l-adic L-functions and rational function measures

by
Jangheon Oh (Seoul)

1. Introduction. In [2], Sinnott used a measure-theoretic method to give a new proof of a theorem of Washington [3]. We follow his approach to prove that $L_{l}(1, *) \bmod l$, where l is an odd prime, is the Γ-transform of a rational function measure. As a result, we show that $\operatorname{ord}_{l}\left(L_{l}(1, \chi \psi)\right)=0$ for almost all ψ 's (Theorem 3), where χ is an even Dirichlet character of the Galois group of an abelian extension over \mathbb{Q} and ψ is a character of the Galois group of the basic \mathbb{Z}_{p}-extension \mathbb{Q}_{∞} of \mathbb{Q} over \mathbb{Q}. Theorem 3 could also be proved using a result of Sinnott [2]. The aim of this paper is to give a direct proof of Theorem 3 by using our Theorem 2. For an algebraic interpretation of Theorem 3, see Theorem 5 of this paper.

Fix two distinct primes l and p. Let \mathbb{Z}_{p} denote the ring of p-adic integers, \mathbb{F}_{l} the prime field with l elements, and $\overrightarrow{\mathbb{F}}_{l}$ its algebraic closure. Recall that the group \mathbb{Z}_{p}^{\times}of units in \mathbb{Z}_{p} is the direct product of its torsion subgroup V and the subgroup $U=1+2 p \mathbb{Z}_{p}$. By a measure on \mathbb{Z}_{p} with values in $\overline{\mathbb{F}}_{l}$ we mean a finitely additive $\overline{\mathbb{F}}_{l}$-valued set function on the collection of compact open subsets of \mathbb{Z}_{p}. If α is a measure, and $\phi: \mathbb{Z}_{p} \rightarrow \overline{\mathbb{F}}_{l}$ is a locally constant function, say constant on the cosets of $p^{n} \mathbb{Z}_{p}$ in \mathbb{Z}_{p}, then we define the integral

$$
\int_{\mathbb{Z}_{p}} \phi(x) d \alpha(x)=\sum_{a \bmod p^{n}} \phi(a) \alpha\left(a+p^{n} \mathbb{Z}_{p}\right) .
$$

Let Φ denote the group of continuous characters $U \rightarrow \overline{\mathbb{F}}_{l}^{\times}$, viewed always as characters of \mathbb{Z}_{p}^{\times}trivial on V. Let α be a measure. The Γ-transform $\Gamma_{\alpha}: \Phi \rightarrow \overline{\mathbb{F}}_{l}$ of α is defined by

$$
\Gamma_{\alpha}(\psi)=\int_{\mathbb{Z}_{p}^{\times}} \psi(x) d \alpha(x) .
$$

[^0]Let $\mu_{p^{\infty}}$ and $\mu_{p^{n}}$ be the set of all p-power roots of unity and the set of all p^{n} th roots of unity respectively. The Fourier transform $\widehat{\alpha}: \mu_{p} \infty \rightarrow \overline{\mathbb{F}}_{l}$ of α is defined by

$$
\widehat{\alpha}(\zeta)=\int_{\mathbb{Z}_{p}} \zeta^{x} d \alpha(x)
$$

We have a relation between the two transforms. Let $\psi \in \Phi$ and let $1+p^{n} \mathbb{Z}_{p}$ be the kernel of ψ in U. Then

$$
\begin{equation*}
\Gamma_{\alpha}(\psi)=\sum_{\zeta \in \mu_{p^{n}}} \tau(\psi, \zeta) \widehat{\alpha}(\zeta), \tag{1}
\end{equation*}
$$

where

$$
\tau(\psi, \zeta)=\frac{1}{p^{n}} \sum_{x \bmod p^{n}, x \neq 0 \bmod p} \psi(x) \zeta^{-x}
$$

We call a measure α a rational function measure if there is a rational function $R(Z) \in \overline{\mathbb{F}}_{l}(Z)$ such that

$$
\widehat{\alpha}(\zeta)=R(\zeta) \quad \text { for almost all } \zeta \in \mu_{p} \infty .
$$

If α is a measure and $X \subset \mathbb{Z}_{p}$ is compact and open, we denote by $\left.\alpha\right|_{X}$ the measure obtained by restricting α to X and extending by 0 . If α is a rational function measure, then so is $\left.\alpha\right|_{X}$ for any compact open subset $X \subset \mathbb{Z}_{p}$. In particular, if $X=\mathbb{Z}_{p}^{\times}$and we put $\alpha^{*}=\left.\alpha\right|_{\mathbb{Z}_{p}^{\times}}$, then

$$
\widehat{\alpha}^{*}(\zeta)=\widehat{\alpha}(\zeta)-\frac{1}{p} \sum_{\varepsilon^{p}=1} \widehat{\alpha}(\varepsilon \zeta) .
$$

