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1. Introduction. Let X be the semigroup of all finite abelian groups
with respect to the direct product ® and let & be the identity of X. For
G € Xand H € X, we use (G,H) to denote the group of maximal order in
X which is simultaneously a direct factor of G and H. We say that G and ‘H
are relatively prime if (G, H) = &. A direct factor D of G is called unitary if
D®& =G and (D,€) = &. The number of unitary factors of G is denoted
by ¢(G). In 1960, Cohen [2] proved

(1.1) > HG) = Ayzlogz + Ayz + O(Valog),
IG|<=z

where the summation is over all G in X of order |G| < x and the Aj are
some effective constants. After a study on Dirichlet’s series associated with
t(G), Krétzel [7] found a connection between (1.1) and the following three-
dimensional divisor problem:

(1.2) Z 1 = Bizlogz + Box + Bsvx + A(1,1,2; x),
nlnznggz

where the B; are some effective constants and A(1,1,2;z) is an error
term. Using exponential sum techniques, he showed that A(1,1,2;2) <
211/29(log )2, which implies

(1.3) Z t(G) = Ajzlogx + Asx + As/z + A(x)
|G|<z

with A(z) < z'/?(logz)?. This estimate was improved to A(z) <
23/8(log £)* by Schmidt [11], then to A(z) <. 277/2%8+¢ by Liu [9] and to
A(z) <. 22°/8%%¢ by Liu [10], where ¢ denotes an arbitrarily small positive
number.

1991 Mathematics Subject Classification: 11L07, 11N45.

(17]
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In this paper, we give a better bound.
THEOREM 1. For any € > 0, we have
A(1,1,2; ) < 22T/ and Az < a?T/131E,

For comparison, we have 29/80 = 0.3625 and 47/131 ~ 0.3587. From
[10], we know that in the proof of Theorem 1 the most difficult part is to
estimate the exponential sums of type

(1.4) Z ap Z Z (xh/(nins)),
h~H  ni~N; na~Na2
where |ay| < 1, e(t) := > and the notation h ~ H means cH < h < c'H
with some positive unspecified constants ¢, ¢’. Liu [10] has treated (1.4) by
combining Fouvry-Iwaniec’s method [3] and Kolesnik’s method [6].
We notice that via van der Corput’s B-process the sum (1.4) can be
transformed into bilinear exponential sums of type I,

Z Z Spm‘f( E@ZZ)

m~M nel(m)

where I(m) is a subinterval of [N, 2N]. Using the classical A, B process and
the well known AB theorem of Kolesnik (see Theorem 1 of [6] and Lemma 1.5
of [8]) we shall prove an estimate for T'(M, N) (see Theorem 3 below). In
addition we also use an idea of Jia ([5], Lemma 13) and Liu ([8], Lemma 2.4)
to investigate bilinear exponential sums of type II,

men?

=3 S Gt ( MW)

m~M n~N
Baker and Harman have simplified Jia-Liu’s argument to obtain a slightly
more general estimate for S(M, N) (see Theorem 2 of [1]) than those of Jia
and Liu. But all such results contain some restrictions on (X, M, N) and the
number of terms is relatively large; this is not convenient in applications.
Our result (see Theorem 2 below) essentially has the same power as their
estimates, but it is without restriction, more general and simpler in form.
Finally, it is worth indicating that we also need Theorem 7 of [12] and
Lemma 2.3 of [13] for the proof of Theorem 1.

2. Estimates for exponential sums. We first prove two estimates for
S = S(M, N), defined as in Section 1. In the sequel, the letter £y denotes a
suitably small positive number (depending on «, § and «; at most).

