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1. Introduction. An equation of Goormaghtigh [4] is as follows:

(1)
xm − 1
x− 1

=
yn − 1
y − 1

in integers x > 1, y > 1,m > 2, n > 2 with x 6= y.

This equation asks for integers with all the digits equal to one with respect
to two distinct bases. It has been conjectured that equation (1) has only
finitely many solutions. Goormaghtigh [4] observed that

(2) 31 =
25 − 1
2− 1

=
53 − 1
5− 1

, 8191 =
213 − 1
2− 1

=
903 − 1
90− 1

.

Nagell [5] confirmed a conjecture of Ramanujan [6] that the solutions of
equation

x2 + 7 = 2n in integers x > 0, n > 0
are given by (x, n) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15). This result implies
that the solutions of equation (1) with x = 2 and n = 3 are given by (2).
Perhaps equation (1) has no solution other than the ones given by (2).
Shorey [10] proved that 31 and 8191 are the only primes N such that N has
all the digits equal to 1 with respect to two distinct bases and ω(N−1) ≤ 5.
Here ω(N − 1) denotes the number of distinct prime divisors of N − 1.

We re-write equation (1) as

(3) (y − 1)xm − (x− 1)yn = y − x.

If x and y are fixed, we read the exponents m and n mod 3 to write (3)
as Thue equations with fixed coefficients and hence equation (1) has only
finitely many solutions. Balasubramanian and Shorey [2] extended this re-
sult by showing that equation (1) implies that max(x, y,m, n) is bounded by
an effectively computable number C1 depending only on the greatest prime
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factor of x and y. If gcd(x, y) = 1, Shorey [9] showed that we can replace C1

in the above result by an effectively computable number C2 depending only
on the greatest prime factor of x and y−x. The proofs of the preceding two
results depend on the theory of linear forms in logarithms.

If m and n are fixed, Davenport, Lewis and Schinzel [3] proved that
equation (1) has only finitely many solutions. They proved that the curve

(4)
Xm − 1
X − 1

− Y n − 1
Y − 1

= 0

is absolutely irreducible with positive genus and hence the assertion follows
from a theorem of Siegel [12]. Since Siegel’s result is not effective, it is not
possible to give an effective bound for the magnitude of the solutions. If
gcd(m−1, n−1) > 1, Davenport, Lewis and Schinzel replaced Siegel’s result
by Runge’s result [7] which is effective. Hence they [3] proved effectively that
equation (1) has only finitely many solutions whenever m and n are fixed
such that gcd(m−1, n−1) > 1. The latter assumption is satisfied whenever
m and n are odd. We extend this result as follows.

Theorem 1. Assume
(5) m− 1 = dr, n− 1 = ds

where d, r and s are positive integers satisfying
(6) d ≥ 2, gcd(r, s) = 1.

Then equation (1) implies that max(x, y, m, n) is bounded by an effectively
computable number depending only on r and s.

If m and n with gcd(m−1, n−1) > 1 are fixed, the assumptions (5) and
(6) are satisfied with gcd(m−1, n−1) = d, r = (m−1)/d and s = (n−1)/d
and hence the above mentioned effective result of Davenport, Lewis and
Schinzel follows from Theorem 1. Our proof is different in the sense that
we do not require to show that curve (4) is irreducible essential in the proof
of Davenport, Lewis and Schinzel. For given pairs r, s of relatively prime
positive integers, let Sr,s be the set of all pairs (m,n) = (1+dr, 1+ds) with
d = 2, 3, . . . This is an infinite set and Theorem 1 implies that equation (1)
has only finitely many solutions when the exponents (m,n) are restricted to
the set Sr,s. This is the first result of the type where there is no restriction
(like the ones mentioned in the preceding paragraph) on the pairs (x, y) and
the pairs (m,n) extend over an infinite set.

There is no loss of generality in assuming that x < y in equation (1).
Then m > n and r > s. Theorem 1 is a consequence of the following result.

Theorem 2. Suppose that equation (1) with x < y, (5) and (6) is satis-
fied. Then

r ≥ C3m
1/5(log m)−3/5

where C3 > 0 is an effectively computable absolute constant.
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We apply the arguments of Saradha and Shorey [8] for obtaining the
following explicit and sharp estimate for y in terms of d, r, s and we combine
it with the theory of linear forms in logarithms to conclude the proof of
Theorem 2.

