xF (Æ); xH(Æ)℄, then Lemma 7 yields (6.9).It is a straightforward onsequene of (6.11) that F (2��1) � H1(2��1);F (0) � min(H2(0);H3(0)) and so F � H. Now Lemma 20 yields (6.9) if Wlies in [xF (0); xH(2��1)℄.It is an easy dedution from (6.12) thatH(2� � 1) > 1� � � �+ ";



Shifted primes 351so (6.9) holds when(6:13) x�+2" �W � x1����+":We now obtain the analogous onlusion for(6:14) x1����+" < W � x(7��3)=2+2";by taking Q � x�+2��1; R � x1���� in Lemma 7. This ompletes the proofof Lemma 19.Lemma 21. Suppose that �r 2 [0; 1℄ (r � x2��1+"). ThenXq2Q Xr�x2��1+" �rS(Fqr ; x�)= �1 + Cg� "���Xq2Q 1�(q) Xr�x2��1+" �rS(Hqr; x�)with jCj � C2.P r o o f. From Lemma 19 it is easy to see thatXq2Q� Xd�K �dXsds2Fq 1� 1�(q) Xd�K �dXsds2Hq �� xL�A:Let %(d) =Ypjd �3� 3p + 1p2�:Then, for d � K, Xds2Hq 1 = (1 +O(L�A))�3(q)q3 � %(d)d jHqjby a variant of [2℄, (8.5). We apply Lemma 2 with z = x�, y = x"; om-pare [2℄, proof of Lemma 23. We haveXq2Q Xr�x2��1+" �rS(Fqr ; x�)�Xq2Q Xr�x2��1+" �r Xd�x"djP (x�)(d;q)=1 �+d Xds2Fq 1�Xq2Q 1�(q) Xr�x2��1+" �r Xd�x"djP (x�)(d;q)=1 �+d Xsds2Hq 1 +O(xL�A)



352 R. C. Baker and G. Harman�Xq2Q �2(q)q3 Xr�x2��1+" �r Xd�x"djP (x�)(d;q)=1 �+d %(d)d jHqj�Xq2Q �2(q)q3 Xr�x2��1+" �rjHqj Yp<x�p6 jq �1� %(p)p ��1 + Cg� "���with jCj � C2. Applying the lower bound sieve in similar fashion toXq2Q 1�(q) Xr�x2��1+" �rS(Hq ; x�);we obtainXq2Q Xr�x2��1+" �rS(Fqr ; x�)� �1 +Cg� "���Xq2Q 1�(q) Xr�x2��1+" �rS(Hqr ; x�)with jCj � C2. A lower bound of the same quality is obtained by a similarargument.Lemma 22. We haveXq2QS(Fq ; x�) = (1 + C")Xq2Q 1�(q)S(Hq; x�)where jCj � C2.P r o o f. This is a slight variant of the proof of Lemma 15; the role ofSQ(Ck; x�) is now played by(6:15) Xq2Q X�k2Ak�1+:::+�k<2��1+" S(Fqp1:::pk ; x�);whih by Lemma 21 is�1 + Cg� "���Xq2Q 1�(q) X�k2Ak�1+:::+�k<2��1+" S(Hqp1:::pk ; x�)with jCj � C2. The remainder of the proof may be arried through withvirtually no hange.Lemma 23. The statement of Lemma 18 remains true if R is replaedby R0.P r o o f. In view of Lemma 22 this may be proved in exatly the sameway as Lemma 24 of [2℄.



