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l-adic L-functions and rational function measures
by
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1. Introduction. In [2], Sinnott used a measure-theoretic method to
give a new proof of a theorem of Washington [3]. We follow his approach
to prove that L;(1,x) mod [, where [ is an odd prime, is the I'-transform of
a rational function measure. As a result, we show that ord;(L;(1, x%)) =0
for almost all ¢’s (Theorem 3), where y is an even Dirichlet character of
the Galois group of an abelian extension over (Q and ) is a character of the
Galois group of the basic Zp-extension Qs of Q over Q. Theorem 3 could
also be proved using a result of Sinnott [2]. The aim of this paper is to
give a direct proof of Theorem 3 by using our Theorem 2. For an algebraic
interpretation of Theorem 3, see Theorem 5 of this paper.

Fix two distinct primes [ and p. Let Z, denote the ring of p-adic integers,
[, the prime field with / elements, and F; its algebraic closure. Recall that
the group Z; of units in 7Z, is the direct product of its torsion subgroup
V and the subgroup U = 1 + 2pZ,. By a measure on Z, with values in
F; we mean a finitely additive F;-valued set function on the collection of
compact open subsets of Z,. If « is a measure, and ¢ : Z), — F; is a locally
constant function, say constant on the cosets of p"7Z, in Z,, then we define
the integral

| p(e)dae) = 3 dl@ala+p"2,).
Ty a mod p™
Let @ denote the group of continuous characters U — le, viewed always
as characters of 7 trivial on V. Let a be a measure. The I'-transform
I, : & — [ of v is defined by

Ta() = | 9(z) da(z).
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Let ppe and p,n be the set of all p-power roots of unity and the set of
all p™th roots of unity respectively. The Fourier transform @ : ppo — F; of
« is defined by

a() = | ¢" do(z).

We have a relation between the two transforms. Let ¢ € @ and let
1+ p"Z, be the kernel of 9 in U. Then

(1) () = > 74, Qal),
CEppn

where
UASE D DR 15/

p r modp™,z#0 modp

We call a measure «v a rational function measure if there is a rational function
R(Z) € F;(Z) such that

a(¢) = R(¢) for almost all { € prpo.

If @ is a measure and X C Z, is compact and open, we denote by «|x
the measure obtained by restricting o to X and extending by 0. If « is
a rational function measure, then so is «a|x for any compact open subset
X C Zy. In particular, if X =7 and we put a* = af;, x, then

“p
o ~ 1 ~
ar(¢) =a() — - Y ale).
eP=1

We say a measure « is supported on Z) if a = o”.

THEOREM 1 (Sinnott [2]). Let o be a rational function measure on Z,
with values in Fy, and let R(Z) € F,(Z) be the associated rational function.
Assume that « is supported on 2. If I'n(vp) = 0 for infinitely many ¢ € @,
then

R(Z)+R(Z ") =0.

Let C be the nonzero elements of C;, which is the completion of the
algebraic closure of ().

LEMMA 1. We have
Cf =19xW x Uy,

where W is the group of all roots of unity of order prime to I, and U, =
{z eC|lz—-1] <1}

Proof. See Washington [4, p. 50]. =
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We now define
o -1 n+1Xn
(2) logl(l—l—X):ZL.
n=1

n

Now, by the above lemma, let y = I"wz € C°. Define log; y = log; z, where
for © € Uy, log; = is defined by the power series (2).

2. Statement of the main theorem. Let F' be a totally real abelian
number field, and x be a Dirichlet character of Gal(F'/Q) whose conductor
f is relatively prime to Ip. Let 9 be a character of the basic Z,-extension
Qoo /Q with values in C;; we view 1) as a character of Z) trivial on V.

THEOREM 2. Let | be an odd prime. Then the function given by

¢ = (Li(1, xtp) mod 1)

is the Gamma transform of a rational function measure.

3. Proof of theorems

LEMMA 2. Assume that f is relatively prime top. Then {1,2,..., fp"} =
U';:l A, where Aj = {j,j+f,...,5+ (" —1)f}, and A; is a representative
set of Z[p"Z for any j =1,...,f.