THEOREM 2. Let o, f € R with af(a—1)(6—1) #0, X >0, M > 1,
N>1, |pm| <1, |n] <1 and £ :=1og(24+ XMN). If (k, \) is an exponent
pair, then
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(2'1) S(M N) < {(X2+4KM8+10/{N9+11/€+)\)1/(12+16/€)
1 X L/6 ) p2/3 N3/4N/ (12+12k)
+ (XM3N4)1/5 4 (XM7N10)1/11
1 M2/3 N/ 1240/ (12412k)
+ MN1/2 + (X_1M14N23)1/22 + X_I/QMN}EQ,
(22) S(M, N) < {(XM3N4)1/5 + (X4M10N11)1/16 4 (XM7N10)1/11
+ MN1/2 + (X71M14N23>1/22 + X71/2MN}£2.
Proof. We begin in the same way as Jia [5], Liu [8], Baker and Harman
[1]. Without loss of generality, we suppose that § > 0 and L is sufficiently
large. Let @ € [£,N/L] be a parameter to be chosen later. By Cauchy’s
inequality and a “Weyl shift” ([4], Lemma 2.5), we have
(MN)?
Q
M3/2N q - - a
i X () X vt X m etan,

1<]q1|1<Q n+qi,n~N m~M

152 <

where t = t(n, q1) := (n+q1)’—n” and A := X/(M*>NP). Splitting the range
of ¢ into dyadic intervals and removing 1 — ¢; /Q by partial summation, we
get

2 21 3/2 -1
(23) ISP < (MNPQT + LMYANQT max [S(@1)]

where

S@) =Y > g, >, m Y e(Am®t).

q1~Q1 n+qi,n~N mn~M

If X(MN)~'Q1 > g9, by Lemma 2.2 of [12] we can transform the inner-
most sum to a sum over [ and then using Lemma 2.3 of [12] with n = m we
can estimate the corresponding error term. As a result, we obtain

SQU< Y Y buraBa X e(@ A )
q1~Q1 n+qi1,n~N ler

H{XMTINTIONY2 + MTENG,
+ (XT'TMNQ)Y? + (X 2MNHYV2) L,
where v 1= 1/(1—a), @ = |1—al-|a|*/0=) T := [c; AM*|t|, co AM*|t]]

and ¢; = ¢j(a) are some constants. Exchanging the order of summation and
estimating the sum over [ trivially, we find, for some [ < X(MN)~1Qy, the
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inequality

(24)  S(Q) < (XMTNT'QDY| SN g, be(@an) )

(n,q1)eD1 (1)
H{XMTINTIQNY2 + MTENG,
+(XTIMNQY)'? + (X 2MNY)2)L,
where Dy (I) is a suitable subregion of {(n,q1) : n ~ N, ¢ ~ Q1}. Let
S1(Q1) be the double sums on the right-hand side of (2.4). Using Lem-

ma 2.6 of [12] to relax the range of ¢;, we see that there exists a real number
6 independent of (n,q;) such that

$1Q) < LY | D nrgeBm)e(@(An )|
n~N- qivQr
If £ < @1 <@, using again Cauchy’s inequality and a “Weyl shift” with
Q2 < g0V Q1 yields
151(Q1)/L)? < (NQ1*Qy ' + NQ1Qy " Y [S2(q1, o)l
1<g2<Q2
where

2(q1,92) Z Z Untarta Vntq €(t1 (0,01, 42))

n~N q1+q2,q1~Q1

and t1(n, g1, g2) := GAVV{t(n, g1 +2)" — t(n, 1) }. Writing 0’ == n+q,
exchanging the order of summation and using Lemma 2.6 of [12], we can
deduce

S2(q1, 42) ZZ Uniggopre(tr(n’ — q1,q1,¢2))

(n QI)GDz
<L Y| Y el a)eTn’ g a)|
n’'~N q1NQ1

where T'(n', q1,q2) := t1(n'—q1, q1, q2), D2 is a suitable subregion of {(n’, ¢1):
n' ~ N, ¢1 ~ @1} and 0 is a real number independent of (n’, ;). A final
application of Cauchy’s inequality and a “Weyl shift” with Q3 = Q3 gives

192(q1, 42)/ L]? < (NQ1)?Q3 ' + NQ1Q3 ! Z Z 1S3(q1, g2, 43)|,
1<q3<Qs q1~Q1

where SS(Q17Q27(]3) = Zn//\/N < ( /)) and f(n,) = T(n/>QI7QQ) - T(n/v
g1+ qs,q2). It is easy to show that f(n’) satisfies the conditions of exponent
pair and f'(n') < XN72Q7 'q2q3 (' ~ N). Hence we have