We say a measure α is supported on \mathbb{Z}_{p}^{\times}if $\alpha=\alpha^{*}$.
Theorem 1 (Sinnott [2]). Let α be a rational function measure on \mathbb{Z}_{p} with values in $\overline{\mathbb{F}}_{l}$, and let $R(Z) \in \overline{\mathbb{F}}_{l}(Z)$ be the associated rational function. Assume that α is supported on \mathbb{Z}_{p}^{\times}. If $\Gamma_{\alpha}(\psi)=0$ for infinitely many $\psi \in \Phi$, then

$$
R(Z)+R\left(Z^{-1}\right)=0 .
$$

Let \mathbb{C}_{l}^{\times}be the nonzero elements of \mathbb{C}_{l}, which is the completion of the algebraic closure of \mathbb{Q}_{l}.

Lemma 1. We have

$$
\mathbb{C}_{l}^{\times}=l^{\mathbb{Q}} \times W \times U_{1},
$$

where W is the group of all roots of unity of order prime to l, and $U_{1}=$ $\left\{x \in \mathbb{C}_{l}| | x-1 \mid<1\right\}$.

Proof. See Washington [4, p. 50].

We now define

$$
\begin{equation*}
\log _{l}(1+X)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} X^{n}}{n} \tag{2}
\end{equation*}
$$

Now, by the above lemma, let $y=l^{r} \omega x \in \mathbb{C}_{l}^{\times}$. Define $\log _{l} y=\log _{l} x$, where for $x \in U_{1}, \log _{l} x$ is defined by the power series (2).
2. Statement of the main theorem. Let F be a totally real abelian number field, and χ be a Dirichlet character of $\operatorname{Gal}(F / \mathbb{Q})$ whose conductor f is relatively prime to $l p$. Let ψ be a character of the basic \mathbb{Z}_{p}-extension $\mathbb{Q}_{\infty} / \mathbb{Q}$ with values in \mathbb{C}_{l}; we view ψ as a character of \mathbb{Z}_{p}^{\times}trivial on V.

Theorem 2. Let l be an odd prime. Then the function given by

$$
\psi \rightarrow\left(L_{l}(1, \chi \psi) \bmod l\right)
$$

is the Gamma transform of a rational function measure.

3. Proof of theorems

Lemma 2. Assume that f is relatively prime to p. Then $\left\{1,2, \ldots, f p^{n}\right\}=$ $\bigcup_{j=1}^{f} A_{j}$, where $A_{j}=\left\{j, j+f, \ldots, j+\left(p^{n}-1\right) f\right\}$, and A_{j} is a representative set of $\mathbb{Z} / p^{n} \mathbb{Z}$ for any $j=1, \ldots, f$.

Proof. The number of elements in A_{j} is p^{n}, and if $j+m f \equiv j+$ $k f \bmod p^{n}$, then

$$
(m-k) f \equiv 0 \bmod p^{n} .
$$

Since f is relatively prime to $p, m \equiv k \bmod p^{n}$.
We use the same notations as in the previous section. The value of the l-adic L-function at 1 for an even nontrival character was evaluated by Leopoldt (see Washington [4, p. 63]):

$$
L_{l}(1, \chi \psi)=-(1-\chi \psi(l) / l) \frac{\tau(\chi \psi)}{f p^{n}} \sum_{a=1}^{f p^{n}} \overline{\chi \psi}(a) \log _{l}\left(1-\zeta_{f p^{n}}^{a}\right),
$$

where $\tau(\chi \psi)=\sum_{a=1}^{f p^{n}} \chi \psi(a) \zeta_{f p^{n}}^{a}$, and $\zeta_{f p^{n}}$ is a primitive $f p^{n}$ th root of unity in \mathbb{Q}_{l}.

Proposition 1. Let $1+p^{n} \mathbb{Z}_{p}$ be the kernel of ψ in U. Then

$$
L_{l}(1, \chi \psi)=\sum_{\zeta} \tau(\psi, \zeta)\left(-F(\zeta)+\frac{\chi(l)}{l} F\left(\zeta^{l}\right)\right)
$$

where $F(T)=(1 / f) \sum_{i=1}^{f} \alpha_{i} \log _{l}\left(1-\zeta_{f}^{i} T\right)$ as a function on $\mu_{p} \infty, \alpha_{i}=$ $\sum_{j=1}^{f} \chi(j) \zeta_{f}^{i j}$ and the above sum runs over all p^{n} th roots of unity.