Theorem 3. Let g = (d + 1)/d2 and Dr = dr
∏

p|d pordp(r!). Equation
(1) with x < y, (5) and (6) implies that

(7) x < max
(

9,
gDr

2
+ 1

)
.

By equation (1) and (5), we estimate
(8) y ≤ 2xr/s

which, together with (7), gives a bound for y in terms of d, r and s. Estimate
(7) can be used to compute all the solutions of equation (1) for small values
of d, r and s. For example, we have

Theorem 4. Equation (1) with x < y,m ≡ 1 (mod 2) and n = 3 implies
that

m ≥ 25
unless

(x, y, m) = (2, 5, 5) or (2, 90, 13).
We used MATHEMATICA for the computations required for Theorem 4.

We thank Dr. N. Saradha for writing a computer programme to carry out
computations. We thank the referee for comments and remarks on an earlier
draft of the paper. For an account of results on equation(1) and more general
equation axm−1

x−1 =byn−1
y−1 , we refer to Shorey and Tijdeman [11, Chapter 12].

2. Preliminaries. We understand that an empty sum and an empty
product is equal to 0 and 1, respectively. Let µ ∈ {m,n} and d > 1 be an
integer given by (5) and (6). We put

(9) g =
d + 1
d2

, t =
µ− 1

d
.

We observe from (5) that

t =
{

r if µ = m,
s if µ = n.

Let Aν(µ, d) and Aν(d) be rational numbers given by

(10)
(

1 +
1
X

+ . . . +
1

Xµ−1

)1/d

=
∞∑

ν=0

Aν(µ, d)
Xν

and

(11)
(

1− 1
X

)−1/d

=
∞∑

ν=0

Aν(d)
Xν

.
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We observe that

Aν(d) =
d−1(d−1 + 1) . . . (d−1 + ν − 1)

ν!
for ν ≥ 0,(12)

Aν(d) = Aν(µ, d) for 0 ≤ ν < µ.(13)
We derive that A0(d) = 1, A1(d) = 1/d and
(14) g/ν ≤ Aν(d) ≤ g/2 for ν ≥ 2.

We put

(15) Dν = Dν(d) = dν
∏
p|d

pordp(ν!) for ν ≥ 0

where the product is taken over primes. We have

(16) ordp(ν!) =
[
ν

p

]
+

[
ν

p2

]
+ . . . <

ν

p− 1
.

By (15) and (16), we observe that
(17) Dν ≤ d2ν for ν ≥ 0.

Further we observe from (13), (12) and (15) that
(18) DνAν(µ, d) ∈ Z for 0 ≤ ν < µ.

3. Proof of Theorems 3 and 4

Proof of Theorem 3. Suppose that equation (1) with 9 ≤ x < y, (5) and
(6) is satisfied. Then m > n and r > s. We re-write equation (1) as

(19) xm−1

(
1 +

1
x

+ . . . +
1

xm−1

)
= yn−1

(
1 +

1
y

+ . . . +
1

yn−1

)
.

By taking dth roots on both the sides of equation (19), we see from (5) and
(10) that

(20) xr

(
1 +

A1(m, d)
x

+
A2(m, d)

x2
+ . . .

)
= ys

(
1 +

A1(n, d)
y

+
A2(n, d)

y2
+ . . .

)
.

We put
Λ = xr + A1(m, d)xr−1 + . . . + Ar(m, d)(21)

− ys −A1(n, d)ys−1 − . . .−As(n, d),

Λ1 =
Ar+2(m, d)

x2
+

Ar+3(m, d)
x3

+ . . . ,(22)

Λ2 =
Ar+1(m, d)

x
+

Ar+2(m, d)
x2

+ . . .(23)

and

Λ3 =
As+1(n, d)

y
+

As+2(n, d)
y2

+ . . .(24)
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First we show that Λ1, Λ2 and Λ3 are positive. By (5) and (6), we observe
that r + 1 < m. Then we see from (10), (13) with µ = m and (22) that

(25) x−rΛ1 =
(

1− x−m

1− x−1

)1/d

−
r+1∑
ν=0

Aν(d)
xν

.