Proof. The number of elements in A; is p”, and if j + mf = j +
kf mod p™, then

(m —k)f =0 mod p".
Since f is relatively prime to p, m = k mod p". =
We use the same notations as in the previous section. The value of

the l-adic L-function at 1 for an even nontrival character was evaluated by
Leopoldt (see Washington [4, p. 63]):

T

fp"
LuLoxh) = —(1 — xp(D)/1) chf) S X (@) logy(1 — (),

where 7(x1) = ZZ’:I Xq/;(a)g“]‘i'pn, and (f,n is a primitive fp"th root of unity
in Ql .
PROPOSITION 1. Let 1+ p"Z, be the kernel of 1 in U. Then

noh) =S r0.0) (- 7@+ X0 r)),

¢
where F(T) = (1/f) Z;ile a;log;(1 — C}T) as a function on ppe, o =
Z;.c:l X(y)CZfJ and the above sum runs over all p™th roots of unity.
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Proof. First compute T(Xw)W( )

(3) T(x¥)x(a wa cf,,n—wa z)( o,
50
Li(1,x9) = —(1 = x(0) Z(wa (C1Gom)™ ) Togy(1 = Cin)-
Let us calculate -
fo"  fp"
(4) = ;(;w (CrGom)™ ) Togi(1 = CFGn):

Define (z) and {z} by z = (z) + dp", 1 < (z) < p" and z = {z} + ef,
i < {x} < f. Then, by the above lemma, we have

fp"
(5) S xwh (@) (Cptppr) Zx {a})w ()t ¢t

r=1

f
Z Xz ()¢ ot
j=lz€A;

=<ix ) (S o).

J=1

Let a, = 2_5:1 X(j)C}” Then «, = «; for any a € A;, and Cf = g‘} for any
b € A;. Therefore,

© = f;n (D2 %0 @)(Crem)™ ) log (1~ Ci¢in)
a=1 x=1
1 fo" f ‘ p"
= = 30 (e ) (X vl w1 - i)
! a=1 j=1 c=1
fp" p"
= (0 G o1 - <)
a=1 c=1
f p"
— = S [( X (X vt ) toratr = i)
i=1 beEA; c=1
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£ "
_ fl S [ ( Yo wegs) g1 - )]
Y e ) Tor1 — G ).

Since v is an even character, ¢)(—1) = 1. Upon replacing ¢ by —¢, the
last expression becomes

p" f
(7) 30T ch (S om(1 = ¢i¢h)).
T ob=1 =1

Let

|
| =
i
—
/N
= S
—

8
7 N

S

f
1 .
= ? '_E 1 (674 logl(l - C;"T)

(as a function on fi,e ). Then we proved

(8) bZ: (s G ) F(Gon) = Y (1, Q) F(C)
Now consider : C
@F(Tl).
Since [ and p are different primes, we have
) (.G = o ;w(c)c,;’”“

so that
(10) > X 0mieh = XS pyew. ¢y reh
¢ ¢
= XS 0,070
¢
Let
Gy (1) = —F(r) + X pert)
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By (9), we have

(1) D 7, Q)G (Q) =~ D T, O F( 2}
¢ ¢ C
==Y 1. QF( 2}
¢
1ﬁ#)2ﬂw¢%)
¢

¢
This completes the proof. m

\‘*

Since [ is prime to p, rl + sf =1 for some r, s € Z.

LEMMA 3. Let | be an odd prime. Then

—(1 = (5 Gm)' + (1= (CFGmn)")
1= C3pm

Proof. Write 1 — C;}Czl,n = w(l — @), where w is a root of unity whose

order w is relatively prime to [. Since (I, fp"w) = 1, there exists an integer
fn such that

mod /2.

log; (1 — C}C}l)n) =

1fn 1fn 1fn

C = Cf) C - Cp 5 w = W.
The number « is divisible by I, since [ is unramified in Q (w, (f,(p»). Let
(12) (1) =1 -a)" =145

Then

7 1 7 fn _
(13) log (1 — CfC;l;n) = 7 —1 log, (1 — CfC;l;n)l !

