l-adic *L*-functions and rational function measures

by

JANGHEON OH (Seoul)

1. Introduction. In [2], Sinnott used a measure-theoretic method to give a new proof of a theorem of Washington [3]. We follow his approach to prove that $L_l(1, *) \mod l$, where l is an odd prime, is the Γ -transform of a rational function measure. As a result, we show that $\operatorname{ord}_l(L_l(1, \chi \psi)) = 0$ for almost all ψ 's (Theorem 3), where χ is an even Dirichlet character of the Galois group of an abelian extension over \mathbb{Q} and ψ is a character of the Galois group of the basic \mathbb{Z}_p -extension \mathbb{Q}_{∞} of \mathbb{Q} over \mathbb{Q} . Theorem 3 could also be proved using a result of Sinnott [2]. The aim of this paper is to give a direct proof of Theorem 3 by using our Theorem 2. For an algebraic interpretation of Theorem 3, see Theorem 5 of this paper.

Fix two distinct primes l and p. Let \mathbb{Z}_p denote the ring of p-adic integers, \mathbb{F}_l the prime field with l elements, and \mathbb{F}_l its algebraic closure. Recall that the group \mathbb{Z}_p^{\times} of units in \mathbb{Z}_p is the direct product of its torsion subgroup V and the subgroup $U = 1 + 2p\mathbb{Z}_p$. By a measure on \mathbb{Z}_p with values in \mathbb{F}_l we mean a finitely additive \mathbb{F}_l -valued set function on the collection of compact open subsets of \mathbb{Z}_p . If α is a measure, and $\phi : \mathbb{Z}_p \to \mathbb{F}_l$ is a locally constant function, say constant on the cosets of $p^n\mathbb{Z}_p$ in \mathbb{Z}_p , then we define the integral

$$\int_{\mathbb{Z}_p} \phi(x) \, d\alpha(x) = \sum_{a \bmod p^n} \phi(a) \alpha(a + p^n \mathbb{Z}_p).$$

Let Φ denote the group of continuous characters $U \to \overline{\mathbb{F}}_l^{\times}$, viewed always as characters of \mathbb{Z}_p^{\times} trivial on V. Let α be a measure. The Γ -transform $\Gamma_{\alpha} : \Phi \to \overline{\mathbb{F}}_l$ of α is defined by

$$\Gamma_{lpha}(\psi) = \int\limits_{\mathbb{Z}_p^{\times}} \psi(x) \, dlpha(x).$$

1991 Mathematics Subject Classification: 11R23, 11R18, 11R42.

This paper is part of the author's Ph.D. thesis. I would like to thank my adviser, W. Sinnott, for introducing me to this problem and for many valuable comments.

J. Oh

Let $\mu_{p^{\infty}}$ and $\mu_{p^{n}}$ be the set of all *p*-power roots of unity and the set of all p^{n} th roots of unity respectively. The *Fourier transform* $\widehat{\alpha} : \mu_{p^{\infty}} \to \overline{\mathbb{F}}_{l}$ of α is defined by

$$\widehat{\alpha}(\zeta) = \int_{\mathbb{Z}_p} \zeta^x \, d\alpha(x).$$

We have a relation between the two transforms. Let $\psi \in \Phi$ and let $1 + p^n \mathbb{Z}_p$ be the kernel of ψ in U. Then

(1)
$$\Gamma_{\alpha}(\psi) = \sum_{\zeta \in \mu_{p^n}} \tau(\psi, \zeta) \widehat{\alpha}(\zeta),$$

where

$$\tau(\psi,\zeta) = \frac{1}{p^n} \sum_{x \mod p^n, \ x \neq 0 \mod p} \psi(x) \zeta^{-x}.$$

We call a measure α a rational function measure if there is a rational function $R(Z) \in \overline{\mathbb{F}}_l(Z)$ such that

$$\widehat{\alpha}(\zeta) = R(\zeta)$$
 for almost all $\zeta \in \mu_{p^{\infty}}$.