Proof. First compute $\tau(\chi \psi) \overline{\chi \psi}(a)$:

$$
\begin{equation*}
\tau(\chi \psi) \overline{\chi \psi}(a)=\sum_{x=1}^{f p^{n}} \chi \psi(x) \overline{\chi \psi}(a) \zeta_{f p^{n}}^{x}=\sum_{x=1}^{f p^{n}} \chi \psi(x) \zeta_{f p^{n}}^{a x}, \tag{3}
\end{equation*}
$$

so

$$
L_{l}(1, \chi \psi)=-(1-\chi \psi(l) / l) \frac{1}{f p^{n}} \sum_{a=1}^{f p^{n}}\left(\sum_{x=1}^{f p^{n}} \chi \psi(x)\left(\zeta_{f} \zeta_{p^{n}}\right)^{a x}\right) \log _{l}\left(1-\zeta_{f}^{a} \zeta_{p^{n}}^{a}\right)
$$

Let us calculate

$$
\begin{equation*}
\frac{1}{f p^{n}} \sum_{a=1}^{f p^{n}}\left(\sum_{x=1}^{f p^{n}} \chi \psi(x)\left(\zeta_{f} \zeta_{p^{n}}\right)^{a x}\right) \log _{l}\left(1-\zeta_{f}^{a} \zeta_{p^{n}}^{a}\right) \tag{4}
\end{equation*}
$$

Define $\langle x\rangle$ and $\{x\}$ by $x=\langle x\rangle+d p^{n}, 1 \leq\langle x\rangle \leq p^{n}$ and $x=\{x\}+e f$, $i \leq\{x\} \leq f$. Then, by the above lemma, we have

$$
\begin{align*}
\sum_{x=1}^{f p^{n}} \chi \psi(x)\left(\zeta_{f} \psi_{p^{n}}\right)^{a x} & =\sum_{x=1}^{f p^{n}} \chi(\{x\}) \psi(\langle x\rangle) \zeta_{f}^{a\{x\}} \zeta_{p^{n}}^{a\langle x\rangle} \tag{5}\\
& =\sum_{j=1}^{f} \sum_{x \in A_{j}} \chi(\{x\}) \psi(\langle x\rangle) \zeta_{f}^{a\{x\}} \zeta_{p^{n}}^{a\langle x\rangle} \\
& =\left(\sum_{j=1}^{f} \chi(j) \zeta_{f}^{a j}\right)\left(\sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{a}\right) .
\end{align*}
$$

Let $\alpha_{a}=\sum_{j=1}^{f} \chi(j) \zeta_{f}^{a j}$. Then $\alpha_{a}=\alpha_{i}$ for any $a \in A_{i}$, and $\zeta_{f}^{b}=\zeta_{f}^{i}$ for any $b \in A_{i}$. Therefore,

$$
\begin{align*}
(4) & =\frac{1}{f p^{n}} \sum_{a=1}^{f p^{n}}\left(\sum_{x=1}^{f p^{n}} \chi \psi(x)\left(\zeta_{f} \zeta_{p^{n}}\right)^{a x}\right) \log _{l}\left(1-\zeta_{f}^{a} \zeta_{p^{n}}^{a}\right) \tag{6}\\
& =\frac{1}{f p^{n}} \sum_{a=1}^{f p^{n}}\left(\sum_{j=1}^{f} \chi(j) \zeta_{f}^{a j}\right)\left(\sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{a c}\right) \log _{l}\left(1-\zeta_{f}^{a} \zeta_{p^{n}}^{a}\right) \\
& =\frac{1}{f p^{n}} \sum_{a=1}^{f p^{n}}\left(\alpha_{a} \sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{a c}\right) \log _{l}\left(1-\zeta_{f}^{a} \zeta_{p^{n}}^{a}\right) \\
& =\frac{1}{f p^{n}} \sum_{i=1}^{f}\left[\left(\sum_{b \in A_{i}} \alpha_{b}\left(\sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{b c}\right)\right) \log _{l}\left(1-\zeta_{f}^{b} \zeta_{p^{n}}^{b}\right)\right] \\
& =\frac{1}{f p^{n}} \sum_{i=1}^{f}\left[\sum_{b \in A_{i}} \alpha_{i}\left(\sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{b c}\right) \log _{l}\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{b}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{f p^{n}} \sum_{i=1}^{f}\left[\sum_{b=1}^{p^{n}} \alpha_{i}\left(\sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{b c}\right) \log _{l}\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{b}\right)\right] \\
& =\frac{1}{f} \sum_{i=1}^{f}\left(\sum_{b=1}^{p^{n}} \alpha_{i}\left(\frac{1}{p^{n}} \sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{b^{b}}\right) \log _{l}\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{b}\right)\right) .
\end{aligned}
$$