1 2
B _1ﬁm0dl
1fn 1

Efﬁzlf(lfoC,;n)‘
—(1 = Ch¢La)™ + (1= ¢icha)

1
= log(1+6) =

1 —(4Chn
Now we simplify the expression (1 — C;}g“ln)lf". Write
(14) (1=¢T) =1 = () +1f(T).
Then
(15) (1— ¢ = (1 (¢47)")! mod 12

=1t (.



l-adic L-functions 375

Since lefn = (¢, we know that If» = 1 + kf for some integer k. Hence

rifr = r+k'f and rifr = rllf»=1 = (1—sf)1f» =1, so we have Ifn =1 = r4-k" f
for some integer k”. Continuing the above process, we have

1/ni nmto1)

(16) (1) =1 =™ (et " mod 12

Substituting T' = Czl,n and using the equation [/»~1 = r + k" f, we have

(17) (1 )™ =1 ¢ + 17 V) mod 12,

Finally, combining the above gives

—(1 = GG+ (1= ¢k

(18)  log;(1— (i) = o mod 72
L pn)
T TTi-ag.
_ (U GFG) + (1 ()Y
L= (i '

This completes the proof. m

PROPOSITION 2. Let | be an odd prime and 1+ p"7Z, be the kernel of 1
in U. Then

Ll(LWﬁ)

- X)) g~ (1= GG + (1 ()
—CZnT(lban”)[ f ; l(l—C;}C};n) a;| mod I,

where the sum runs over all p”th roots of unity.

Proof. Since log;(1 — C}Cpn) = 0 mod [, we have

nh) = S0 (e

¢
= (¢, Gn)

Cpn

X() & (L= GFGn) + (1 ((FGm))
X[ 2 11— i) “1

Proof of Theorem 2. The proof comes directly from Proposition 2 and
the equation (1). m

mod/. m

)
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Let
X —CFT) + (1 - (¢FT)!)
G =7 X_; (1 ¢) o

Then
(19) Gy (T)

R xOGT+ GT)

- ; F =T i

XL Fa)T + .o+ (0 () GOV T

f H;zlu — T
XD SXCT + o XTI
I = ¢y

Hence
G r-1y = XO  ZIXOTIT A ()T
T @ ¢)
Let us compute
90 Go(T) 4 Go(T~1) — X(rl)T—I—.l.. 3 X(rl)T—I—..t
. D+ G [, (1=¢imty I, (T = ¢
—2x(r))T + ...

(- GO = ¢y

Hence G, (T) + G, (T ') is not identically zero when we reduce the coeffi-
cients modulo [ since the value x(rl) is a unit. Let

Gy(T) =G ——ZG (eT).

6”1

Let R(T) be the power series in F;[[T]] obtained by reducing the coefficients
of R[[T]] € Z;[[T]]. Since G, (T) and G3(T') have the same coefficient of T
we have

(21) GL(T) + GL(T 1) # 0.

By Theorem 2 and a result of Sinnott (Theorem 1), we can prove the
following theorem. Let F' be a totally real abelian number field, and x be
a Dirichlet character of Gal(F/Q) whose conductor f is relatively prime to
Ip. Let 9 be a character of Q. /Q as a character on Z, trivial on V.

THEOREM 3. Let | be an odd prime. Then ord;(L;(1,xv)) = 0 for all
but finitely many 1) ’s.
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Proof. In Proposition 2, we proved

Ll(lanﬁ)
X(1) = — (1= CFGm) + (1= (CFpm)))
= n - | M dl,
gT(@ban )|: f ; l(1*C}C;,n) a (0]
that is,
(22) Li(1,x) =Y 7(4, )Gy (¢) mod L.
¢

Let a and a* be the corresponding measures of éX(T) and é;‘((T), re-
spectively. If ¢ € @, let ¢’ be the character of Q. /Q which satisfies
J’(n) = 1)(n) for integers n prime to p, where the tilde stands for reduction
mod [; on the right we are viewing 1 as a character of Z; trivial on V.

