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l-adi L-funtions and rational funtion measuresbyJangheon Oh (Seoul)1. Introdution. In [2℄, Sinnott used a measure-theoreti method togive a new proof of a theorem of Washington [3℄. We follow his approahto prove that Ll(1; �) mod l, where l is an odd prime, is the � -transform ofa rational funtion measure. As a result, we show that ordl(Ll(1; � )) = 0for almost all  's (Theorem 3), where � is an even Dirihlet harater ofthe Galois group of an abelian extension over Q and  is a harater of theGalois group of the basi Zp-extension Q1 of Q over Q . Theorem 3 ouldalso be proved using a result of Sinnott [2℄. The aim of this paper is togive a diret proof of Theorem 3 by using our Theorem 2. For an algebraiinterpretation of Theorem 3, see Theorem 5 of this paper.Fix two distint primes l and p: Let Zp denote the ring of p-adi integers,Fl the prime �eld with l elements, and F l its algebrai losure. Reall thatthe group Z�p of units in Zp is the diret produt of its torsion subgroupV and the subgroup U = 1 + 2pZp: By a measure on Zp with values inF l we mean a �nitely additive F l-valued set funtion on the olletion ofompat open subsets of Zp. If � is a measure, and � : Zp ! F l is a loallyonstant funtion, say onstant on the osets of pnZp in Zp, then we de�nethe integral \Zp�(x) d�(x) = Xamodpn �(a)�(a + pnZp):Let � denote the group of ontinuous haraters U ! F�l ; viewed alwaysas haraters of Z�p trivial on V . Let � be a measure. The � -transform�� : �! F l of � is de�ned by��( ) = \Z�p  (x) d�(x):1991 Mathematis Subjet Classi�ation: 11R23, 11R18, 11R42.This paper is part of the author's Ph.D. thesis. I would like to thank my adviser,W. Sinnott, for introduing me to this problem and for many valuable omments.[369℄



370 J. OhLet �p1 and �pn be the set of all p-power roots of unity and the set ofall pnth roots of unity respetively. The Fourier transform b� : �p1 ! F l of� is de�ned by b�(�) = \Zp �x d�(x):We have a relation between the two transforms. Let  2 � and let1 + pnZp be the kernel of  in U . Then(1) ��( ) = X�2�pn �( ; �)b�(�);where �( ; �) = 1pn Xxmodpn; x 6=0modp (x)��x:We all a measure � a rational funtion measure if there is a rational funtionR(Z) 2 F l(Z) suh thatb�(�) = R(�) for almost all � 2 �p1 :If � is a measure and X � Zp is ompat and open, we denote by �jXthe measure obtained by restriting � to X and extending by 0. If � isa rational funtion measure, then so is �jX for any ompat open subsetX � Zp: In partiular, if X = Z�p and we put �� = �jZ�p ; thenb��(�) = b�(�)� 1p X"p=1 b�("�):We say a measure � is supported on Z�p if � = ��:Theorem 1 (Sinnott [2℄). Let � be a rational funtion measure on Zpwith values in F l, and let R(Z) 2 F l(Z) be the assoiated rational funtion.Assume that � is supported on Z�p . If ��( ) = 0 for in�nitely many  2 �,then R(Z) +R(Z�1) = 0:Let C �l be the nonzero elements of C l , whih is the ompletion of thealgebrai losure of Q l :Lemma 1. We have C �l = lQ �W � U1;where W is the group of all roots of unity of order prime to l, and U1 =fx 2 C l j jx� 1j < 1g:P r o o f. See Washington [4, p. 50℄.