S3(q1,q2,q3) < (XN2Q1'q2g3)"N* + (XN2Q7 'q2g3) 1,
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which implies
Sl(Ql) < {(XHN3—25+)\Q41171£Q§N)1/4
+ NQ1Q2_1/2 + (X_1N5Q?Q2_3)1/4}£7/4
provided @1 > £, Q2 < £9v/Q1. By Lemma 2.4(ii) of [12] optimizing Q2
over (0,e0v/Q1] yields
SI(QI) < {(XHN3+4I£+>\Q411+55)1/(4+6n) + N3/4+>\/(4+4I€)Q1
+ NQi’M‘ + (X72N10Q1)1/8}£7/4
provided Q1 > L. In view of the term N Qi’/ 4t/ 4. this inequality holds
trivially when @1 < L. Inserting the preceding estimate in (2.4) yields, for

any Ql S [1aQ]7
S(Ql) < {(X2+4HM7273I€N1+I€+)\Q?+8K)1/(4+6}<&)
+ X1/2M—1/2N1/4+/\/(4+4n)Qili/2
+(X2M72N2Q?>1/4+(X2M74N6Q%1)1/8+(XMlele?)l/2
+ MY2NQ, + (XflMNQl)l/Z + (X*QMN4)1/2}E7/4
= (Ey +Ey+ ...+ Eg) L7
Since by < Ej and Eg = (E3E8)1/5(M2Q1)_1/10, both E;5 and Eg are

superfluous. Replacing @1 by @ and inserting the bound obtained in (2.3),
we find, for any Q € [£, N/L],
(25) S < {(X2+4KZM4+6HN5+7KJ+>\Q2+2KZ)1/(8+12H)

X UA/2 NB/8HN (8+8R) 1/4

4 (X2M4N6Q)1/8 + (X2M8N14Q3)1/16

+ MNQ_1/2 + (X_1M2N3Q_1)1/2}£11/8,
where we have used the fact that (X 'M*N3Q~1)1/4 can be absorbed by
MNQ~Y2. In view of MNQ~'/2, the preceding estimate holds trivially
when @ € (0, £].

If X(MN)~'Q; < €9, we can remove m~/? by partial summation and
then estimate the sum over m by Kuz'min-Landau’s inequality ([4], The-
orem 2.1). Hence we see that (2.5) always holds for 0 < Q < N/L. Using
Lemma 2.4(ii) of [12] to optimize @ over (0, N/L] yields

S < {(X 2R 8H108 NO+11R+A) 1/ (124168)
(X2 108 N LHIBRAA )1/ (124165)
1 XL/ 2/ N3/ATA/ (12+4126)
+ M2/3N11/12+)\/(12+12H) + (XM3N4)1/5
4 (XM6N9)1/10 4 (XM7N10)1/11
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+ (X71M14N23)1/22 + MN1/2 + X*l/QMN}EQ

= (F1 —|— F2 —|— e + F10)£2.
Since

Fy = (Ff+3nF55ri)1/(6+8n)N—n(l—i—m—)\)/((4—}—4}-@)(6—&-85))
and Fy = (FIOF})Y/2TM~2/135 they are both superfluous. This proves
(2.1).

To prove (2.2), we take Qy = go min{y/Q1, (X 'N2Q;)'/3} such that

lf'(n")] < 1/2 for n’ ~ N. Thus Kuz’min-Landau’s inequality gives

S3(q1,q2,q3) < (XN72Q 7 qags)™", from which we can deduce, as before,
the following inequality:

5’<<{(XM3N4)1/5+(XM6N9)1/10+(X4M10N11)1/16
+ (X2M10N13)1/16 4 (XM7N10)1/11 + (X—1M14N23)1/22
+ MNY2 4 XYV2MN + MY2N} L2
= (G1 +Go+ ...+ Go)L?.
It is mnot difficult to verify that Gy = (GISGIM)Y2TM—2/135 G, =

(GG 28(MANT) =416 Gy = (G5GR)Y/3M~3/22, Thus Gy, Gy, Gy are
superfluous. This completes the proof. m

For T'=T(M,N) defined as in Section 1, we have the following result.