If α is a measure and $X \subset \mathbb{Z}_p$ is compact and open, we denote by $\alpha|_X$ the measure obtained by restricting α to X and extending by 0. If α is a rational function measure, then so is $\alpha|_X$ for any compact open subset $X \subset \mathbb{Z}_p$. In particular, if $X = \mathbb{Z}_p^{\times}$ and we put $\alpha^* = \alpha|_{\mathbb{Z}_p^{\times}}$, then

$$\widehat{\alpha}^*(\zeta) = \widehat{\alpha}(\zeta) - \frac{1}{p} \sum_{\varepsilon^p = 1} \widehat{\alpha}(\varepsilon\zeta).$$

We say a measure α is supported on \mathbb{Z}_p^{\times} if $\alpha = \alpha^*$.

THEOREM 1 (Sinnott [2]). Let α be a rational function measure on \mathbb{Z}_p with values in $\overline{\mathbb{F}}_l$, and let $R(Z) \in \overline{\mathbb{F}}_l(Z)$ be the associated rational function. Assume that α is supported on \mathbb{Z}_p^{\times} . If $\Gamma_{\alpha}(\psi) = 0$ for infinitely many $\psi \in \Phi$, then

$$R(Z) + R(Z^{-1}) = 0.$$

Let \mathbb{C}_l^{\times} be the nonzero elements of \mathbb{C}_l , which is the completion of the algebraic closure of \mathbb{Q}_l .

LEMMA 1. We have

$$\mathbb{C}_l^{\times} = l^{\mathbb{Q}} \times W \times U_1,$$

where W is the group of all roots of unity of order prime to l, and $U_1 = \{x \in \mathbb{C}_l \mid |x-1| < 1\}.$

Proof. See Washington [4, p. 50]. ■

We now define

(2)
$$\log_l(1+X) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} X^n}{n}.$$

Now, by the above lemma, let $y = l^r \omega x \in \mathbb{C}_l^{\times}$. Define $\log_l y = \log_l x$, where for $x \in U_1$, $\log_l x$ is defined by the power series (2).

2. Statement of the main theorem. Let F be a totally real abelian number field, and χ be a Dirichlet character of $\operatorname{Gal}(F/\mathbb{Q})$ whose conductor f is relatively prime to lp. Let ψ be a character of the basic \mathbb{Z}_p -extension $\mathbb{Q}_{\infty}/\mathbb{Q}$ with values in \mathbb{C}_l ; we view ψ as a character of \mathbb{Z}_p^{\times} trivial on V.

THEOREM 2. Let l be an odd prime. Then the function given by

$$\psi \to (L_l(1, \chi \psi) \mod l)$$

is the Gamma transform of a rational function measure.

3. Proof of theorems

LEMMA 2. Assume that f is relatively prime to p. Then $\{1, 2, \ldots, fp^n\} = \bigcup_{j=1}^{f} A_j$, where $A_j = \{j, j+f, \ldots, j+(p^n-1)f\}$, and A_j is a representative set of $\mathbb{Z}/p^n\mathbb{Z}$ for any $j = 1, \ldots, f$.

Proof. The number of elements in A_j is p^n , and if $j + mf \equiv j + kf \mod p^n$, then

$$(m-k)f \equiv 0 \bmod p^n.$$

Since f is relatively prime to p, $m \equiv k \mod p^n$.

We use the same notations as in the previous section. The value of the *l*-adic *L*-function at 1 for an even nontrival character was evaluated by Leopoldt (see Washington [4, p. 63]):

$$L_l(1,\chi\psi) = -(1-\chi\psi(l)/l)\frac{\tau(\chi\psi)}{fp^n}\sum_{a=1}^{fp^n}\overline{\chi\psi}(a)\log_l(1-\zeta_{fp^n}^a)$$

where $\tau(\chi\psi) = \sum_{a=1}^{fp^n} \chi\psi(a)\zeta_{fp^n}^a$, and ζ_{fp^n} is a primitive fp^n th root of unity in \mathbb{Q}_l .

PROPOSITION 1. Let $1 + p^n \mathbb{Z}_p$ be the kernel of ψ in U. Then

$$L_l(1,\chi\psi) = \sum_{\zeta} \tau(\psi,\zeta) \bigg(-F(\zeta) + rac{\chi(l)}{l}F(\zeta^l) \bigg),$$

where $F(T) = (1/f) \sum_{i=1}^{f} \alpha_i \log_l(1 - \zeta_f^i T)$ as a function on $\mu_{p^{\infty}}$, $\alpha_i = \sum_{j=1}^{f} \chi(j) \zeta_f^{ij}$ and the above sum runs over all p^n th roots of unity.