Shifted primes 353We now need to note that Lemmata 13, 17, 18 and 23 an be enhanedby replaing Gj by a larger set Gj(�) that depends on �; in Lemma 13, weweaken the onlusion to(6:16) S(C; pj) = (1 + C")S0(C; pj); jCj � C2:Let a(�) = max(2� � 1; 1 � � � �);b(�) = min�1 + � � 3�2 ; 2� 3�4 �;d(�) = min��+ �2 ; 1� ��:Let G1(�) be the union of G1; [a(�); b(�)℄ and [�; d(�)℄. Let Gj(�) be de�nedin the same way as Gj , exept that G1(�) replaes G1. The replaement ofGj by Gj(�) is an appliation of Lemmata 7 and 8. For any given � in[�; �+ 2� � 1℄, we may take(6:17) x� � R� x�+"; Q � x�R�1in Lemma 7; see (4.8){(4.10). Now (3.9) holds whenever (logN)=L lies in[F1(�);H1(�)℄, whereF1(�) = �+ 2";H1(�) = min(1=2 � (� � �)=2; 2 � 5(� � �)� �; 1� 2(� � �)� �=2) � ":The ondition F1 � H1 of Lemma 20 is satis�ed provided that� � 1� � � 6"and the union of the [F1(�);H1(�)℄ taken over the permissible � ontains[�+ 2"; d(�) � C"℄ with C � C2. We may ignore the terms in ", in view ofthe shape of the bound (6.16), for example.In applying Lemma 8, we use (6.17) with � in [1 � � � �; � � �℄. Now(3.10) holds whenever (logN)=L lies in [F2(�);H2(�)℄, whereF2(�) = �+2"; H2(�) = min � 12+ 12��(���); 25� 25 (���); 12� 34 (���)��":The ondition F2 � H2 is satis�ed provided that� � 2� � 1 + 6"and the union of [F2(�);H2(�)℄ over the permissible � ontains [a(�) +6"; b(�)� "℄, leading to the enhanement of Lemmata 13, 17, 18 and 23 thatwe laimed.We are now in a position to establish the desired bound (2.10), start-ing from the identity (5.3). For the sake of larity we shall suppress thedependene of sets Aq;Aqp1 ; et., on q. It will be taitly assumed that the



354 R. C. Baker and G. Harmanfollowing expressions are to be summed over q 2 Q. We will also omit " forbrevity. We use Buhstab's identity to writeS(A; (2x)1=2) = S(A; x�)� X���1�3=7�1 62G1(�) S(Ap1 ; p1)�Xq2Q X3=7��1�1�� S(Ap1 ; p1)� X1��<�1�1=2S(Ap1 ; p1)� X���1�3=7�12G1(�) S(Ap1 ; p1)= S0 � S1 � S2 � S3 � S4; say:We treat S0; S2 and S3 in exatly analogous fashion to S1;0; S1;2 and S1;3in [2℄, pp. 86{88, using the enhaned lemmata of x5 in plae of the orre-sponding lemmata in [2℄. By the de�nition of G1(�); S4 an be evaluatedasymptotially in the same sense as S0; S2.We now turn to S1. In x9 of [2℄ the part of the orresponding sum with�1 2 [3(1 � �)=5; (31� � 15)=3℄ [ [4� 7�; 3=7℄is simply disarded. It is vital for our bound on (�) that none of thisregion is disarded; we must only disard sums with three or more variables.Lemma 23 overs the interval [4 � 7�; 3=7℄ immediately. We shall disoverthat a simple role-reversal in the variables allows us to apply Lemma 23 forthe lower interval as well.Let I = [�; 3=7℄. As in (9.2) of [2℄,�S1 = � X�12I S(Ap1 ; x�) + X�22(A[C)nG2(�);�12I S(Ap1p2 ; p2)+ X�22G2(�)�12I S(Ap1 ; p2) + X�22X S(Ap1p2 ; p2):Here A;C are de�ned as on p. 54 of [2℄, while X is the set of (�1; �2) with� � �2 < min(�1; (1 � �1)=2); �1 2 I; (�1; �2) 62 A [ C [G2(�):We shall show that one of Lemmata 16, 18 or 23 is appliable through-out X. Lemma 18 overs the part X1 of X with3(1� �)=5 � �1 � 4� 7�; �1 + �2 � 7� � 3:Lemma 23 overs that part X2 of X with �1 2 [4 � 7�; 3=7℄. For theremainder of X (ompare p. 84 of [2℄) we have3(1 � �)=5 � �1 � (31� � 15)=3; �1 + �2 < 7� � 3:



Shifted primes 355Writing D1 = Xn(X1 [X2), we note thatX�22D1 S(Ap1p2 ; p2) = jfp1p2p3 2 A : (log p1; log p2) 2 LD1gjsine p1p32 > 2x for �2 2 D1. We may now exhange the roles of thevariables to give(6:18) X�22D1 S(Ap1p2 ; p2) = (1 + C") X(�2;�3)2D2 S(Ap3p2 ; p2)where �3 = (log p3)L�1, jCj � C2. The sum on the right-hand side extendsover those p2; p3 suh that� log� xp2p3�; log p2� 2 LD1:Sine �2 62 A [ C [G2(�) fores �2 > (1� �)=2; �1 + �2 > 65 (1� �) > 4=7,we see that Lemma 23 is appliable.The reasoning on pp. 59{61, 86{88 of [2℄ now leads toSQ((2x)1=2) � (�)S0Q((2x)1=2):Here (�) = 1 + I1(X1 [X2) + I2(X1 [X2) + I1(D2) + I2(D2)�(6:19) +E1;3(�) +E3;4(�) +E5;1(�) + C"(jCj � C2) with the following de�nitions:(i) I1(Z) and I2(Z) are de�ned in the same way as I1 and I2 of Lemma18 with R replaed by Z and(6.20) Gj(�) removed from the domain of integration of eah j-dimensio-nal integral,(ii) Em;n(�) is de�ned in the same way as Em;n on p. 88 of [2℄, subjetto the additional ondition (6.20).Now, by arguing as in x2, we �nd thatS0Q((2x)1=2) = Xq2Q 1�(q)Xp�x 1 = (1 +O(L�1)) xLXq2Q 1�(q) :Now (2.10) follows with (�) de�ned as in (6.19).Reall that (2.10) holds with (�) = 1 + " for � � � � 1=3 � 3".A omputer alulation yields1��\� (�)� d� � log� 1=30:2961�+ 0:484\1=3 (�)� d�+ C" < 0:4999:As explained in x2, Theorem 1 now follows.



356 R. C. Baker and G. Harman7. Shifted primes with a large prime fator. In order to obtainTheorem 2 we must show that(7:1) Xx1=2<p�x0:677 �(x; p; a) log p < (1=2 � 3")x;ompare [2℄, p. 43.For � 2 [1=2; 0:6℄, let P = P(�) be the set of primes p � x�. We shallshow that(7:2) Xq2P S(Aq; (2x)1=2) � G(�)Xq2P 1�(q) :Here G(�) is a monotoni funtion, idential with C2(�) in [2℄ exept for� 2 L = [25=49 � "; 92=175 � "℄ = [0:5102 : : : ; 0:5257 : : :℄, and(7:3) 0:6\1=2G(�) d� < 0:2391:Aording to Fouvry [6℄,(7:4) 1x Xx3=5�p<x0:677 �(x; p; a) log p < 8 log� 1215� 5 � 0:677�+" < 0:26088:It is now a straightforward matter to dedue (7.1) from (7.2){(7.4).In L, the funtionG(�) will be obtained by subtrating a one-dimensionalintegral from C2(�), while adding muh smaller three-dimensional and four-dimensional integrals. This will be made preise below. A omputer al-ulation shows that the one-dimensional integral, after integration over L,yields a saving just in exess of 2 � 10�3, while the orresponding loss fromthree-dimensional and four-dimensional integrals is < 4 � 10�5. Sine0:6\1=2C2(�) d� < 0:241by [2℄, (1.2), we readily obtain (7.3).We now establish (7.2), beginning with the observation that Lemmata13{18 hold (with the same proofs) if Q is replaed by P.Let � 2 L. Let R0 be a polygonal region in R2 suh that(7.5) max�19� � 77 ; 50� � 1917 �+ 24" � �1 � 37 + ";(7.6) 2�1=3� " � �2 � (1� �1)=2;(7.7) �1 + 4�2 � 3� 3� � "for (�1; �2) 2 R0. (For orientation, note that 0:384 � �1 � 0:429.)Lemma 24. Lemma 18 holds with Q; R replaed by P; R0.