THEOREM 3. Let v, 3 € R with af(a—1)(f—1)(a+F—-1)(2a+F-2) # 0,
X>0M2>1,N>1,L:=1og(2+ XMN), |om| <1 and I(m) be a
subinterval of [N,2N]. Then

T(M, N) < {(X5M10N8)1/16 + (X3M10N12)1/16 + (XM2N3)1/4

4 (X3M14N18)1/22 + (XMGNQ)I/IO 4 (X7M30N24)1/40
+ (XMPN)YT 4+ MNY? £ X 1MN} L3,

Proof. If X < gyN, then T < X~ !MN by Kuz'min-Landau’s inequal-

ity. When X > ¢¢ N, using (2.3) with ,, = 1, we have, for any 1 < Q < gy,

2 21 3/2 -1
(2.6) TP < (MN)?Q™! + LMPPNQ™ max |T(Qu)l;

where
“t
Q)= XN S wo(xie)
q~Q1 n€li(q) meJ(n,q)

t(n,q) :== (n + q)® —nP, I(q) is a subinterval of [N,2N] and J(n,q) a
subinterval of [M,2M].



Unitary factors of finite abelian groups 23

If L := X(MN)™'Q; > ¢o, similarly to (2.4), we can prove, for some
I =1L,
T(@Qi) < (XMTINTIQ)Y? 303 elf(n,q))
(n,9)€D(1)
+H{MTENQ: + (XMTINTIQ
+ (X 2MNYHY2 4 (X'MNQ,)V?) L,
where f(n,q) = a(XQi/N)(1/L)*/ = {t(n,q)/(N°~1Q1)}/~*) and
D(!) is a suitable subregion of {(n,q) : n ~ N, ¢ ~ Q1}. It is easy to show
that f(n,q) satisfies the condition of Lemma 1.5 of [8] (which is a revised
form of Theorem 1 of Kolesnik [6]) with A = XN~1Q,/(NA~1Q)Y/(1=)
A = Q1/N. By this lemma with (F, X,Y) = (XN~1Q;, N,Q1), we obtain
the estimate
(2.7) T(Qu) < {(X°MN72QY)Y® + (X* M N2Q})Y/°
+ (XMleQ%)l/Q + (X3M74N4Q%1)1/8
4 (XM72N3Q§))1/4 + (X7M75N76Q%0)1/10
4 (X2M_2QZ)1/4 + (X—ZMN4)1/2 + ()(—1]\4’]\[@1)1/2}547
where we have used the fact that M~Y2NQ@Q; + (XM ~'N-1Q3)'/2 can be
absorbed by (XM 2N3Q%)V/* + (X2M~2Q7)!/* (in view of the hypothesis
X > EON).
If L < ¢y, the Kuz’'min-Landau inequality implies that (2.7) also holds.
Replacing @1 by @ and inserting into (2.6) yield
|T’2 < {(X5M6N4Q2)1/6 + (X3M6N8Q2)1/6 + (XM2N3>1/2
+ (X3M8N12Q3)1/8 + (XM4N7Q)1/4 + (X7M10N4Q10)1/10
4 (X2M4N4Q3)1/4 4 (]\4]\[)2@—1}£57
where we have eliminated two superfluous terms X 'M?N3Q~! and
(X~'M*N3Q~1)'/2 (which can be absorbed by (MN)?Q~"'). Using Lem-
ma 2.4(ii) of [12] to optimize @ over (0,e9N] gives the required result. This
concludes the proof. =

Next we shall apply Theorems 2 and 3 to treat
DD S SRR L Ly
m2 « « —a )
m1~M1 m2~M2 m3~M3 Ml IMQ ZMS 2
Mt me2ms 2
Srr = i Umae| X 1 2 3 >’
= 3OS S (X

mi~M1 mao~Mo mz~Msg

Sr:

which are general forms of (1.4). The following results will be used in the
proof of Theorem 1.
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COROLLARY 1. Let o € R with ajas(as+1) (a1 —jas—j5) #0 (j = 1,2),
X >0, M;>1, [gm,| <1, [ym,| <1 andletY :=2+ XM MyMs. If (5, \)
is an exponent pair, then for any e > 0,