J. Oh

Proof. First compute $\tau(\chi\psi)\overline{\chi\psi}(a)$:

(3)
$$\tau(\chi\psi)\overline{\chi\psi}(a) = \sum_{x=1}^{fp^n} \chi\psi(x)\overline{\chi\psi}(a)\zeta_{fp^n}^x = \sum_{x=1}^{fp^n} \chi\psi(x)\zeta_{fp^n}^{ax},$$

 \mathbf{SO}

$$L_l(1,\chi\psi) = -(1-\chi\psi(l)/l)\frac{1}{fp^n}\sum_{a=1}^{fp^n} \left(\sum_{x=1}^{fp^n}\chi\psi(x)(\zeta_f\zeta_{p^n})^{ax}\right)\log_l(1-\zeta_f^a\zeta_{p^n}^a).$$

Let us calculate

(4)
$$\frac{1}{fp^n} \sum_{a=1}^{fp^n} \left(\sum_{x=1}^{fp^n} \chi \psi(x) (\zeta_f \zeta_{p^n})^{ax} \right) \log_l (1 - \zeta_f^a \zeta_{p^n}^a).$$

Define $\langle x \rangle$ and $\{x\}$ by $x = \langle x \rangle + dp^n$, $1 \leq \langle x \rangle \leq p^n$ and $x = \{x\} + ef$, $i \leq \{x\} \leq f$. Then, by the above lemma, we have

(5)
$$\sum_{x=1}^{fp^{n}} \chi \psi(x) (\zeta_{f} \psi_{p^{n}})^{ax} = \sum_{x=1}^{fp^{n}} \chi(\{x\}) \psi(\langle x \rangle) \zeta_{f}^{a\{x\}} \zeta_{p^{n}}^{a\langle x \rangle}$$
$$= \sum_{j=1}^{f} \sum_{x \in A_{j}} \chi(\{x\}) \psi(\langle x \rangle) \zeta_{f}^{a\{x\}} \zeta_{p^{n}}^{a\langle x \rangle}$$
$$= \Big(\sum_{j=1}^{f} \chi(j) \zeta_{f}^{aj} \Big) \Big(\sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{ac} \Big).$$

Let $\alpha_a = \sum_{j=1}^f \chi(j) \zeta_f^{aj}$. Then $\alpha_a = \alpha_i$ for any $a \in A_i$, and $\zeta_f^b = \zeta_f^i$ for any $b \in A_i$. Therefore,

$$(6) (4) = \frac{1}{fp^n} \sum_{a=1}^{fp^n} \left(\sum_{x=1}^{fp^n} \chi \psi(x) (\zeta_f \zeta_{p^n})^{ax} \right) \log_l (1 - \zeta_f^a \zeta_{p^n}^a)
= \frac{1}{fp^n} \sum_{a=1}^{fp^n} \left(\sum_{j=1}^f \chi(j) \zeta_f^{aj} \right) \left(\sum_{c=1}^{p^n} \psi(c) \zeta_{p^n}^{ac} \right) \log_l (1 - \zeta_f^a \zeta_{p^n}^a)
= \frac{1}{fp^n} \sum_{a=1}^{fp^n} \left(\alpha_a \sum_{c=1}^{p^n} \psi(c) \zeta_{p^n}^{ac} \right) \log_l (1 - \zeta_f^a \zeta_{p^n}^a)
= \frac{1}{fp^n} \sum_{i=1}^f \left[\left(\sum_{b \in A_i} \alpha_b \left(\sum_{c=1}^{p^n} \psi(c) \zeta_{p^n}^{bc} \right) \right) \log_l (1 - \zeta_f^b \zeta_{p^n}^b) \right]
= \frac{1}{fp^n} \sum_{i=1}^f \left[\sum_{b \in A_i} \alpha_i \left(\sum_{c=1}^{p^n} \psi(c) \zeta_{p^n}^{bc} \right) \log_l (1 - \zeta_f^i \zeta_{p^n}^b) \right]$$

l-adic L-functions

$$= \frac{1}{fp^{n}} \sum_{i=1}^{f} \left[\sum_{b=1}^{p^{n}} \alpha_{i} \left(\sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{bc} \right) \log_{l} (1 - \zeta_{f}^{i} \zeta_{p^{n}}^{b}) \right]$$

$$= \frac{1}{f} \sum_{i=1}^{f} \left(\sum_{b=1}^{p^{n}} \alpha_{i} \left(\frac{1}{p^{n}} \sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{bc} \right) \log_{l} (1 - \zeta_{f}^{i} \zeta_{p^{n}}^{b}) \right).$$