Then T('pr\’TC) = 7(1, (). Hence, by (1) and Proposition 2, we have
(23) Tor () = | pdo* = | pdo = Li(1, x9).

X X
7.3 7.3

Now é;‘( (T) -i—é;‘( (T~1) # 0 by (21); hence I, () = 0 for only finitely many
1), by Theorem 1. This completes the proof. m

We let ord; denote the usual valuation on Q;, normalized by ord;(l) = 1.
Let R;(K) be the [-adic regulator of a number field K, h(K) be the class
number of K, and d(K) be the discriminant of K. Then we have the [-adic
class number formula.

THEOREM 4. Let K be a totally real abelian number field of degree n
corresponding to a group X of Dirichlet characters. Then

(24) . h(ﬁgl(l{) = 11 (1 = @)_ Li(1. x).

xX€X, x#1

Proof. See Washington [4, p. 71]. =

COROLLARY 1. Let | be an odd prime. Let K be a totally real abelian
number field whose conductor is relatively prime to Ip, and K, be the nth
layer of the basic Z,-extension K /K. Then

(25) ordy(R;(K,)) =dp™ + C,  for n sufficiently large,
for some constant C' independent of n.

Proof. Washington [3] proved that ord;h(K,) is constant if n is suffi-
ciently large. By assumption, ord;d(K,,) =0. By Theorem 3, ord;(L;(1, x))
is nonzero for only finitely many ¢’s. Note that [K, : Q] = [K : Q]p™, and
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ord;(1 — x(1)/l) = —ord,(l) since x(I) is a unit. Hence equation (25) follows
from the [-adic class number formula since

ordl( 1T (1 - @)) = —dp" +1,

XEX, x#1
where d =[K : Q). m

Let L be a number field, and n a positive integer. Let w(L) be the
number of roots of unity in L. Let Sg; be the set of primes of a totally real
number field F' above a rational prime [. Let M be the maximal abelian

l-extension of F' which is unramified outside Sg; and Féé) be the basic
Zi-extension of F. Coates [1, p. 348] proved the following theorem.

LEMMA 4. G(M/FY) is finite if and only if RBy(F) # 0. If Ri(F) # 0,
then the order of G(M/Fy) is the inverse of the l-adic valuation of

(26) w(FG))WME)R(F) [T - (Vo= /V/a(F).
[€ESF,

Fix an odd prime [ relatively prime to p. Let M,, be the maximal abelian
l-extension of K,, which is unramified outside Sk, ; and Kq(ql)oo be the basic
Z-extension of K,,. Let Y be the maximal abelian [-extension of K., un-
ramified above I. Then Y = |J,, M,,. By assumption, [ is unramified in K,,.
Hence

(27) ordl< I1 (1—(Nr)—1)) —ordl( I1 (1— @))

SKn.1 XEX,
By assumption, the number of roots of unity in K,((;) = KQ,({) is
bounded independently of n. Therefore, by Lemma 4, Theorem 3 and The-

orem 4, the order of G(Mn/Kq(q,l,Lo) is constant if n is large enough. Thus we
proved:

THEOREM 5. The order of Gal(Mn/Kr(,,l,)oo) is constant if n is sufficiently
large.

REMARK 1. W. Sinnott pointed out to me that there was an alternative
proof of Theorem 3. We include the proof: Suppose x1 is not of the second
kind for [. Write L;(s, xv) = f(u® — 1), where f(X) =a¢ + a1 X + ... with
a; € Zy [values of xt], u =1+ 1. Then

Ll(l,xi/}) = ag + al(u - 1) + CLQ(U - 1)2 + ...
= ag mod [

= L;(0, x¢) mod
= (1 — xtpw; "(1))L(0, xtbw, ") mod I.
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Since the conductor of x is assumed to be prime to Ip, Xz/le_l(l) is zero. Tt
is known [2] that the map ¢ — L(0, X@bwfl) is the I'-transform of a rational
function measure for which R(Z) + R(Z~!) # 0 mod [ and so is a unit for
all but finitely many ).
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