l-adi L-funtions 371We now de�ne(2) logl(1 +X) = 1Xn=1 (�1)n+1Xnn :Now, by the above lemma, let y = lr!x 2 C�l : De�ne logl y = logl x; wherefor x 2 U1; logl x is de�ned by the power series (2).2. Statement of the main theorem. Let F be a totally real abeliannumber �eld, and � be a Dirihlet harater of Gal(F=Q) whose ondutorf is relatively prime to lp. Let  be a harater of the basi Zp-extensionQ1=Q with values in C l ; we view  as a harater of Z�p trivial on V .Theorem 2. Let l be an odd prime. Then the funtion given by ! (Ll(1; � ) mod l)is the Gamma transform of a rational funtion measure.3. Proof of theoremsLemma 2.Assume that f is relatively prime to p. Then f1; 2; : : : ; fpng =Sfj=1Aj ; where Aj = fj; j+f; : : : ; j+(pn�1)fg, and Aj is a representativeset of Z=pnZ for any j = 1; : : : ; f:P r o o f. The number of elements in Aj is pn, and if j + mf � j +kf mod pn; then (m� k)f � 0 mod pn:Sine f is relatively prime to p, m � k mod pn.We use the same notations as in the previous setion. The value ofthe l-adi L-funtion at 1 for an even nontrival harater was evaluated byLeopoldt (see Washington [4, p. 63℄):Ll(1; � ) = �(1� � (l)=l)�(� )fpn fpnXa=1� (a) logl(1� �afpn);where �(� ) =Pfpna=1 � (a)�afpn ; and �fpn is a primitive fpnth root of unityin Q l :Proposition 1. Let 1 + pnZp be the kernel of  in U: ThenLl(1; � ) =X� �( ; �)�� F (�) + �(l)l F (� l)�;where F (T ) = (1=f)Pfi=1 �i logl(1 � �ifT ) as a funtion on �p1 ; �i =Pfj=1 �(j)�ijf and the above sum runs over all pnth roots of unity.



372 J. OhP r o o f. First ompute �(� )� (a):(3) �(� )� (a) = fpnXx=1� (x)� (a)�xfpn = fpnXx=1� (x)�axfpn ;soLl(1; � ) = �(1� � (l)=l) 1fpn fpnXa=1� fpnXx=1� (x)(�f �pn)ax� logl(1� �af �apn):Let us alulate(4) 1fpn fpnXa=1� fpnXx=1� (x)(�f �pn)ax� logl(1� �af �apn):De�ne hxi and fxg by x = hxi + dpn; 1 � hxi � pn and x = fxg + ef;i � fxg � f: Then, by the above lemma, we havefpnXx=1� (x)(�f pn)ax = fpnXx=1�(fxg) (hxi)�afxgf �ahxipn(5) = fXj=1 Xx2Aj �(fxg) (hxi)�afxgf �ahxipn= � fXj=1 �(j)�ajf �� pnX=1  ()�apn�:Let �a =Pfj=1 �(j)�ajf : Then �a = �i for any a 2 Ai; and �bf = �if for anyb 2 Ai: Therefore,(4) = 1fpn fpnXa=1� fpnXx=1� (x)(�f �pn)ax� logl(1� �af �apn)(6) = 1fpn fpnXa=1� fXj=1�(j)�ajf �� pnX=1  ()�apn� logl(1� �af �apn)= 1fpn fpnXa=1��a pnX=1  ()�apn� logl(1� �af �apn)= 1fpn fXi=1 h� Xb2Ai �b� pnX=1  ()�bpn�� logl(1� �bf�bpn)i= 1fpn fXi=1 h Xb2Ai �i� pnX=1  ()�bpn� logl(1� �if�bpn)i