Since ψ is an even character, $\psi(-1) = 1$. Upon replacing c by -c, the last expression becomes

(7)
$$\frac{1}{f} \sum_{b=1}^{p^n} \tau(\psi, \zeta_{p^n}^b) \Big(\sum_{i=1}^f \alpha_i \log_l (1 - \zeta_f^i \zeta_{p^n}^b) \Big).$$

 Let

$$F(T) = \frac{1}{f} \sum_{i=1}^{f} \alpha_i \log_l(1 - \zeta_f^i T)$$

(as a function on $\mu_{p^{\infty}}$). Then we proved

(8)
$$(4) = \sum_{b=1}^{p^n} \tau(\psi, \zeta_{p^n}^b) F(\zeta_{p^n}^b) = \sum_{\zeta} \tau(\psi, \zeta) F(\zeta).$$

Now consider

$$rac{\chi(l)}{l}F(T^l).$$

Since l and p are different primes, we have

(9)
$$\tau(\psi, \zeta_{p^{n}}^{bl}) = \frac{1}{p^{n}} \sum_{c=1}^{p^{n}} \psi(c) \zeta_{p^{n}}^{-blc}$$
$$= \frac{1}{p^{n}} \psi^{-1}(l) \sum_{t=1}^{p^{n}} \psi(t) \zeta_{p^{n}}^{-bt}$$
$$= \psi^{-1}(l) \tau(\psi, \zeta_{p^{n}}^{b}),$$

so that

(10)
$$\sum_{\zeta} \frac{\chi(l)}{l} \tau(\psi,\zeta) F(\zeta^{l}) = \frac{\chi(l)}{l} \sum_{\zeta} \psi(l) \tau(\psi,\zeta^{l}) F(\zeta^{l})$$
$$= \frac{\chi\psi(l)}{l} \sum_{\zeta} \tau(\psi,\zeta) F(\zeta).$$

Let

$$G_{\chi}(T) = -F(T) + \frac{\chi(l)}{l}F(T^{l}).$$

J. Oh

By (9), we have

(11)
$$\sum_{\zeta} \tau(\psi,\zeta) G_{\chi}(\zeta) = -\sum_{\zeta} \tau(\psi,\zeta) F(\zeta) + \frac{\chi(l)}{l} \sum_{\zeta} \tau(\psi,\zeta) F(\zeta^{l})$$
$$= -\sum_{\zeta} \tau(\psi,\zeta) F(\zeta) + \frac{\chi\psi(l)}{l} \sum_{\zeta} \tau(\psi,\zeta) F(\zeta)$$
$$= -\left(1 - \frac{\chi\psi(l)}{l}\right) \sum_{\zeta} \tau(\psi,\zeta) F(\zeta)$$
$$= L_{l}(1,\chi\psi).$$

This completes the proof. \blacksquare

Since l is prime to p, rl + sf = 1 for some $r, s \in \mathbb{Z}$.

LEMMA 3. Let l be an odd prime. Then

$$\log_{l}(1-\zeta_{f}^{i}\zeta_{p^{n}}^{l}) \equiv \frac{-(1-\zeta_{f}^{ri}\zeta_{p^{n}})^{l} + (1-(\zeta_{f}^{ri}\zeta_{p^{n}})^{l})}{1-\zeta_{f}^{i}\zeta_{p^{n}}^{l}} \mod l^{2}.$$

Proof. Write $1 - \zeta_f^i \zeta_{p^n}^l = \omega(1 - \alpha)$, where ω is a root of unity whose order w is relatively prime to l. Since $(l, fp^n w) = 1$, there exists an integer f_n such that

$$\zeta_f^{l^{f_n}}=\zeta_f, \qquad \zeta_{p^n}^{l^{f_n}}=\zeta_{p^n}, \qquad \omega^{l^{f_n}}=\omega.$$

