A generalization of Maillet and Demyanenko determinants

by
Mikihito Hirabayashi (Ishikawa)

1. Introduction. Let K be an imaginary abelian number field with conductor m and of degree $[K: \mathbb{Q}]=2 n$. Let Q_{K} be the unit index of K and w_{K} the number of roots of unity in K. Then the relative class number h_{K}^{*} of K is given by

$$
\begin{equation*}
h_{K}^{*}=Q_{K} w_{K} \prod_{\chi} \frac{1}{2 f(\chi)} \sum_{a=1}^{f(\chi)}(-\chi(a) a) \tag{1}
\end{equation*}
$$

where the product \prod_{χ} is taken over the odd primitive characters χ of K with conductor $f(\chi)$ (see Hasse [4]).

Several ways of representing the product in (1) by a determinant are known, some of them holding for certain types of fields only (see Carlitz and Olson [1], Hazama [5] and further references in Hirabayashi [6]). Here our main concern is a unified approach to the Maillet determinant on the one hand and to the Demyanenko determinant on the other hand. This approach relies on the " b-division vector" introduced by Girstmair [3]. We obtain a relative class number formula for an arbitrary imaginary abelian number field which generalizes formulae of Girstmair [2] and [6]. Tsumura [7] also generalized both type of determinant formulae, but his generalization for the Demyanenko determinant requires the oddness of the conductor.
2. Lemma obtained by the b-division vector. In this section we state one of the results of [3] which we need to describe our results.

For $m \in \mathbb{Z}, m \geq 3, m \not \equiv 2 \bmod 4$ let $G_{m}=(\mathbb{Z} / m \mathbb{Z})^{\times}$be the prime residue group mod m and H a subgroup of G_{m} of relative index $q=\left[G_{m}\right.$: $H]=\left|G_{m} / H\right|$. We assume that H does not contain the class $\overline{-1}$, letting $\bar{x}=x+m \mathbb{Z}$ for $x \in \mathbb{Z}$.

[^0]For a class $C \in G_{m} / H$ and for an integer $b, b \geq 2, m \nmid b$, let

$$
S_{C}^{(b)}=\sum_{\bar{k} \in C, 0<k<m}\left[\frac{b k}{m}\right],
$$

where $[x]$ denotes the integral part of a real number x, and let

$$
S^{(b)}=\frac{1}{q} \sum_{C \in G_{m} / H} S_{C}^{(b)} \quad \text { and } \quad T_{C}^{(b)}=S_{C}^{(b)}-S^{(b)} .
$$

Then we have

$$
\begin{equation*}
T_{-C}^{(b)}=-T_{C}^{(b)}, \tag{2}
\end{equation*}
$$

where $-C=\left\{\overline{-x} \in G_{m}: \bar{x} \in C\right\}$.
Since H does not contain -1 , letting $n=q / 2$, we can take classes $C_{1}, C_{2}, \ldots, C_{n}$ of G_{m} / H which satisfy

$$
G_{m} / H=\left\{C_{1},-C_{1}, C_{2},-C_{2}, \ldots, C_{n},-C_{n}\right\} .
$$

Then $R=\left\{C_{1}, \ldots, C_{n}\right\}$ can be regarded as a complete system of representatives for $G_{m} /(H\{\overline{ \pm 1}\})$. We assume $R \ni H$.

We call the vector $T^{(b)}=\left(T_{C}^{(b)}\right)_{C \in R}$ the b-division vector of G_{m} / H. (For an explanation of this name, see [3].)

When a Dirichlet character χ is defined $\bmod m$, we sometimes use χ_{m} instead of χ. We denote by χ_{f} the primitive character corresponding to χ.

For a Dirichlet character $\chi=\chi_{m}$ let

$$
B_{\chi}=B_{\chi_{m}}=\frac{1}{m} \sum_{\substack{k=1 \\(k, m)=1}}^{m} \chi(k) k .
$$

Then we have

$$
B_{\chi_{m}}=\prod_{p \mid m}\left(1-\chi_{f}(p)\right) \cdot B_{\chi_{f}},
$$

where the product $\prod_{p \mid m}$ is taken over the primes p dividing m.
For integers m and b we let $m_{b}=(m, b)$ be the greatest common divisor of m and b, and let $m^{\prime}=m / m_{b}, b^{\prime}=b / m_{b}$.