l-adi L-funtions 373= 1fpn fXi=1 h pnXb=1 �i� pnX=1  ()�bpn� logl(1� �if�bpn)i= 1f fXi=1 � pnXb=1 �i� 1pn pnX=1  ()�bpn� logl(1� �if �bpn)�:Sine  is an even harater,  (�1) = 1. Upon replaing  by �, thelast expression beomes(7) 1f pnXb=1 �( ; �bpn)� fXi=1 �i logl(1� �if�bpn)�:Let F (T ) = 1f fXi=1 �i logl(1� �ifT )(as a funtion on �p1). Then we proved(8) (4) = pnXb=1 �( ; �bpn)F (�bpn) =X� �( ; �)F (�):Now onsider �(l)l F (T l):Sine l and p are di�erent primes, we have�( ; �blpn ) = 1pn pnX=1  ()��blpn(9) = 1pn �1(l) pnXt=1  (t)��btpn=  �1(l)�( ; �bpn );so that X� �(l)l �( ; �)F (� l) = �(l)l X�  (l)�( ; � l)F (� l)(10) = � (l)l X� �( ; �)F (�):Let G�(T ) = �F (T ) + �(l)l F (T l):



374 J. OhBy (9), we haveX� �( ; �)G�(�) = �X� �( ; �)F (�) + �(l)l X� �( ; �)F (� l)(11) = �X� �( ; �)F (�) + � (l)l X� �( ; �)F (�)= ��1� � (l)l �X� �( ; �)F (�)= Ll(1; � ):This ompletes the proof.Sine l is prime to p, rl+ sf = 1 for some r; s 2 Z:Lemma 3. Let l be an odd prime. Thenlogl(1� �if � lpn) � �(1� �rif �pn)l + (1� (�rif �pn)l)1� �if� lpn mod l2:P r o o f. Write 1 � �if � lpn = !(1 � �), where ! is a root of unity whoseorder w is relatively prime to l. Sine (l; fpnw) = 1, there exists an integerfn suh that � lfnf = �f ; � lfnpn = �pn ; !lfn = !:The number � is divisible by l, sine l is unrami�ed in Q l (!; �f ; �pn): Let(12) (1� �if � lpn)lfn�1 = (1� �)lfn�1 = 1 + �:Then logl(1� �if� lpn) = 1lfn � 1 logl(1� �if � lpn)lfn�1(13) = 1lfn � 1 logl(1 + �) � 1lfn � 1� mod l2� �� = 1� (1� �if� lpn)lfn�1= �(1� �if � lpn)lfn + (1� �if � lpn)1� �if � lpn :Now we simplify the expression (1� �if� lpn)lfn : Write(14) (1� �ifT )l = 1� (�ifT )l + lf(T ):Then (1� �ifT )l2 � (1� (�ifT )l)l mod l2(15) = 1� � l2if T l2 + lf(�(l�1)if T l):



l-adi L-funtions 375Sine � lfnf = �f , we know that lfn = 1 + kf for some integer k. Henerlfn = r+k0f and rlfn = rllfn�1 = (1�sf)lfn�1; so we have lfn�1 = r+k00ffor some integer k00: Continuing the above proess, we have(16) (1� �ifT )lfn � 1� � lfn if T lfn + lf(�(lfn�1�1)if T lfn�1) mod l2:Substituting T = � lpn and using the equation lfn�1 = r + k00f; we have(17) (1� �if� lpn)lfn � 1� �if� lpn + lf(�(r�1)if �pn) mod l2:Finally, ombining the above giveslogl(1� �if� lpn) � �(1� �if� lpn)lfn + (1� �if� lpn)1� �if � lpn mod l2(18) = � lf(�(r�1)if �pn)1� �if� lpn= �(1� �rif �pn)l + (1� (�rif �pn)l)1� �if � lpn :This ompletes the proof.Proposition 2. Let l be an odd prime and 1+ pnZp be the kernel of  in U: ThenLl(1; � )�X�pn �( ; �pn )��(l)f fXi=1 �(1� �rif �pn)l + (1� (�rif �pn)l)l(1� �if � lpn) �i� mod l;where the sum runs over all pnth roots of unity.P r o o f. Sine logl(1� �if �pn) � 0 mod l, we haveLl(1; � ) � X� �( ; �)��(l)l F (� l)�� X�pn �( ; �pn )� ��(l)f fXi=1 �(1� �rif �pn)l + (1� (�rif �pn)l)l(1� �if� lpn) �i� mod l:Proof of Theorem 2. The proof omes diretly from Proposition 2 andthe equation (1).