The number α is divisible by l, since l is unramified in $\mathbb{Q}_l(\omega, \zeta_f, \zeta_{p^n})$. Let

(12)
$$(1 - \zeta_f^i \zeta_{p^n}^l)^{l^{f_n} - 1} = (1 - \alpha)^{l^{f_n} - 1} = 1 + \beta.$$

Then

(13)
$$\log_{l}(1-\zeta_{f}^{i}\zeta_{p^{n}}^{l}) = \frac{1}{l^{f_{n}}-1}\log_{l}(1-\zeta_{f}^{i}\zeta_{p^{n}}^{l})^{l^{f_{n}}-1}$$
$$= \frac{1}{l^{f_{n}}-1}\log_{l}(1+\beta) \equiv \frac{1}{l^{f_{n}}-1}\beta \mod l^{2}$$
$$\equiv -\beta = 1 - (1-\zeta_{f}^{i}\zeta_{p^{n}}^{l})^{l^{f_{n}}-1}$$
$$= \frac{-(1-\zeta_{f}^{i}\zeta_{p^{n}}^{l})^{l^{f_{n}}} + (1-\zeta_{f}^{i}\zeta_{p^{n}}^{l})}{1-\zeta_{f}^{i}\zeta_{p^{n}}^{l}}.$$

Now we simplify the expression $(1 - \zeta_f^i \zeta_{p^n}^l)^{l^{f_n}}$. Write

(14)
$$(1 - \zeta_f^i T)^l = 1 - (\zeta_f^i T)^l + lf(T).$$

Then

(15)
$$(1 - \zeta_f^i T)^{l^2} \equiv (1 - (\zeta_f^i T)^l)^l \mod l^2$$
$$= 1 - \zeta_f^{l^2 i} T^{l^2} + lf(\zeta_f^{(l-1)i} T^l).$$

l-adic L-functions

Since $\zeta_f^{l^{f_n}} = \zeta_f$, we know that $l^{f_n} = 1 + kf$ for some integer k. Hence $rl^{f_n} = r + k'f$ and $rl^{f_n} = rll^{f_n-1} = (1-sf)l^{f_n-1}$, so we have $l^{f_n-1} = r + k''f$ for some integer k''. Continuing the above process, we have

(16)
$$(1-\zeta_f^i T)^{l^{f_n}} \equiv 1-\zeta_f^{l^{f_n}i} T^{l^{f_n}} + lf(\zeta_f^{(l^{f_n-1}-1)i} T^{l^{f_n-1}}) \mod l^2.$$

Substituting $T = \zeta_{p^n}^l$ and using the equation $l^{f_n-1} = r + k'' f$, we have

£

(17)
$$(1 - \zeta_f^i \zeta_{p^n}^l)^{l^{f_n}} \equiv 1 - \zeta_f^i \zeta_{p^n}^l + lf(\zeta_f^{(r-1)i} \zeta_{p^n}) \mod l^2.$$

Finally, combining the above gives

(18)
$$\log_{l}(1-\zeta_{f}^{i}\zeta_{p^{n}}^{l}) \equiv \frac{-(1-\zeta_{f}^{i}\zeta_{p^{n}}^{l})^{l^{j_{n}}} + (1-\zeta_{f}^{i}\zeta_{p^{n}}^{l})}{1-\zeta_{f}^{i}\zeta_{p^{n}}^{l}} \mod l^{2}$$
$$= -\frac{lf(\zeta_{f}^{(r-1)i}\zeta_{p^{n}})}{1-\zeta_{f}^{i}\zeta_{p^{n}}^{l}}$$
$$= \frac{-(1-\zeta_{f}^{ri}\zeta_{p^{n}})^{l} + (1-(\zeta_{f}^{ri}\zeta_{p^{n}})^{l})}{1-\zeta_{f}^{i}\zeta_{p^{n}}^{l}}.$$

This completes the proof. \blacksquare

PROPOSITION 2. Let l be an odd prime and $1+p^n\mathbb{Z}_p$ be the kernel of ψ in U. Then

 $L_l(1,\chi\psi)$

$$\equiv \sum_{\zeta_{p^n}} \tau(\psi, \zeta_{p^n}) \left[\frac{\chi(l)}{f} \sum_{i=1}^f \frac{-(1 - \zeta_f^{ri} \zeta_{p^n})^l + (1 - (\zeta_f^{ri} \zeta_{p^n})^l)}{l(1 - \zeta_f^i \zeta_{p^n}^l)} \alpha_i \right] \mod l,$$

where the sum runs over all p^n th roots of unity.