Shifted primes 357P r o o f. LetHq0 = fmwn : (logm; logw) 2 LR0;mwn � x; (mwn; q) = 1g;Fq0 = f 2 Hq0 :  � a (q)g:Our strategy is to establish the analogues of Lemmata 21{23, with P;Hq0;Fq0in plae of Q;Hq;Fq . The only ingredient of this argument for whih detailsneed be supplied is the following variant of Lemma 19.Lemma 25. With K as in (6:2) we haveXq2P � Xd�K �dXsds2Fqs 1� 1�(q) Xd�K �dXsds2Hqs 1�� xL�A:P r o o f. As in x6 we redue the proof to showing that(7:8) X�mi2Mi �(m1) : : : �(mj) X�ni2NiD0(m1 : : : mjn1 : : : nj)� xL�Awith Mi;Ni as in (4.2),(7:9) M1 : : :MjN1 : : : Nj � x�; Mi � x�=7:Here D0(q) is de�ned similarly to D(q) in x6, withI = [(1 ��)x�1 ; x�1); J = [(1��)x�2 ; x�2); K = [(1��)Y; Y );(�1; �2) satis�es (7.5){(7.7); while (6.5) and(7:10) m � x�3are additional onditions imposed on the variables in D0(q). We note that(7:11) �1 � 2� + 1� 3" � �3 � �1:It remains only to show that the variables fall within ranges to whih wemay apply one of Lemmata 7, 10 and 11. Let(7:12)  = max((6� � �1 � 2)=3; 6� � 2� 2�1) + 8":Case 1: M1 : : :MjN1 : : : Nj has a subprodut x�1 in [x ; x�1�2�+1�4"℄.In this ase Lemma 10 is appliable, sine �1 < 1=2 and�3 � max(�1; 4� � 3�1 � 1; � � �1=2) + "in view of (7.11) and the de�nition of .Case 2: We have N1 � x�1�2�+1�4". In this ase, we apply Lemma 11with R� x�N�11 � x3��1��1+4";while, realling (6.6), (6.5), (6.2), (7.6),L� x�2+2��1+3" � x2���1=2�1=2+3":



358 R. C. Baker and G. HarmanThus RL� x5��3=2�3�1=2+7" � x1=2�"sine �1 > (19� � 7)=7 > (10� � 4)=3; whileRL1=2 � x4��5=4�5�1=4+6" � x�1�2�+1�4" � x�3�";sine �1 > (19� � 7)=7 > (8� � 3)=3.Suppose that neither Case 1 nor Case 2 holds. We shall show thatM1 : : :MjN1 : : : Nj has a subprodut x�1 with(7:13) � �  � " � �1 � �=2 + ":For suppose this is not the ase. ThenM1 : : :MjN1 : : : Nj learly has no sub-produt in [x���"; x ℄ [ [x ; x�1�2�+1�4"℄ = [x���"; x�1�2�+1�4"℄. More-over, there is no subprodut in [x3��1��1+5"; x���"℄, and hene none in[x3��1��1+5"; x�1�2�+1�4"℄. Sine Case 2 does not hold, all Mi and Ni areless than x3��1��1�3". We now readily obtain a ontradition sine2(3� � 1� �1 + 5") < �1 � 2� + 1� 4"from (7.5).We shall now show (with �1 as in (7.13)) that Lemma 7 is appliablewith R = x�1 ; Q � x���1 and x�2 in plae of N . It suÆes to show that(7:14) �=2 + 2" � �2 � g � "where g = min(1� 2� + 3�1=2; (1 � � + �1)=2; 2 � 5� + 4�1):The left-hand inequality in (7.14) is an easy onsequene of�2 � 2�1=3� " � (38� � 14)=21 � ":As for the right-hand inequality in (7.14), it suÆes to verify that(7:15) 1� �12� min�1�2� + 3(���")2 ; 1�� + (���")2 ; 2�5� + 4(���")��"beause of (7.6) and (7.13).For larity, we separate the ases � � 14=27 and � > 14=27. If � < 14=27,then �1 � 19� � 77 + 24"; 1� �12 � 14� 19�14 � 12"; � max�6� � 23 � 19� � 721 ; 6� � 2� 38� � 147 � = 4�7 ;