376 J. OhLet G�(T ) = �(l)f fXi=1 �(1� �rif T )l + (1� (�rif T )l)l(1� �ifT l) �i:Then(19) G�(T )= � fXi=1 �(l)(��rif T + : : : + �r(l�1)if T l�1)f(1� �ifT l) �i= ��(l)((�Pfi=1�rif �i)T + : : :+ (Pfi=1�i(�1)f�1�r(l�1)if Qk 6=i �kf )T fl�1)fQfi=1(1� �ifT l)= ��(l)((�f�(�r))T + : : :+ f�(r)T fl�1)fQfi=1(1� �ifT l) :Hene G�(T�1) = ��(l)f � �f�(r)T lf�1 + : : :+ f�(r)TQfi=1(T l � �if ) :Let us omputeG�(T ) +G�(T�1) = �(rl)T + : : :Qfi=1(1� �ifT l) � �(rl)T + : : :Qfi=1(T l � �if )(20) = �2�(rl)T + : : :Qfi=1(1� �ifT l)Qfi=1(T l � �if ) :Hene G�(T ) +G�(T�1) is not identially zero when we redue the oeÆ-ients modulo l sine the value �(rl) is a unit. LetG��(T ) = G�(T )� 1p X"p=1G�("T ):Let eR(T ) be the power series in F l[[T ℄℄ obtained by reduing the oeÆientsof R[[T ℄℄ 2 Zl[[T ℄℄: Sine G�(T ) and G��(T ) have the same oeÆient of T ,we have(21) eG��(T ) + eG��(T�1) 6= 0:By Theorem 2 and a result of Sinnott (Theorem 1), we an prove thefollowing theorem. Let F be a totally real abelian number �eld, and � bea Dirihlet harater of Gal(F=Q) whose ondutor f is relatively prime tolp. Let  be a harater of Q1=Q as a harater on Z�p trivial on V .Theorem 3. Let l be an odd prime. Then ordl(Ll(1; � )) = 0 for allbut �nitely many  's.



l-adi L-funtions 377P r o o f. In Proposition 2, we provedLl(1; � )=X�pn �( ; �pn )��(l)f fXi=1 �(1� �rif �pn)l + (1� (�rif �pn)l)l(1� �if � lpn) �i� mod l;that is,(22) Ll(1; � ) �X� �( ; �)G�(�) mod l:Let � and �� be the orresponding measures of eG�(T ) and eG��(T ); re-spetively. If  2 �, let  0 be the harater of Q1=Q whih satis�ese 0(n) =  (n) for integers n prime to p; where the tilde stands for redutionmod l; on the right we are viewing  as a harater of Z�p trivial on V .Then g�( 0; �) = �( ; �): Hene, by (1) and Proposition 2, we have(23) ���( ) = \Z�p  d�� = \Z�p  d� = gLl(1; � 0):Now eG��(T )+ eG��(T�1) 6= 0 by (21); hene ���( ) = 0 for only �nitely many , by Theorem 1. This ompletes the proof.We let ordl denote the usual valuation on Q l; normalized by ordl(l) = 1.Let Rl(K) be the l-adi regulator of a number �eld K, h(K) be the lassnumber of K, and d(K) be the disriminant of K. Then we have the l-adilass number formula.Theorem 4. Let K be a totally real abelian number �eld of degree norresponding to a group X of Dirihlet haraters. Then(24) 2n�1h(K)Rl(K)pd(K) = Y�2X;�6=1�1� �(l)l ��1Ll(1; �):P r o o f. See Washington [4, p. 71℄.Corollary 1. Let l be an odd prime. Let K be a totally real abeliannumber �eld whose ondutor is relatively prime to lp, and Kn be the nthlayer of the basi Zp-extension K1=K: Then(25) ordl(Rl(Kn)) = dpn + C; for n suÆiently large,for some onstant C independent of n:P r o o f. Washington [3℄ proved that ordlh(Kn) is onstant if n is suÆ-iently large. By assumption, ordld(Kn)=0. By Theorem 3, ordl(Ll(1; � ))is nonzero for only �nitely many  's. Note that [Kn : Q ℄ = [K : Q ℄pn ; and