Since ψ is an even character, $\psi(-1)=1$. Upon replacing c by $-c$, the last expression becomes

$$
\begin{equation*}
\frac{1}{f} \sum_{b=1}^{p^{n}} \tau\left(\psi, \zeta_{p^{n}}^{b}\right)\left(\sum_{i=1}^{f} \alpha_{i} \log _{l}\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{b}\right)\right) \tag{7}
\end{equation*}
$$

Let

$$
F(T)=\frac{1}{f} \sum_{i=1}^{f} \alpha_{i} \log _{l}\left(1-\zeta_{f}^{i} T\right)
$$

(as a function on $\mu_{p \infty}$). Then we proved

$$
\begin{equation*}
(4)=\sum_{b=1}^{p^{n}} \tau\left(\psi, \zeta_{p^{n}}^{b}\right) F\left(\zeta_{p^{n}}^{b}\right)=\sum_{\zeta} \tau(\psi, \zeta) F(\zeta) . \tag{8}
\end{equation*}
$$

Now consider

$$
\frac{\chi(l)}{l} F\left(T^{l}\right) .
$$

Since l and p are different primes, we have

$$
\begin{align*}
\tau\left(\psi, \zeta_{p^{n}}^{b l}\right) & =\frac{1}{p^{n}} \sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{-b l c} \tag{9}\\
& =\frac{1}{p^{n}} \psi^{-1}(l) \sum_{t=1}^{p^{n}} \psi(t) \zeta_{p^{n}}^{-b t} \\
& =\psi^{-1}(l) \tau\left(\psi, \zeta_{p^{n}}^{b}\right),
\end{align*}
$$

so that

$$
\begin{align*}
\sum_{\zeta} \frac{\chi(l)}{l} \tau(\psi, \zeta) F\left(\zeta^{l}\right) & =\frac{\chi(l)}{l} \sum_{\zeta} \psi(l) \tau\left(\psi, \zeta^{l}\right) F\left(\zeta^{l}\right) \tag{10}\\
& =\frac{\chi \psi(l)}{l} \sum_{\zeta} \tau(\psi, \zeta) F(\zeta) .
\end{align*}
$$

Let

$$
G_{\chi}(T)=-F(T)+\frac{\chi(l)}{l} F\left(T^{l}\right) .
$$

By (9), we have

$$
\begin{align*}
\sum_{\zeta} \tau(\psi, \zeta) G_{\chi}(\zeta) & =-\sum_{\zeta} \tau(\psi, \zeta) F(\zeta)+\frac{\chi(l)}{l} \sum_{\zeta} \tau(\psi, \zeta) F\left(\zeta^{l}\right) \tag{11}\\
& =-\sum_{\zeta} \tau(\psi, \zeta) F(\zeta)+\frac{\chi \psi(l)}{l} \sum_{\zeta} \tau(\psi, \zeta) F(\zeta) \\
& =-\left(1-\frac{\chi \psi(l)}{l}\right) \sum_{\zeta} \tau(\psi, \zeta) F(\zeta) \\
& =L_{l}(1, \chi \psi) .
\end{align*}
$$

This completes the proof.
Since l is prime to $p, r l+s f=1$ for some $r, s \in \mathbb{Z}$.
Lemma 3 . Let l be an odd prime. Then

$$
\log _{l}\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right) \equiv \frac{-\left(1-\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}+\left(1-\left(\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}\right)}{1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}} \bmod l^{2}
$$

Proof. Write $1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}=\omega(1-\alpha)$, where ω is a root of unity whose order w is relatively prime to l. Since $\left(l, f p^{n} w\right)=1$, there exists an integer f_{n} such that

$$
\zeta_{f}^{l_{n}}=\zeta_{f}, \quad \zeta_{p^{n}}^{f_{n}}=\zeta_{p^{n}}, \quad \omega^{l^{f_{n}}}=\omega .
$$