Lemma 1 ([3, (17)-(20)]). Let the notation be as above. Then, for an odd character $\chi=\chi_{m}$, we have

$$
\frac{1}{2} c_{\chi}(b) B_{\bar{\chi}_{f}}=\sum_{C \in R} \bar{\chi}(C) T_{C}^{(b)}
$$

where $\bar{\chi}$ is the complex conjugate character of χ, i.e., $\bar{\chi}(C)=\overline{\chi(C)}$ and
$c_{\chi}(b)$ is defined by

$$
c_{\chi}(b)= \begin{cases}b \prod_{p \mid m}\left(1-\bar{\chi}_{f}(p)\right) & \text { if } f(\chi) \nmid m^{\prime} \\ m_{b} \prod_{p \mid m^{\prime}}\left(1-\bar{\chi}_{f}(p)\right) \cdot c^{\prime} & \text { if } f(\chi) \mid m^{\prime}\end{cases}
$$

with

$$
c^{\prime}=b^{\prime} \prod_{p \mid m, p \nmid m^{\prime}}\left(1-\bar{\chi}_{f}(p)\right)-\chi_{m^{\prime}}\left(b^{\prime}\right) \prod_{p \mid m, p \nmid m^{\prime}}\left(1-\frac{1}{p}\right),
$$

$\chi_{m^{\prime}}$ being the Dirichlet character mod m^{\prime} belonging to χ.
As usual, we let $\prod_{p \mid m, p \nmid m^{\prime}}$ be equal to 1 if there is no prime p such that $p \mid m$ and $p \nmid m^{\prime}$.
3. Results. Let K be an imaginary abelian number field with conductor m. Let H be the subgroup of $G_{m}=(\mathbb{Z} / m \mathbb{Z})^{\times}$corresponding to K. Let X^{-} be the set of odd characters defined $\bmod m$ of K. Put

$$
c_{K}^{*}(b)=\prod_{\chi \in X^{-}} c_{\chi}(b)
$$

Theorem. Let K be an imaginary abelian number field with conductor m and of degree $2 n$. Let $b \geq 2$ be an integer not divisible by m. Then

$$
\begin{align*}
c_{K}^{*}(b) h_{K}^{*} & =(-1)^{n} Q_{K} w_{K} \operatorname{det}\left(T_{C_{1} C_{2}^{-1}}^{(b)}\right)_{C_{1}, C_{2} \in R} \tag{3}\\
& = \pm Q_{K} w_{K} \operatorname{det}\left(T_{C_{1} C_{2}}^{(b)}\right)_{C_{1}, C_{2} \in R} \tag{4}
\end{align*}
$$

When $b=m+1$ and $b=2$, we have the following Corollary, where the determinants $\operatorname{det}\left(T_{C_{1} C_{2}^{-1}}^{(b)}\right)_{C_{1}, C_{2} \in R}$ turn out to be the Maillet determinant and the Demyanenko determinant, respectively.

For $c \in \mathbb{Z},(c, m)=1$ we let c^{-1} be an integer such that $c c^{-1} \equiv 1 \bmod m$ and let

$$
C(c)=|\bar{c} H \cap\{a \bmod m: 1 \leq a<m / 2\}| .
$$

Let

$$
g_{K}^{*}=\prod_{\chi \in X^{-}} \prod_{p \mid m}\left(1-\chi_{f}(p)\right), \quad F_{K}=\prod_{\chi \in X^{-}}\left(2-\chi_{f}(2)\right)
$$

and

$$
e_{K}= \begin{cases}1 & \text { if } m \text { is odd, or if } m \text { is even and } \chi((m-2) / 2)=+1 \text { for every } \\ & \chi \in X^{-}, \\ 0 & \text { otherwise }\end{cases}
$$

Corollary. Let K be an imaginary abelian number field with conductor m and of degree $2 n$. Then we have the following formulae of [2] and [6],
respectively:
(5) $g_{K}^{*} h_{K}^{*}=(-1)^{n} \frac{Q_{K} w_{K}}{m^{n}} \operatorname{det}\left(\sum_{\bar{k} \in C_{1} C_{2}^{-1}, 0<k<m}\left(k-\frac{m}{2}\right)\right)_{C_{1}, C_{2} \in R}$,

$$
\begin{equation*}
e_{K} g_{K}^{*} h_{K}^{*}=(-1)^{n} \frac{Q_{K} w_{K}}{F_{K}} \operatorname{det}\left(\frac{\varphi(m)}{2 q}-C\left(c_{1} c_{2}^{-1}\right)\right)_{C_{1}, C_{2} \in R}, \tag{6}
\end{equation*}
$$

where φ is Euler's totient function and $C_{i}=\bar{c}_{i} H$ for $i=1,2$.