Spp < [(X4HOR N O+ILA+N ) 8+10k ) rd6r)1/(12416x)
n X1/3Mf/4+>\/(12+12n)M22/3M§/3 + (XM ME M0
4 (X MO MMME) 4 X1/6M111/12+>\/(12+12n)M22/3M31/3
+ (XMIMH)Y? + (XEMP My ME)?2 + My M,
+ X Y2 MMy + XMy My M) Ye.
In particular, if X > Ms > M, then
(2.8)  Sp7 < {(X186)[407 350 1186)1/536
(X164 0385 328 \164Y1/492 | (X3 g8 1y ppd)L/10
MMM + (XM M)A
(2.9) S < {(XBMPMZMHY? 4 (X2M2 M3 Ms)'/*
(XXMM (X MAME M) YA YE
Proof. If M} := X/Ms5 < g, the Kuz’'min-Landau inequality implies
Sir < XMy My Ms.

Next we suppose M3 > €. As before, using Lemma 2.2 of [12] to the sum
over mg and estimating the corresponding error term by Lemma 2.3 there
with n = mq, we obtain

Srr < X Y2 M S+ (XY 2 My+ My Mo+ X Y2 My M+ X~ My My M3) log Y,
where
B, B2, /B2
mL " Ms~ M
S = ¢m1¢m2§ <O[2 1 2 3 >
DD m§ By P2 /P
m1~M1 m2~M2 m /\/M/ M11M22M3 ’

/B2
ml my
- T wbue(mx ),
mi~Mq mi NM’ M 1M ’
and ﬁj = aj/(1+a2) (] :~172)7 &2 = ‘14—@2’-’02’_”32, ’{ﬁml‘ < 17 "LZWW‘ < 17
[y | < 1 M o= Ma M3, €y = 303 1t 2y, Yz Emy - By Theorem 2 with
(M, N) = (M}, M) we estimate S to get the first assertion.
In particular taking (k,\) = BAQ(é, %) = (%, %) yields
Spr < {(X 186 MAOT \g350 p180Y1/536 4 (X164 ) 385 328 ) r164)1/492
+ OCMPMEM YO 1 (XM M)
4 (XSQMf67M§28M§64)1/492 4 (XM1M22)1/2
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4 (X2M123M214M38)1/22
+ MMy + X Y2 My My + XM My M3} Y
=: (H1 +Ho+ ...+ H10)Y€.
Since X > Mj > M, we have Hs < Ho, H7 < Hy, H; < Hg (8 < j < 10)
and thus Hs, H; (7 < j < 10) are superfluous. This proves (2.8).

The last inequality can be proved similarly by using Theorem 7 of [12]
with (My, Mo, M3) = (My, 1, MJ}). This completes the proof. m

COROLLARY 2. Let oj € R with aqas(a; —1) (o1 —2) (e +1) (o1 —aa — 1)
7é 0, X > 0, M] 2 1, ”l/]m2‘ S 1 andletY = 2—|—XM1M2M3 IfMg Z Ml,
then for any € > 0 we have
(2.10) Sp < {(X"MPM,O M) /C + (X°M* M,y Mg) /1
+ (X MPMEM2)Y* 4 (X3 M MI M3V
4 (X2M19M26M§l)1/10 4 (X17M124M230M310)1/40
+ (XOMPOMPOMHY (XM M2 + XM Mo M3} Ye,
(2.11) S < {(X P M M5? My)Y20 + (X2 M7 M3 M) /* + (X M3 Ms)'/*
+ (XM ME)YIS 4 My My + XMy My Ms} (log 2Y ).