The number α is divisible by l, since l is unramified in $\mathbb{Q}_{l}\left(\omega, \zeta_{f}, \zeta_{p^{n}}\right)$. Let

$$
\begin{equation*}
\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)^{l_{n}-1}=(1-\alpha)^{l_{n}}-1=1+\beta \tag{12}
\end{equation*}
$$

Then

$$
\begin{align*}
\log _{l}\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right) & =\frac{1}{l^{f_{n}}-1} \log _{l}\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)^{l^{f_{n}}-1} \tag{13}\\
& =\frac{1}{l^{f_{n}}-1} \log _{l}(1+\beta) \equiv \frac{1}{l^{f_{n}}-1} \beta \bmod l^{2} \\
& \equiv-\beta=1-\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)^{f_{n}}-1 \\
& =\frac{-\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l} l^{l_{n}}+\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)\right.}{1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}} .
\end{align*}
$$

Now we simplify the expression $\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)^{l^{f_{n}}}$. Write

$$
\begin{equation*}
\left(1-\zeta_{f}^{i} T\right)^{l}=1-\left(\zeta_{f}^{i} T\right)^{l}+l f(T) \tag{14}
\end{equation*}
$$

Then

$$
\begin{align*}
\left(1-\zeta_{f}^{i} T\right)^{l^{2}} & \equiv\left(1-\left(\zeta_{f}^{i} T\right)^{l}\right)^{l} \bmod l^{2} \tag{15}\\
& =1-\zeta_{f}^{l^{2} i} T^{l^{2}}+l f\left(\zeta_{f}^{(l-1) i} T^{l}\right)
\end{align*}
$$

Since $\zeta_{f}^{f_{n}}=\zeta_{f}$, we know that $l^{f_{n}}=1+k f$ for some integer k. Hence $r l^{f_{n}}=r+k^{\prime} f$ and $r l^{f_{n}}=r l l^{f_{n}-1}=(1-s f) l^{f_{n}-1}$, so we have $l^{f_{n}-1}=r+k^{\prime \prime} f$ for some integer $k^{\prime \prime}$. Continuing the above process, we have

$$
\begin{equation*}
\left(1-\zeta_{f}^{i} T\right)^{l^{f_{n}}} \equiv 1-\zeta_{f}^{f_{n}} T^{l^{f_{n}}}+l f\left(\zeta_{f}^{\left(l^{f_{n}-1}-1\right) i} T^{l^{f_{n}-1}}\right) \bmod l^{2} . \tag{16}
\end{equation*}
$$

Substituting $T=\zeta_{p^{n}}^{l}$ and using the equation $l^{f_{n}-1}=r+k^{\prime \prime} f$, we have

$$
\begin{equation*}
\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)^{l^{f_{n}}} \equiv 1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}+l f\left(\zeta_{f}^{(r-1) i} \zeta_{p^{n}}\right) \bmod l^{2} . \tag{17}
\end{equation*}
$$

Finally, combining the above gives

$$
\begin{align*}
\log _{l}\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right) & \equiv \frac{-\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)^{l_{n}}+\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)}{1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}} \bmod l^{2} \tag{18}\\
& =-\frac{l f\left(\zeta_{f}^{(r-1) i} \zeta_{p^{n}}\right)}{1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}} \\
& =\frac{-\left(1-\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}+\left(1-\left(\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}\right)}{1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}}
\end{align*}
$$

This completes the proof.
Proposition 2. Let l be an odd prime and $1+p^{n} \mathbb{Z}_{p}$ be the kernel of ψ in U. Then
$L_{l}(1, \chi \psi)$

$$
\equiv \sum_{\zeta_{p^{n}}} \tau\left(\psi, \zeta_{p^{n}}\right)\left[\frac{\chi(l)}{f} \sum_{i=1}^{f} \frac{-\left(1-\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}+\left(1-\left(\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}\right)}{l\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)} \alpha_{i}\right] \bmod l,
$$

where the sum runs over all p^{n} th roots of unity.
Proof. Since $\log _{l}\left(1-\zeta_{f}^{i} \zeta_{p^{n}}\right) \equiv 0 \bmod l$, we have

$$
\begin{aligned}
L_{l}(1, \chi \psi) \equiv & \sum_{\zeta} \tau(\psi, \zeta)\left(\frac{\chi(l)}{l} F\left(\zeta^{l}\right)\right) \\
\equiv & \sum_{\zeta_{p^{n}}} \tau\left(\psi, \zeta_{p^{n}}\right) \\
& \times\left[\frac{\chi(l)}{f} \sum_{i=1}^{f} \frac{-\left(1-\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}+\left(1-\left(\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}\right)}{l\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)} \alpha_{i}\right] \bmod l .
\end{aligned}
$$

Proof of Theorem 2. The proof comes directly from Proposition 2 and the equation (1).