4. Proofs of Theorem and Corollary

Proof of Theorem. By the formula (1) and Lemma 1 we have

$$
\begin{aligned}
c_{K}^{*}(b) h_{K}^{*} & =Q_{K} w_{K} \prod_{\chi \in X^{-}}\left(-\frac{1}{2} c_{\chi}(b) B_{\bar{\chi}_{f}}\right) \\
& =(-1)^{n} Q_{K} w_{K} \prod_{\chi \in X^{-}} \sum_{C \in R} \bar{\chi}(C) T_{C}^{(b)} .
\end{aligned}
$$

Here we fix one odd character χ_{1} of K. Then

$$
\begin{aligned}
\prod_{\chi \in X^{-}} \sum_{C \in R} \bar{\chi}(C) T_{C}^{(b)} & =\prod_{\chi \in X^{-}} \sum_{C \in R} \chi(C) T_{C}^{(b)} \\
& =\prod_{\chi_{0} \in X^{+}} \sum_{C \in R}\left(\chi_{0}(C) \cdot \chi_{1}(C) T_{C}^{(b)}\right)
\end{aligned}
$$

where X^{+}is the group of even characters of K.
Noting that R is regarded as a complete system of representatives of the $\operatorname{group} G_{m} /(H\{\overline{ \pm 1}\})$ and that X^{+}is the group of characters of $G_{m} /(H\{\overline{ \pm 1}\})$, by the group determinant formula (cf. [4, p. 23]) we have

$$
\begin{aligned}
\prod_{\chi \in X^{-}} \sum_{C \in R} \bar{\chi}(C) T_{C}^{(b)} & =\operatorname{det}\left(\chi_{1}\left(C_{1} C_{2}^{-1}\right) T_{C_{1} C_{2}^{-1}}^{(b)}\right)_{C_{1}, C_{2} \in R} \\
& =\operatorname{det}\left(T_{C_{1} C_{2}^{-1}}^{(b)}\right)_{C_{1}, C_{2} \in R} .
\end{aligned}
$$

Since $\left\{C^{-1} \in G_{m} / H: C \in R\right\}$ is also a complete system of representatives of $G_{m} /(H\{ \pm 1\})$, by the formula (2) we have

$$
\operatorname{det}\left(T_{C_{1} C_{2}^{-1}}^{(b)}\right)_{C_{1}, C_{2} \in R}= \pm \operatorname{det}\left(T_{C_{1} C_{2}}^{(b)}\right)_{C_{1}, C_{2} \in R} .
$$

Thus we get the desired formulae (3) and (4).
For the proof of the Corollary we need
Lemma 2. Suppose that the conductor m of an imaginary abelian number field K is even. Then, for an odd character χ of $K, \chi((m-2) / 2)=+1$ if and only if the 2 -part of the conductor $f(\chi)$ coincides with that of m.

Proof. If $f(\chi)$ divides $m / 2$, then $\chi((m-2) / 2)=\chi(-1)=-1$.
Conversely, we assume that the 2-part of the conductor $f(\chi)$ coincides with that of m. Let the character χ be decomposed into the characters ξ_{1} and ξ_{2} with 2-power conductor and odd conductor, respectively: $\chi=\xi_{1} \xi_{2}$.

If $4 \| f(\chi)$, then $\xi_{1}((m-2) / 2)=\xi_{2}((m-2) / 2)=+1$ and therefore $\chi((m-2) / 2)=+1$.

If $8 \mid f(\chi)$, then $\xi_{1}((m-2) / 2)=\xi_{2}((m-2) / 2)=-1$ or +1 according as $\xi_{1}(-1)=+1$ or -1 . Hence we have $\chi((m-2) / 2)=+1$.

Proof of Corollary. First we consider the case of $b=m+1$. As shown in [3], we have

$$
S^{(b)}=\frac{m \varphi(m)}{2 q} \quad \text { and } \quad S_{C}^{(m+1)}=\sum_{\bar{k} \in C, 0<k<m} k
$$

Therefore,

$$
\begin{equation*}
T_{C}^{(m+1)}=S_{C}^{(m+1)}-S^{(m+1)}=\sum_{\bar{k} \in C, 0<k<m}\left(k-\frac{m}{2}\right) . \tag{7}
\end{equation*}
$$

On the other hand, since $m^{\prime}=m$ and $b^{\prime}=b$, by Lemma 1 we have

$$
c_{\chi}(b)=m_{b} \prod_{p \mid m^{\prime}}\left(1-\bar{\chi}_{f}(p)\right) \cdot c^{\prime}=m \prod_{p \mid m}\left(1-\bar{\chi}_{f}(p)\right) .
$$

Hence $c_{K}^{*}(b)=m^{n} g_{K}^{*}$.
Thus, by the formulae (3) and (7) we obtain

$$
m^{n} g_{K}^{*} h_{K}^{*}=(-1)^{n} Q_{K} w_{K} \operatorname{det}\left(\sum_{\bar{k} \in C_{1} C_{2}^{-1}, 0<k<m}\left(k-\frac{m}{2}\right)\right)_{C_{1}, C_{2} \in R}
$$

which is our desired formula (5).
Secondly we consider the case of $b=2$. By [3], we have

$$
T_{C}^{(2)}=S_{C}^{(2)}-\frac{\varphi(m)}{2 q}
$$

and

$$
S_{C}^{(2)}=|\{\bar{k} \in C: m / 2<k<m\}|=\frac{\varphi(m)}{q}-C(c),
$$

where $C=\bar{c} H$. Consequently, we have

$$
\begin{equation*}
T_{C}^{(2)}=\frac{\varphi(m)}{2 q}-C(c) \quad \text { for } C=\bar{c} H \tag{8}
\end{equation*}
$$