Therefore

(26) x−rΛ1 ≥
(

1− 2
d
x−m

)
(1− x−1)−1/d −

r+1∑
ν=0

Aν(d)
xν

.

Now we use (26), (11) and (14) for deriving that

Λ1 ≥
Ar+2(d)

x2

(
1− 2(r + 2)(1− x−1)−1/d

xm−r−2

)
.

By (5), (6) and (14), we see that m− r− 2 ≥ r− 1 and Ar+2(d) > 0 which,
together with x ≥ 9, imply that Λ1 > 0. By (23), (22), (13) with µ = m
and (14), we derive that Λ2 = Ar+1(d)/x + Λ1 > 0. The proof of Λ3 > 0 is
similar to that of Λ1 > 0.

Now we give upper bounds for Λ2 and Λ3. As in (25), we have

x−rΛ2 =
(

1− x−m

1− x−1

)1/d

−
r∑

ν=0

Aν(d)
xν

.

Therefore we observe from (11) that

Λ2 <
Ar+1(d)

x
+

Ar+2(d)
x2

+ . . .

By (12), we have

Ar+j(d)
Ar+1(d)

=
(d−1 + r + 1) . . . (d−1 + r + j − 1)

(r + 2) . . . (r + j)
≤ 1 for j = 1, 2, . . .

Consequently,

Λ2 <
Ar+1(d)

x

(
1 +

1
x

+ . . .

)
=

Ar+1(d)
x− 1

.

Hence we apply (14) to conclude

(27) 0 < Λ2 <
Ar+1(d)
x− 1

≤ g

2(x− 1)
.

Similarly we have

(28) 0 < Λ3 <
As+1(d)
y − 1

≤ g

2(y − 1)
.
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We assume that Λ 6= 0. Then we observe from (21), (18), (15) and r > s
that DrΛ is a non-zero integer. Therefore

(29) |Λ| ≥ D−1
r .

By (21), (20), (24) and (23), we have Λ = Λ3−Λ2. Now we apply (27), (28)
and x < y for deriving that

(30) |Λ| < max(Λ3, Λ2) <
g

2(x− 1)
.

By combining (29) and (30), we conclude that x < gDr/2 + 1 and the
assertion (7) follows. Therefore we may suppose that

(31) Λ = 0.

By combining (20), (31), (22), (24) and (13), we find that Ar+1(d) =
x(Λ3 − Λ1). Now we use Λ1 > 0 and (28) for deriving that

Ar+1(d) < xΛ3 <
x

y − 1
As+1(d).

By (12), we have

As+1(d)
Ar+1(d)

=
(s + 2) . . . (r + 1)

(d−1 + s + 1) . . . (d−1 + r)
<

r + 1
s + 1

.

Thus

y − 1 <
r + 1
s + 1

x

since Ar+1(d) > 0 by (14). By equation (1), we have

xm−1 <
yn

y − 1
=

(
1 +

1
y − 1

)n

(y − 1)n−1.

Now we see from (5) and y − 1 ≥ x that

xr/s <

(
1 +

1
y − 1

)n/(n−1)

(y − 1) <

(
1 +

1
x

)n/(n−1)
r + 1
s + 1

x.

Therefore

x <

(
1 +

1
x

) n
n−1 ·

s
r−s

(
r + 1
s + 1

)s/(r−s)

.

Further we observe that(
r + 1
s + 1

)s/(r−s)

=
(

1 +
r − s

s + 1

)s/(r−s)

< e
r−s
s+1 ·

s
r−s < e

and (
1 +

1
x

) n
n−1 ·

s
r−s

< e
3
2x ·

s
r−s
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since n ≥ 3. Consequently, we have

x < e1+ 3
2x ·

s
r−s .

On the other hand, x ≥ 9 > e2. Hence e2 < e1+ 3
2x ·

s
r−s . Thus

x <
3
2
· s

r − s
≤ 3

2
(r − 1).

Further we observe from (15) and (9) that
gDr

2
≥ d + 1

2
dr−2 ≥ 3

2
2r−2 ≥ 3

2
(r − 1).