Let

$$
G_{\chi}(T)=\frac{\chi(l)}{f} \sum_{i=1}^{f} \frac{-\left(1-\zeta_{f}^{r i} T\right)^{l}+\left(1-\left(\zeta_{f}^{r i} T\right)^{l}\right)}{l\left(1-\zeta_{f}^{i} T^{l}\right)} \alpha_{i}
$$

Then

$$
\begin{align*}
& =-\sum_{i=1}^{f} \frac{\chi(l)\left(-\zeta_{f}^{r i} T+\ldots+\zeta_{f}^{r(l-1) i} T^{l-1}\right)}{f\left(1-\zeta_{f}^{i} T^{l}\right)} \alpha_{i} \tag{19}\\
& =-\frac{\chi(l)\left(\left(-\sum_{i=1}^{f} \zeta_{f}^{r i} \alpha_{i}\right) T+\ldots+\left(\sum_{i=1}^{f} \alpha_{i}(-1)^{f-1} \zeta_{f}^{r(l-1) i} \prod_{k \neq i} \zeta_{f}^{k}\right) T^{f l-1}\right)}{f \prod_{i=1}^{f}\left(1-\zeta_{f}^{i} T^{l}\right)}
\end{align*}
$$

$$
=-\frac{\chi(l)\left((-f \chi(-r)) T+\ldots+f \chi(r) T^{f l-1}\right)}{f \prod_{i=1}^{f}\left(1-\zeta_{f}^{i} T^{l}\right)}
$$

Hence

$$
G_{\chi}\left(T^{-1}\right)=-\frac{\chi(l)}{f} \cdot \frac{-f \chi(r) T^{l f-1}+\ldots+f \chi(r) T}{\prod_{i=1}^{f}\left(T^{l}-\zeta_{f}^{i}\right)}
$$

Let us compute

$$
\begin{align*}
G_{\chi}(T)+G_{\chi}\left(T^{-1}\right) & =\frac{\chi(r l) T+\ldots}{\prod_{i=1}^{f}\left(1-\zeta_{f}^{i} T^{l}\right)}-\frac{\chi(r l) T+\ldots}{\prod_{i=1}^{f}\left(T^{l}-\zeta_{f}^{i}\right)} \tag{20}\\
& =\frac{-2 \chi(r l) T+\ldots}{\prod_{i=1}^{f}\left(1-\zeta_{f}^{i} T^{l}\right) \prod_{i=1}^{f}\left(T^{l}-\zeta_{f}^{i}\right)}
\end{align*}
$$

Hence $G_{\chi}(T)+G_{\chi}\left(T^{-1}\right)$ is not identically zero when we reduce the coefficients modulo l since the value $\chi(r l)$ is a unit. Let

$$
G_{\chi}^{*}(T)=G_{\chi}(T)-\frac{1}{p} \sum_{\varepsilon^{p}=1} G_{\chi}(\varepsilon T)
$$

Let $\widetilde{R}(T)$ be the power series in $\overline{\mathbb{F}}_{l}[[T]]$ obtained by reducing the coefficients of $R[[T]] \in \mathbb{Z}_{l}[[T]]$. Since $G_{\chi}(T)$ and $G_{\chi}^{*}(T)$ have the same coefficient of T, we have

$$
\begin{equation*}
\widetilde{G}_{\chi}^{*}(T)+\widetilde{G}_{\chi}^{*}\left(T^{-1}\right) \neq 0 \tag{21}
\end{equation*}
$$

By Theorem 2 and a result of Sinnott (Theorem 1), we can prove the following theorem. Let F be a totally real abelian number field, and χ be a Dirichlet character of $\operatorname{Gal}(F / \mathbb{Q})$ whose conductor f is relatively prime to $l p$. Let ψ be a character of $\mathbb{Q}_{\infty} / \mathbb{Q}$ as a character on \mathbb{Z}_{p}^{\times}trivial on V.

ThEOREM 3. Let l be an odd prime. Then $\operatorname{ord}_{l}\left(L_{l}(1, \chi \psi)\right)=0$ for all but finitely many ψ 's.