Now we let m be odd. Since $m^{\prime}=m, b^{\prime}=2$, it follows from Lemma 1 that

$$
c_{\chi}(b)=\prod_{p \mid m}\left(1-\bar{\chi}_{f}(p)\right) \cdot(2-\chi(2))
$$

and hence $c_{K}^{*}(b)=g_{K}^{*} F_{K}$.

Thus, by the formulae (3) and (8) we obtain

$$
F_{K} g_{K}^{*} h_{K}^{*}=(-1)^{n} Q_{K} w_{K} \operatorname{det}\left(\frac{\varphi(m)}{2 q}-C\left(c_{1} c_{2}^{-1}\right)\right)_{C_{1}, C_{2} \in R},
$$

where $C_{1}=\bar{c}_{1} H$ and $C_{2}=\bar{c}_{2} H$.
Because of the oddness of m we have $e_{K}=1$. Thus we get the formula (6) under this condition.

Next we let m be even. Then we have $m^{\prime}=m / 2, b^{\prime}=1$.
If for some odd character χ of K the conductor $f(\chi)$ divides m^{\prime}, then $\chi((m-2) / 2)=-1$ and so $e_{K}=0$.

On the other hand, by Lemma 1 we have

$$
c_{\chi}(b)=2 \prod_{p \mid m^{\prime}}\left(1-\bar{\chi}_{f}(p)\right) \cdot c^{\prime}
$$

and $c^{\prime}=0$. Hence, $c_{K}^{*}(b)=0$. Then we see by the Theorem that $\operatorname{det}\left(T_{C_{1} C_{2}^{-1}}^{(2)}\right)$ $=0$. Thus we have proved the formula (6) under this condition.

Finally, we suppose that for every $\chi \in X^{-}$the 2-part of the conductor $f(\chi)$ coincides with that of m. Then it follows from Lemma 1 that

$$
c_{\chi}(b)=2 \prod_{p \mid m}\left(1-\bar{\chi}_{f}(p)\right) \quad \text { for every } \chi \in X^{-}
$$

and hence $c_{K}^{*}(b)=2^{n} g_{K}^{*}$. Consequently, from (3) and (8) we obtain

$$
2^{n} g_{K}^{*} h_{K}^{*}=(-1)^{n} Q_{K} w_{K} \operatorname{det}\left(\frac{\varphi(m)}{2 q}-C\left(c_{1} c_{2}^{-1}\right)\right)_{C_{1}, C_{2} \in R},
$$

where $C_{1}=\bar{c}_{1} H$ and $C_{2}=\bar{c}_{2} H$.
By Lemma 2 we have $e_{K}=1$. And under this condition we get $F_{K}=2^{n}$. Thus we obtain the formula (6).

Acknowledgements. I would like to express my sincere thanks to Professor Kurt Girstmair for posing this problem and many valuable suggestions. I would also like to express my sincere thanks to the referee for many valuable suggestions which improved this paper.

References

[1] L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc. 6 (1955), 265-269.
[2] K. Girstmair, The relative class numbers of imaginary cyclic fields of degrees 4, 6, 8 and 10, Math. Comp. 61 (1993), 881-887.
[3] -, Class number factors and distribution of residues, Abh. Math. Sem. Univ. Hamburg 67 (1997), to appear.
[4] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, 1952 (reproduction: Springer, 1985).
[5] F. Hazama, Demjanenko matrix, class number, and Hodge group, J. Number Theory 34 (1990), 174-177.
[6] M. Hirabayashi, A relative class number formula for an imaginary abelian field by means of Demjanenko matrix, in: Proceedings of the Conference on Analytic and Elementary Number Theory (Vienna, July 18-20, 1996), W. G. Nowak and J. Schoißengeier (eds.), Universität Wien and Universität für Bodenkultur, 1997, 81-91.
[7] H. Tsumura, On Demjanenko's matrix and Maillet's determinant for imaginary abelian number fields, J. Number Theory 60 (1996), 70-79.

Kanazawa Institute of Technology
7-1, Ogigaoka, Nonoichi-machi
Ishikawa 921, Japan
E-mail: hira@neptune.kanazawa-it.ac.jp

Received on 24.3.1997
and in revised form on 18.8.1997

[^0]: 1991 Mathematics Subject Classification: Primary 11R29; Secondary 11R20.