Proof. Since $\log_l(1 - \zeta_f^i \zeta_{p^n}) \equiv 0 \mod l$, we have

$$\begin{split} L_l(1,\chi\psi) &\equiv \sum_{\zeta} \tau(\psi,\zeta) \left(\frac{\chi(l)}{l} F(\zeta^l)\right) \\ &\equiv \sum_{\zeta_{p^n}} \tau(\psi,\zeta_{p^n}) \\ &\times \left[\frac{\chi(l)}{f} \sum_{i=1}^f \frac{-(1-\zeta_f^{ri}\zeta_{p^n})^l + (1-(\zeta_f^{ri}\zeta_{p^n})^l)}{l(1-\zeta_f^i\zeta_{p^n}^l)} \alpha_i\right] \bmod l. \blacksquare \end{split}$$

Proof of Theorem 2. The proof comes directly from Proposition 2 and the equation (1). \blacksquare

Let

$$G_{\chi}(T) = \frac{\chi(l)}{f} \sum_{i=1}^{f} \frac{-(1-\zeta_{f}^{ri}T)^{l} + (1-(\zeta_{f}^{ri}T)^{l})}{l(1-\zeta_{f}^{i}T^{l})} \alpha_{i}.$$

Then

(19)
$$G_{\chi}(T)$$

$$= -\sum_{i=1}^{f} \frac{\chi(l)(-\zeta_{f}^{ri}T + \dots + \zeta_{f}^{r(l-1)i}T^{l-1})}{f(1 - \zeta_{f}^{i}T^{l})} \alpha_{i}$$

$$= -\frac{\chi(l)((-\sum_{i=1}^{f} \zeta_{f}^{ri}\alpha_{i})T + \dots + (\sum_{i=1}^{f} \alpha_{i}(-1)^{f-1}\zeta_{f}^{r(l-1)i}\prod_{k \neq i} \zeta_{f}^{k})T^{fl-1})}{f\prod_{i=1}^{f}(1 - \zeta_{f}^{i}T^{l})}$$

$$= -\frac{\chi(l)((-f\chi(-r))T + \dots + f\chi(r)T^{fl-1})}{f\prod_{i=1}^{f}(1 - \zeta_{f}^{i}T^{l})}.$$

Hence

$$G_{\chi}(T^{-1}) = -\frac{\chi(l)}{f} \cdot \frac{-f\chi(r)T^{lf-1} + \ldots + f\chi(r)T}{\prod_{i=1}^{f}(T^{l} - \zeta_{f}^{i})}.$$

Let us compute

(20)
$$G_{\chi}(T) + G_{\chi}(T^{-1}) = \frac{\chi(rl)T + \dots}{\prod_{i=1}^{f} (1 - \zeta_{f}^{i}T^{l})} - \frac{\chi(rl)T + \dots}{\prod_{i=1}^{f} (T^{l} - \zeta_{f}^{i})} = \frac{-2\chi(rl)T + \dots}{\prod_{i=1}^{f} (1 - \zeta_{f}^{i}T^{l})\prod_{i=1}^{f} (T^{l} - \zeta_{f}^{i})}.$$

Hence $G_{\chi}(T) + G_{\chi}(T^{-1})$ is not identically zero when we reduce the coefficients modulo l since the value $\chi(rl)$ is a unit. Let

$$G_{\chi}^{*}(T) = G_{\chi}(T) - \frac{1}{p} \sum_{\varepsilon^{p} = 1} G_{\chi}(\varepsilon T).$$

Let $\widetilde{R}(T)$ be the power series in $\overline{\mathbb{F}}_{l}[[T]]$ obtained by reducing the coefficients of $R[[T]] \in \mathbb{Z}_{l}[[T]]$. Since $G_{\chi}(T)$ and $G_{\chi}^{*}(T)$ have the same coefficient of T, we have

(21)
$$\widetilde{G}_{\chi}^*(T) + \widetilde{G}_{\chi}^*(T^{-1}) \neq 0.$$

By Theorem 2 and a result of Sinnott (Theorem 1), we can prove the following theorem. Let F be a totally real abelian number field, and χ be a Dirichlet character of $\operatorname{Gal}(F/\mathbb{Q})$ whose conductor f is relatively prime to lp. Let ψ be a character of $\mathbb{Q}_{\infty}/\mathbb{Q}$ as a character on \mathbb{Z}_p^{\times} trivial on V.