378 J. Ohordl(1��(l)=l) = �ordl(l) sine �(l) is a unit. Hene equation (25) followsfrom the l-adi lass number formula sineordl� Y�2X;�6=1�1� �(l)l �� = �dpn + 1;where d = [K : Q ℄:Let L be a number �eld, and n a positive integer. Let w(L) be thenumber of roots of unity in L: Let SF;l be the set of primes of a totally realnumber �eld F above a rational prime l: Let M be the maximal abelianl-extension of F whih is unrami�ed outside SF;l and F (l)1 be the basiZl-extension of F: Coates [1, p. 348℄ proved the following theorem.Lemma 4. G(M=F (l)1 ) is �nite if and only if Rl(F ) 6= 0: If Rl(F ) 6= 0;then the order of G(M=F1) is the inverse of the l-adi valuation of(26) w(F (�l))h(F )Rl(F ) Yl2SF;l(1� (N l)�1)=pd(F ):Fix an odd prime l relatively prime to p: LetMn be the maximal abelianl-extension of Kn whih is unrami�ed outside SKn;l and K(l)n;1 be the basiZl-extension of Kn: Let YK be the maximal abelian l-extension of K1 un-rami�ed above l: Then YK = SnMn: By assumption, l is unrami�ed in Kn:Hene(27) ordl� YSKn; l(1� (N l)�1)� = ordl� Y�2Xn�1� �(l)l ��:By assumption, the number of roots of unity in Kn(�l) = KQn (�l) isbounded independently of n: Therefore, by Lemma 4; Theorem 3 and The-orem 4, the order of G(Mn=K(l)n;1) is onstant if n is large enough. Thus weproved:Theorem 5. The order of Gal(Mn=K(l)n;1) is onstant if n is suÆientlylarge.Remark 1. W. Sinnott pointed out to me that there was an alternativeproof of Theorem 3. We inlude the proof: Suppose � is not of the seondkind for l: Write Ll(s; � ) = f(us � 1); where f(X) = a0 + a1X + : : : withai 2 Zp [values of � ℄; u = 1 + l: ThenLl(1; � ) = a0 + a1(u� 1) + a2(u� 1)2 + : : :� a0 mod l� Ll(0; � ) mod l� (1� � !�1l (l))L(0; � !�1l ) mod l:



l-adi L-funtions 379Sine the ondutor of � is assumed to be prime to lp; � !�1l (l) is zero. Itis known [2℄ that the map  ! L(0; � !�1l ) is the � -transform of a rationalfuntion measure for whih R(Z) + R(Z�1) 6= 0 mod l and so is a unit forall but �nitely many  : Referenes[1℄ J. Coates, p-adi L-funtions and Iwasawa theory , in: Algebrai Number Fields(Durham Symposium, 1975), A. Fr�ohlih (ed.), Aademi Press, 1977, 269{353.[2℄ W. Sinnott, On a theorem of L. Washington, Ast�erisque 147{148 (1987), 209{224.[3℄ L. Washington, The non-p-part of the lass number in a ylotomi Zp-extension,Invent. Math. 49 (1979), 87{97.[4℄ |, Introdution to Cylotomi Fields, Springer, Berlin, 1982.KIAS207-43 Cheongryangri-dongDongdaemun-guSeoul 130-012, KoreaE-mail: ohj�kias.kaist.a.kr Reeived on 21.1.1997and in revised form on 21.8.1997 (3116)