Proof. In Proposition 2, we proved
$L_{l}(1, \chi \psi)$

$$
=\sum_{\zeta_{p^{n}}} \tau\left(\psi, \zeta_{p^{n}}\right)\left[\frac{\chi(l)}{f} \sum_{i=1}^{f} \frac{-\left(1-\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}+\left(1-\left(\zeta_{f}^{r i} \zeta_{p^{n}}\right)^{l}\right)}{l\left(1-\zeta_{f}^{i} \zeta_{p^{n}}^{l}\right)} \alpha_{i}\right] \bmod l,
$$

that is,

$$
\begin{equation*}
L_{l}(1, \chi \psi) \equiv \sum_{\zeta} \tau(\psi, \zeta) G_{\chi}(\zeta) \bmod l \tag{22}
\end{equation*}
$$

Let α and α^{*} be the corresponding measures of $\widetilde{G}_{\chi}(T)$ and $\widetilde{G}_{\chi}^{*}(T)$, respectively. If $\psi \in \Phi$, let ψ^{\prime} be the character of $\mathbb{Q}_{\infty} / \mathbb{Q}$ which satisfies $\widetilde{\psi^{\prime}}(n)=\psi(n)$ for integers n prime to p, where the tilde stands for reduction $\bmod l$; on the right we are viewing ψ as a character of \mathbb{Z}_{p}^{\times}trivial on V. Then $\tau \widetilde{\left(\psi^{\prime}, \zeta\right)}=\tau(\psi, \zeta)$. Hence, by (1) and Proposition 2, we have

$$
\begin{equation*}
\Gamma_{\alpha^{*}}(\psi)=\int_{\mathbb{Z}_{p}^{\times}} \psi d \alpha^{*}=\int_{\mathbb{Z}_{p}^{\times}} \psi d \alpha=L_{l}\left(\widetilde{1, \chi} \psi^{\prime}\right) . \tag{23}
\end{equation*}
$$

Now $\widetilde{G}_{\chi}^{*}(T)+\widetilde{G}_{\chi}^{*}\left(T^{-1}\right) \neq 0$ by $(21) ;$ hence $\Gamma_{\alpha^{*}}(\psi)=0$ for only finitely many ψ, by Theorem 1 . This completes the proof.

We let ord_{l} denote the usual valuation on $\overline{\mathbb{Q}}_{l}$, normalized by $\operatorname{ord}_{l}(l)=1$. Let $R_{l}(K)$ be the l-adic regulator of a number field $K, h(K)$ be the class number of K, and $d(K)$ be the discriminant of K. Then we have the l-adic class number formula.

Theorem 4. Let K be a totally real abelian number field of degree n corresponding to a group X of Dirichlet characters. Then

$$
\begin{equation*}
\frac{2^{n-1} h(K) R_{l}(K)}{\sqrt{d(K)}}=\prod_{\chi \in X, \chi \neq 1}\left(1-\frac{\chi(l)}{l}\right)^{-1} L_{l}(1, \chi) . \tag{24}
\end{equation*}
$$

Proof. See Washington [4, p. 71].
Corollary 1. Let l be an odd prime. Let K be a totally real abelian number field whose conductor is relatively prime to $l p$, and K_{n} be the nth layer of the basic \mathbb{Z}_{p}-extension K_{∞} / K. Then

$$
\begin{equation*}
\operatorname{ord}_{l}\left(R_{l}\left(K_{n}\right)\right)=d p^{n}+C, \quad \text { for } n \text { sufficiently large }, \tag{25}
\end{equation*}
$$

for some constant C independent of n.
Proof. Washington [3] proved that $\operatorname{ord}_{l} h\left(K_{n}\right)$ is constant if n is sufficiently large. By assumption, $\operatorname{ord}_{l} d\left(K_{n}\right)=0$. By Theorem $3, \operatorname{ord}_{l}\left(L_{l}(1, \chi \psi)\right)$ is nonzero for only finitely many ψ 's. Note that $\left[K_{n}: \mathbb{Q}\right]=[K: \mathbb{Q}] p^{n}$, and
$\operatorname{ord}_{l}(1-\chi(l) / l)=-\operatorname{ord}_{l}(l)$ since $\chi(l)$ is a unit. Hence equation (25) follows from the l-adic class number formula since

$$
\operatorname{ord}_{l}\left(\prod_{\chi \in X, \chi \neq 1}\left(1-\frac{\chi(l)}{l}\right)\right)=-d p^{n}+1
$$

where $d=[K: \mathbb{Q}]$.
Let L be a number field, and n a positive integer. Let $w(L)$ be the number of roots of unity in L. Let $S_{F, l}$ be the set of primes of a totally real number field F above a rational prime l. Let M be the maximal abelian l-extension of F which is unramified outside $S_{F, l}$ and $F_{\infty}^{(l)}$ be the basic \mathbb{Z}_{l}-extension of F. Coates [1, p. 348] proved the following theorem.