THEOREM 3. Let *l* be an odd prime. Then $\operatorname{ord}_l(L_l(1, \chi \psi)) = 0$ for all but finitely many ψ 's.

376

Proof. In Proposition 2, we proved

 $L_l(1, \chi \psi)$

$$= \sum_{\zeta_{p^n}} \tau(\psi, \zeta_{p^n}) \left[\frac{\chi(l)}{f} \sum_{i=1}^f \frac{-(1 - \zeta_f^{ri} \zeta_{p^n})^l + (1 - (\zeta_f^{ri} \zeta_{p^n})^l)}{l(1 - \zeta_f^i \zeta_{p^n})} \alpha_i \right] \mod l,$$

that is,

(22)
$$L_l(1,\chi\psi) \equiv \sum_{\zeta} \tau(\psi,\zeta) G_{\chi}(\zeta) \bmod l.$$

Let α and α^* be the corresponding measures of $\widetilde{G}_{\chi}(T)$ and $\widetilde{G}_{\chi}^*(T)$, respectively. If $\psi \in \Phi$, let ψ' be the character of $\mathbb{Q}_{\infty}/\mathbb{Q}$ which satisfies $\widetilde{\psi}'(n) = \psi(n)$ for integers n prime to p, where the tilde stands for reduction mod l; on the right we are viewing ψ as a character of \mathbb{Z}_p^{\times} trivial on V. Then $\tau(\widetilde{\psi'}, \zeta) = \tau(\psi, \zeta)$. Hence, by (1) and Proposition 2, we have

(23)
$$\Gamma_{\alpha^*}(\psi) = \int_{\mathbb{Z}_p^{\times}} \psi \, d\alpha^* = \int_{\mathbb{Z}_p^{\times}} \psi \, d\alpha = L_l(\widetilde{1,\chi}\psi').$$

Now $\widetilde{G}^*_{\chi}(T) + \widetilde{G}^*_{\chi}(T^{-1}) \neq 0$ by (21); hence $\Gamma_{\alpha^*}(\psi) = 0$ for only finitely many ψ , by Theorem 1. This completes the proof.

We let ord_l denote the usual valuation on $\overline{\mathbb{Q}}_l$, normalized by $\operatorname{ord}_l(l) = 1$. Let $R_l(K)$ be the *l*-adic regulator of a number field K, h(K) be the class number of K, and d(K) be the discriminant of K. Then we have the *l*-adic class number formula.

THEOREM 4. Let K be a totally real abelian number field of degree n corresponding to a group X of Dirichlet characters. Then

(24)
$$\frac{2^{n-1}h(K)R_l(K)}{\sqrt{d(K)}} = \prod_{\chi \in X, \ \chi \neq 1} \left(1 - \frac{\chi(l)}{l}\right)^{-1} L_l(1,\chi).$$

Proof. See Washington [4, p. 71]. ■

COROLLARY 1. Let l be an odd prime. Let K be a totally real abelian number field whose conductor is relatively prime to lp, and K_n be the nth layer of the basic \mathbb{Z}_p -extension K_{∞}/K . Then

(25)
$$\operatorname{ord}_{l}(R_{l}(K_{n})) = dp^{n} + C, \quad \text{for } n \text{ sufficiently large},$$

for some constant C independent of n.

Proof. Washington [3] proved that $\operatorname{ord}_l h(K_n)$ is constant if n is sufficiently large. By assumption, $\operatorname{ord}_l d(K_n) = 0$. By Theorem 3, $\operatorname{ord}_l(L_l(1, \chi \psi))$ is nonzero for only finitely many ψ 's. Note that $[K_n : \mathbb{Q}] = [K : \mathbb{Q}]p^n$, and

 $\operatorname{ord}_l(1-\chi(l)/l) = -\operatorname{ord}_l(l)$ since $\chi(l)$ is a unit. Hence equation (25) follows from the *l*-adic class number formula since

$$\operatorname{ord}_l\left(\prod_{\chi\in X,\,\chi\neq 1}\left(1-\frac{\chi(l)}{l}\right)\right) = -dp^n + 1,$$

where $d = [K : \mathbb{Q}]$.