Proof. As before we may suppose M} := X /M3 > g and prove
(2.12)  S; < X Y2 MsT
+ (XY2 My + My My + X Y2 MyMs + X~ My My Ms) log Y,
where
Bi,, B2, /B2
— ~ ., my'myimg
Tie 5SS i (aX )
my~My ma~Mas méEIg 1 2 3

I3 = [c3(mq /M71)* (ma/M2)*> M3, ca(my /M) (mg/M3)*? Mj),

and [3;, &g,lzmz,ﬁmg are defined as before, ¢; = ¢j(a2) are constants, g(m,)

is a monomial with |g(m1)| < 1. We define Emé and M/ in the same way as
in the proof of Corollary 1. Exchanging the order of summation, we have

_ m?lm/QBQ
To S Gy Y gtmie(aax RN,
méNMé mlell(m’g) 1 2

where I;(mb) is a subinterval of [M;,2M;]. Removing g(my) by partial
summation and estimating the double sum obtained by Theorem 3 with
(M7 N) = (Mé’Ml)v we find
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T < {(X5M18Mélo)1/l6+ <X3M112M£10)1/16+(XM13M52)1/4
4 (X3M118Mél4)1/22 4 (XMlgMéﬁ)l/lo 4 (X7M122M526)1/36
F(XMPMPYYT 4 M P MYy,

Inserting into (2.12) and noticing that the last four terms on the right-
hand side of (2.12) can be absorbed by (X M;M3)/?, we obtain (2.10). The
inequality (2.11) is (2.7) of [13] with (My, My, M3) = (Ms, My, Ms) and
(a1, a9, a3) = (g, a1, —az). This concludes the proof. m

3. Proof of Theorem 1. We shall prove only
(3.1) A(L1,2;2) < 2?T/13FE

since this implies A(x) <. 2*7/131%¢ by a simple convolution argument. For
this we recall some standard notations. Let u := (u1, u2, u3) be a permuta-
tion of (1,1,2) and let N := (N7, Np) € N2, We write ¢(t) := {t} — 1/2 ({t}
is the fractional part of t) and define

=3 (/g ),

where the summation condition of 3, is n{'ny>™" < x, ny(<)nae, g ~
Ny, ng ~ Na. The notation n;(<)ny means that ny = ny for u; < ug, and
ny < ng otherwise. It is well known that for proving (3.1) it suffices to verify

S(u,N;z) < 217/131%  for u=(1,1,2), (2,1,1), (1,2,1).

Since S(1,1,2,N;z) < z%/14+¢ (see [10], p. 263), it remains to consider
u = (2,1,1), (1,2,1). We shall prove the desired estimate for u = (2,1, 1)
in two cases according to the size of N7, which we shall formulate as two
lemmas. The case of u = (1,2,1) can be treated similarly (more easily).
We recall that we have Ny < Ny < G := x/(NENs), N1 Ny < z'/2 when

= (2,1,1). This fact will be used (implicitly) many times in the proofs of
Lemmas 3.1 and 3.2.

LEMMA 3.1. Foru=(2,1,1), we have

S(u,N; z) <. {(z'S6 NIFY/536 4 (zN2Y1/4 | (GAONT)/1I6 | 55/14y e
In particular, if Ny < 2M8/65% then S(u, N;z) <, x47/131+¢,

Proof. By Lemma 2.5 of [12], we have, for any H > 1,
(3.2) S(u,N;2) < H ' NNy + (log z) | Jnax H;'S(Hy, N,

where

S(Hy, N Z ap, Z Z (ha/(n2ng)), |an] < 1.

hNHo n1~N1 nQNNQ
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The inequalities (28) and (29) with (X, Ml,MQ,Mg) = (GHo,Nl,Ho,NQ)
imply

S(HO,N) < {(G186N{107N2186)1/536 + (GN1H0)1/2 + X1 + X2}H0x€7

S(Ho, N) < {(G*NIPNH))V? 1 (GNP N Ho) /4 + (GONYH)

+ (xNH)Y*Y Hoa®
= {Dl + D2 + D3 + (.Tle)l/4}H0$6,

with y; = (G3NFNFH; )10 and xy = (GPNPONSH;3)Y/?2, where we
have used the fact that (G164]\/*138‘:’]\72164)1/492 < (G186N{107N2186)1/536 (in
view of N7 < z'/%). From these, we deduce that for any Hy > 1,