Lemma 4. $G\left(M / F_{\infty}^{(l)}\right)$ is finite if and only if $R_{l}(F) \neq 0$. If $R_{l}(F) \neq 0$, then the order of $G\left(M / F_{\infty}\right)$ is the inverse of the l-adic valuation of

$$
\begin{equation*}
w\left(F\left(\zeta_{l}\right)\right) h(F) R_{l}(F) \prod_{\mathfrak{l} \in S_{F, l}}\left(1-(N \mathfrak{l})^{-1}\right) / \sqrt{d(F)} . \tag{26}
\end{equation*}
$$

Fix an odd prime l relatively prime to p. Let M_{n} be the maximal abelian l-extension of K_{n} which is unramified outside $S_{K_{n}, l}$ and $K_{n, \infty}^{(l)}$ be the basic \mathbb{Z}_{l}-extension of K_{n}. Let Y_{K} be the maximal abelian l-extension of K_{∞} unramified above l. Then $Y_{K}=\bigcup_{n} M_{n}$. By assumption, l is unramified in K_{n}. Hence

$$
\begin{equation*}
\operatorname{ord}_{l}\left(\prod_{S_{K_{n}, l}}\left(1-(N \mathfrak{l})^{-1}\right)\right)=\operatorname{ord}_{l}\left(\prod_{\chi \in X_{n}}\left(1-\frac{\chi(l)}{l}\right)\right) . \tag{27}
\end{equation*}
$$

By assumption, the number of roots of unity in $K_{n}\left(\zeta_{l}\right)=K \mathbb{Q}_{n}\left(\zeta_{l}\right)$ is bounded independently of n. Therefore, by Lemma 4, Theorem 3 and Theorem 4, the order of $G\left(M_{n} / K_{n, \infty}^{(l)}\right)$ is constant if n is large enough. Thus we proved:

Theorem 5. The order of $\operatorname{Gal}\left(M_{n} / K_{n, \infty}^{(l)}\right)$ is constant if n is sufficiently large.

Remark 1. W. Sinnott pointed out to me that there was an alternative proof of Theorem 3. We include the proof: Suppose $\chi \psi$ is not of the second kind for l. Write $L_{l}(s, \chi \psi)=f\left(u^{s}-1\right)$, where $f(X)=a_{0}+a_{1} X+\ldots$ with $a_{i} \in \mathbb{Z}_{p}$ [values of $\left.\chi \psi\right], u=1+l$. Then

$$
\begin{aligned}
L_{l}(1, \chi \psi) & =a_{0}+a_{1}(u-1)+a_{2}(u-1)^{2}+\ldots \\
& \equiv a_{0} \bmod l \\
& \equiv L_{l}(0, \chi \psi) \bmod l \\
& \equiv\left(1-\chi \psi \omega_{l}^{-1}(l)\right) L\left(0, \chi \psi \omega_{l}^{-1}\right) \bmod l .
\end{aligned}
$$

Since the conductor of χ is assumed to be prime to $l p, \chi \psi \omega_{l}^{-1}(l)$ is zero. It is known [2] that the map $\psi \rightarrow L\left(0, \chi \psi \omega_{l}^{-1}\right)$ is the Γ-transform of a rational function measure for which $R(Z)+R\left(Z^{-1}\right) \neq 0 \bmod l$ and so is a unit for all but finitely many ψ.

References

[1] J. Coates, p-adic L-functions and Iwasawa theory, in: Algebraic Number Fields (Durham Symposium, 1975), A. Fröhlich (ed.), Academic Press, 1977, 269-353.
[2] W. Sinnott, On a theorem of L. Washington, Astérisque 147-148 (1987), 209-224.
[3] L. W ashington, The non-p-part of the class number in a cyclotomic \mathbb{Z}_{p}-extension, Invent. Math. 49 (1979), 87-97.
[4] -, Introduction to Cyclotomic Fields, Springer, Berlin, 1982.

KIAS
207-43 Cheongryangri-dong
Dongdaemun-gu
Seoul 130-012, Korea
E-mail: ohj@kias.kaist.ac.kr

Received on 21.1.1997
and in revised form on 21.8.1997

[^0]: 1991 Mathematics Subject Classification: 11R23, 11R18, 11R42.
 This paper is part of the author's Ph.D. thesis. I would like to thank my adviser, W. Sinnott, for introducing me to this problem and for many valuable comments.