Shifted primes 359min�1� �2 � 32 ; 1� 2 ; 2� � � 4�� 5"� min�1� �2 � 6�7 ; 12 � 2�7 ; 2� � � 16�7 �� 5"> 14� 19�14 � 12" � 1� �12 ;whih establishes (7.15). If � � 14=27, then�1 � 50� � 1917 + 24"; 1� �12 � 18� 25�17 � 12"; � max�6� � 23 � 50� � 1951 ; 6� � 2� 100� � 3817 � = 2� + 417 ;min�1� �2 � 32 ; 1� 2 ; 2� � � 4�� 5"� min�1� �2 � 3� + 617 ; 12 � � + 217 ; 2� � � 8� + 1617 �� 5"> 18� 25�17 � 12" � 1� �12 :Thus (7.15) holds in both ases, and the proof of Lemma 25 is omplete.Indeed, the proof of Lemma 24 now goes through in the same fashion asthat of Lemma 23.We now turn to the estimate (7.2), whih is our �nal objetive. We haveXq2P S(Aq; (2x)1=2) = Xq2P S(Aq; x�)�Xq2P X���1�3=7+"S(Aqp1 ; p1)�Xq2P X3=7+"��1�1���"S(Aqp1 ; p1)�Xq2P X1���"<�1�1=2S(Aqp1 ; p1)= T0 � T1 � T2 � T3; say.We treat T0; T2, and T3 in exatly analogous fashion to S1;0; S1;2 and S1;3in [2℄, pp. 86{88, using the lemmata of x5 with Q replaed by P.We now turn to T1. Let D(�) be the set of �1 in [�; 3=7℄ for whihS(Aqp1 ; p1) is simply disarded in treating S1;2 in [2℄. Disregarding " asin x6,D(�) =8><>: [4� 7�; 3=7℄ for 25=49 � � � 21=41,[(3 � 3�)=5; (31��15)=3℄[[4�7�; 3=7℄ for 21=41 < � � 16=31,[(3 � 3�)=5; 3=7℄ for 16=31 < � � 11=21,[2=7; 3=7℄ for 11=21 � � � 92=175.



360 R. C. Baker and G. HarmanWe an \salvage" the intersetion of D(�) withI(�) = � [(19� � 7)=7; 3=7℄ for 25=49 � � � 14=27,[(50� � 19)=17; 3=7℄ for 14=27 < � � 92=175.Of ourse 92=175 is the value of � at whih I(�) vanishes. That is, we have�Xq2P X�12D(�)\I(�) S(Aqp1 ; p1)= �Xq2P X�12D(�)\I(�) S(Aqp1 ; x�) +Xq2P X�12D(�)\I(�)�22C[D S(Aqp1p2 ; x�)+Xq2P X�12D(�)\I(�)�22B[E S(Aqp1p2 ; p2)�Xq2P X�12D(�)\I(�)���3<�2�22C[D S(Aqp1p2p3 ; p3)= � T1;1 + T1;2 + T1;3 � T1;4; say:We an give asymptoti formulae for T1;1 by Lemma 15, and for T1;3 andthat part of T1;4 for whih �3 2 G3, by Lemma 13. We apply Lemma 15 tothe part of T1;2 with �2 2 C. We then apply Lemma 24 to the part of T1;2with �2 2 D; thus R0 = f�2 2 D : �1 2 D(�)\ I(�)g. (It is readily veri�edthat (7.5){(7.7) hold.) We simply disard the portion of T1;4 with �3 62 G3.Thus G(�) is obtained from the upper bound C2(�) of [2℄ by subtrating\D(�)\I(�) d�1�1(1� �1) ;and adding (i) the integrals orresponding to ��1I1; ��1I2 in Lemma 18with R0 in plae of R; (ii) the integrals arising from the disarded portionof T1;4. This establishes (7.2), and Theorem 2 follows.Referenes[1℄ W. R. Al ford, A. Granvi l l e and C. Pomerane, There are in�nitely manyCarmihael numbers, Ann. of Math. 139 (1994), 703{722.[2℄ R. C. Baker and G. Harman, The Brun{Tithmarsh theorem on average, in:Analyti Number Theory, Vol. I, Birkh�auser, Boston, 1996, 39{103.[3℄ A. Balog, p+ a without large prime fators, S�em. Th�eorie des Nombres Bordeaux(1983-84), expos�e 31.[4℄ E. Bombier i, J. Fr ied lander and H. Iwanie, Primes in arithmeti progressionsto large moduli , Ata Math. 156 (1986), 203{251.[5℄ |, |, |, Primes in arithmeti progressions to large moduli II , Math. Ann. 277(1987), 361{393.[6℄ E. Fouvry, Th�eor�eme de Brun{Tithmarsh; appliation au th�eor�eme de Fermat ,Invent. Math. 79 (1985), 383{407.
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