S(Hy,N) < {(G186N£107N2186)1/536+(GN1HO)1/2
+ (&N} 4 Z Z Rj,k}HomE,
1<j<21<k<3
where R ;, := min{x;, Dy }. Since
Rii<(x 45D13)1/58 _ (x40N17)1/116
R12 ( 5D2)1/7 5/147
R, 3 < ( )1/6 ( 36N111)1/108’
R2 1 (X33D13)1/46 ( 28N119)1/92 < x5/14
Ry < (04 1/17 = (z 11Nf)1/34 < b/14
Ras < (x %1D§)1/14 = (z 24N123)1/84 < 25/14,
and (230 NJ1)1/108 < (40 NT)1/116 e have
S(Ho,N) < {(GISGN{lO7N2186)1/536 + (GN1H0)1/2
+ (.CEN12)1/4 + ($40Nf)1/116 + IB5/14}HQCC€.

Inserting into (3.2) and optimizing H by Lemma 2.4(iii) of [12] yield the
desired estimate. m

LEMMA 3.2. For u = (2,1,1), we have
S, Ni) < {(a VD)V 4 (@ /NPT 4 (21120
(@13 /N2YB0 | (55 N2 | 103/294) e
In particular, if Ny > 2'8/655 then S(u, N;z) <, x47/131+e,
Proof. Corollary 2 with (X, My, Mo, M3) = (GHy, N1, Hy, N3) gives
(3.3)  S(Ho,N) < {L(Ho) + (G°N{>N§Hy ")/1¢ + (GNPNFH )Y/
(G NINGHG )M (GENDNG H; )Y 1) Hoa®
=:{L(Hyp) + 01 + 02 + 03 + 04} Hyz",



28 J. Wu

(3.4)  S(Hy,N) < {(GPNINFHINY?6 4 (GENEN,Hy)'/4
+(GPNLH2)YA 4 (GUUNTHI) Y8 Hoae
=: {E) + Fa + B3 + (G"' N H) Y'Y Hya®,
where
L(Ho) = (GTNINGHo) /1% + (GNP NJOH) 14
+ (GPNIONG Ho)' /' (GNy Ho),
and we have used the fact that G_lNlNgHO_ 1 can be absorbed by

(GNPNZH; Y4 in (3.3), both Ny and G'N;NoHy' by (GEN.HE)'Y4
in (3.4). From (3.3) and (3.4), we deduce that for any Hy > 1,

S(Ho,N) < { L(Ho) + (GUNTHE)Y S + 37 37 85} Hoa®,
1<j<41<k<3
where S} := min{o;, Ej}. It is easy to verify that
Si1 < (oSSEI3)/101 = (570 NBY1/202 < 103/294
Sio < (04 E)V/5 = 27/20 < 5103/294,
13 < (05E3)1/9 = (13 /N2)1/3,
5271 032E113)1/35 — (3313/]\7{1)1/35,
Sa,2 <72E2)1/2 = (333/N1)1/87
)1/ = (/N
g2 E26)1/14T — (A8 N14)1/147 < 103/294

0§1E§)1/15 _ (x5N1)1/15 < 7103/294
U§1E§)1/13 — 29/26 < 5103/294

VAN VAN VAN VAN VAN VAN

&
[\v}
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o35 F20)1/81 — (52 N1T)1/162 < ;103/294
GIED = (26N;)1/18 < 5103/294
REDT = (a*/N1)/H,

and ('3 /N}HV/35 < (23 /N8, (25/Np)Y/ < (23 /Np)Y/8. Consequently,
we obtain, for any Hy > 1, the inequality

(o, N) < {L(Ho) + (GV NTH) ™ 4 (13 /N7) /50
+ (1:3/N1)1/8 + (1,5/Nil)1/12 + $103/294}H0.’L‘8.

Inserting this estimate in (3.2) and using Lemma 2.4(iii) of [12] to optimize
H, we find

S(u,Nyz) < {(a7 /N7 (27 /NDYYAT o (2t /N2
+ (m13/N12)1/36 + ($3/N1)1/8 + (335/]\7{1)1/12 + 33103/294}565.

Observing that (z3/N;)/® < (z'1/N})1/29 | we get the required estimate. m

NN N N N N N N N NN
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