Let L be a number field, and n a positive integer. Let w(L) be the number of roots of unity in L. Let $S_{F,l}$ be the set of primes of a totally real number field F above a rational prime l. Let M be the maximal abelian l-extension of F which is unramified outside $S_{F,l}$ and $F_{\infty}^{(l)}$ be the basic \mathbb{Z}_l -extension of F. Coates [1, p. 348] proved the following theorem.

LEMMA 4. $G(M/F_{\infty}^{(l)})$ is finite if and only if $R_l(F) \neq 0$. If $R_l(F) \neq 0$, then the order of $G(M/F_{\infty})$ is the inverse of the *l*-adic valuation of

(26)
$$w(F(\zeta_l))h(F)R_l(F)\prod_{\mathfrak{l}\in S_{F,l}}(1-(N\mathfrak{l})^{-1})/\sqrt{d(F)}$$

Fix an odd prime l relatively prime to p. Let M_n be the maximal abelian l-extension of K_n which is unramified outside $S_{K_n,l}$ and $K_{n,\infty}^{(l)}$ be the basic \mathbb{Z}_l -extension of K_n . Let Y_K be the maximal abelian l-extension of K_∞ unramified above l. Then $Y_K = \bigcup_n M_n$. By assumption, l is unramified in K_n . Hence

(27)
$$\operatorname{ord}_{l}\left(\prod_{S_{K_{n,l}}} (1 - (N\mathfrak{l})^{-1})\right) = \operatorname{ord}_{l}\left(\prod_{\chi \in X_{n}} \left(1 - \frac{\chi(l)}{l}\right)\right).$$

By assumption, the number of roots of unity in $K_n(\zeta_l) = K\mathbb{Q}_n(\zeta_l)$ is bounded independently of *n*. Therefore, by Lemma 4, Theorem 3 and Theorem 4, the order of $G(M_n/K_{n,\infty}^{(l)})$ is constant if *n* is large enough. Thus we proved:

THEOREM 5. The order of $\operatorname{Gal}(M_n/K_{n,\infty}^{(l)})$ is constant if n is sufficiently large.

REMARK 1. W. Sinnott pointed out to me that there was an alternative proof of Theorem 3. We include the proof: Suppose $\chi \psi$ is not of the second kind for *l*. Write $L_l(s, \chi \psi) = f(u^s - 1)$, where $f(X) = a_0 + a_1 X + \ldots$ with $a_i \in \mathbb{Z}_p$ [values of $\chi \psi$], u = 1 + l. Then

$$L_l(1, \chi \psi) = a_0 + a_1(u-1) + a_2(u-1)^2 + \dots$$

$$\equiv a_0 \mod l$$

$$\equiv L_l(0, \chi \psi) \mod l$$

$$\equiv (1 - \chi \psi \omega_l^{-1}(l)) L(0, \chi \psi \omega_l^{-1}) \mod l.$$

l-adic *L*-functions

Since the conductor of χ is assumed to be prime to lp, $\chi \psi \omega_l^{-1}(l)$ is zero. It is known [2] that the map $\psi \to L(0, \chi \psi \omega_l^{-1})$ is the Γ -transform of a rational function measure for which $R(Z) + R(Z^{-1}) \neq 0 \mod l$ and so is a unit for all but finitely many ψ .

References

- J. Coates, p-adic L-functions and Iwasawa theory, in: Algebraic Number Fields (Durham Symposium, 1975), A. Fröhlich (ed.), Academic Press, 1977, 269-353.
- [2] W. Sinnott, On a theorem of L. Washington, Astérisque 147-148 (1987), 209-224.
- [3] L. Washington, The non-p-part of the class number in a cyclotomic Z_p-extension, Invent. Math. 49 (1979), 87-97.
- [4] —, Introduction to Cyclotomic Fields, Springer, Berlin, 1982.

KIAS 207-43 Cheongryangri-dong Dongdaemun-gu Seoul 130-012, Korea E-mail: ohj@kias.kaist.ac.kr

> Received on 21.1.1997 and in revised form on 21.8.1997

(3116)