Hence x < gDr/2 + 1.

Proof of Theorem 4. Suppose that equation (1) with x < y, m ≡ 1
(mod 2), m ≤ 23 and n = 3 is satisfied. Then (5) and (6) are valid with
d = 2, s = 1 and 1 < r ≤ 11. Further g = 3/4 by (9) and Dr = 2r+ord2(r!)

by (15). Now we conclude (7) from Theorem 3. We re-write equation (1) as

(32) 4
(

xm − 1
x− 1

)
− 3 = (2y + 1)2

and

(33) x
xm−1 − 1

x− 1
= y(y + 1).

Let m = 17. If x ≡ 1 (mod 3), we observe that the left hand side of (33)
is ≡ 1 (mod 3). On the other hand, the right hand side of (33) is ≡ 0, 2
(mod 3). If x ≡ 3, 4, 5 (mod 7), we see that the left hand side of (33) is
≡ 1, 4, 3 (mod 7), respectively, whereas the right hand side of (33) is always
≡ 0, 2, 5, 6 (mod 7). Hence

(34) x 6≡ 1 (mod 3), x 6≡ 3, 4, 5 (mod 7) if m = 17.

Similarly we derive that

(35) x 6≡ 1 (mod 5), x 6≡ 1 (mod 7) if m = 19

and

(36) x 6≡ 1 (mod 3), x 6≡ 1, 3, 4, 5 (mod 7) if m = 23.

For every x satisfying (7), (34), (35) and (36), we check on a computer
that the square root of the left hand side of (32) is not an integer unless
(x, y, m) = (2, 5, 5) or (2, 90, 13).

4. Linear forms in logarithms. As mentioned in Section 1, the proof
of Theorem 2 depends on the theory of linear forms in logarithms. The
height of a non-zero rational number is the maximum of the absolute values
of its numerator and denominator. We state the following estimate of Baker
and Wüstholz [1] on linear forms in logarithms.
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Theorem A. Let n > 1 and α1, . . . , αn be positive rational numbers of
heights not exceeding A1, . . . , An, respectively , where Aj ≥ e for 1 ≤ j ≤ n.
Put

Ω =
n∏

j=1

log Aj .

Then the inequalities

0 < |b1 log α1 + . . . + bn log αn| < exp(−(16n)2(n+2)Ω log B)

have no solution in integers b1, . . . , bn of absolute values not exceeding B
where B ≥ e.

5. Proof of Theorems 1 and 2. Suppose that equation (1) with (5)
and (6) is satisfied.

Proof of Theorem 2. We denote by c1, . . . , c5 effectively computable
absolute positive constants. Let x < y. Then m > n and r > s. Further we
re-write equation (1) as

xm

x− 1
− yn

y − 1
=

1
x− 1

− 1
y − 1

.

Thus

0 <

∣∣∣∣ynx−m

(
x− 1
y − 1

)
− 1

∣∣∣∣ < x−m

which implies that

0 <

∣∣∣∣n log y −m log x + log
(

x− 1
y − 1

)∣∣∣∣ < 2x−m.

Now we apply Theorem A with A1 = A2 = A3 = y and B = m for deriving
that ∣∣∣∣n log y −m log x + log

(
x− 1
y − 1

)∣∣∣∣ ≥ exp(−c1(log y)3 log m).

Thus
m ≤ c2(log y)3(log m)/(log x)

which, together with (8), implies that

(37) m/r ≤ ms/r ≤ c3(log y)2(log m).

By (8), (7), (17) and d < m, we estimate

(38) y ≤ 2xr/s ≤ dc4r2/s < mc4r2/s.

Finally we combine (38) and (37) for deriving that

r2 ≥ c5
log y

log m
≥ c6

(
m

r(log m)3

)1/2
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implying that
r ≥ c7m

1/5(log m)−3/5.

Proof of Theorem 1. There is no loss of generality in assuming that x < y
implying that m > n and r > s. First we apply Theorem 2 to conclude that
m and n are bounded by an effectively computable number depending only
on r. Then we conclude from (7) and (8) that x and y are bounded by an
effectively computable number depending only on r.
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