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1. Introduction. Let X be the semigroup of all finite abelian groups
with respect to the direct product ⊗ and let E0 be the identity of X. For
G ∈ X and H ∈ X, we use (G,H) to denote the group of maximal order in
X which is simultaneously a direct factor of G and H. We say that G and H
are relatively prime if (G,H) = E0. A direct factor D of G is called unitary if
D ⊗ E = G and (D, E) = E0. The number of unitary factors of G is denoted
by t(G). In 1960, Cohen [2] proved

(1.1)
∑

|G|≤x
t(G) = A1x log x+A2x+O(

√
x log x),

where the summation is over all G in X of order |G| ≤ x and the Aj are
some effective constants. After a study on Dirichlet’s series associated with
t(G), Krätzel [7] found a connection between (1.1) and the following three-
dimensional divisor problem:

(1.2)
∑

n1n2n2
3≤x

1 = B1x log x+B2x+B3
√
x+∆(1, 1, 2;x),

where the Bj are some effective constants and ∆(1, 1, 2;x) is an error
term. Using exponential sum techniques, he showed that ∆(1, 1, 2;x) �
x11/29(log x)2, which implies

(1.3)
∑

|G|≤x
t(G) = A1x log x+A2x+A3

√
x+∆(x)

with ∆(x) � x11/29(log x)2. This estimate was improved to ∆(x) �
x3/8(log x)4 by Schmidt [11], then to ∆(x) �ε x

77/208+ε by Liu [9] and to
∆(x)�ε x

29/80+ε by Liu [10], where ε denotes an arbitrarily small positive
number.
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In this paper, we give a better bound.

Theorem 1. For any ε > 0, we have

∆(1, 1, 2;x)�ε x
47/131+ε and ∆(x)�ε x

47/131+ε.

For comparison, we have 29/80 = 0.3625 and 47/131 ≈ 0.3587. From
[10], we know that in the proof of Theorem 1 the most difficult part is to
estimate the exponential sums of type

(1.4)
∑

h∼H
ah

∑

n1∼N1

∑

n2∼N2

e(xh/(n2
1n2)),

where |ah| ≤ 1, e(t) := e2πit and the notation h ∼ H means cH < h ≤ c′H
with some positive unspecified constants c, c′. Liu [10] has treated (1.4) by
combining Fouvry–Iwaniec’s method [3] and Kolesnik’s method [6].

We notice that via van der Corput’s B-process the sum (1.4) can be
transformed into bilinear exponential sums of type I,

T (M,N) :=
∑

m∼M

∑

n∈I(m)

ϕme

(
X
mαnβ

MαNβ

)
,

where I(m) is a subinterval of [N, 2N ]. Using the classical A,B process and
the well known AB theorem of Kolesnik (see Theorem 1 of [6] and Lemma 1.5
of [8]) we shall prove an estimate for T (M,N) (see Theorem 3 below). In
addition we also use an idea of Jia ([5], Lemma 13) and Liu ([8], Lemma 2.4)
to investigate bilinear exponential sums of type II,

S(M,N) :=
∑

m∼M

∑

n∼N
ϕmψne

(
X
mαnβ

MαNβ

)
.

Baker and Harman have simplified Jia–Liu’s argument to obtain a slightly
more general estimate for S(M,N) (see Theorem 2 of [1]) than those of Jia
and Liu. But all such results contain some restrictions on (X,M,N) and the
number of terms is relatively large; this is not convenient in applications.
Our result (see Theorem 2 below) essentially has the same power as their
estimates, but it is without restriction, more general and simpler in form.
Finally, it is worth indicating that we also need Theorem 7 of [12] and
Lemma 2.3 of [13] for the proof of Theorem 1.

2. Estimates for exponential sums. We first prove two estimates for
S = S(M,N), defined as in Section 1. In the sequel, the letter ε0 denotes a
suitably small positive number (depending on α, β and αj at most).

Theorem 2. Let α, β ∈ R with αβ(α − 1)(β − 1) 6= 0, X > 0, M ≥ 1,
N ≥ 1, |ϕm| ≤ 1, |ψn| ≤ 1 and L := log(2+XMN). If (κ, λ) is an exponent
pair , then
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S(M,N)� {(X2+4κM8+10κN9+11κ+λ)1/(12+16κ)(2.1)

+X1/6M2/3N3/4+λ/(12+12κ)

+ (XM3N4)1/5 + (XM7N10)1/11

+M2/3N11/12+λ/(12+12κ)

+MN1/2 + (X−1M14N23)1/22 +X−1/2MN}L2,

S(M,N)� {(XM3N4)1/5 + (X4M10N11)1/16 + (XM7N10)1/11(2.2)

+MN1/2 + (X−1M14N23)1/22 +X−1/2MN}L2.

P r o o f. We begin in the same way as Jia [5], Liu [8], Baker and Harman
[1]. Without loss of generality, we suppose that β > 0 and L is sufficiently
large. Let Q ∈ [L, N/L] be a parameter to be chosen later. By Cauchy’s
inequality and a “Weyl shift” ([4], Lemma 2.5), we have

|S|2 � (MN)2

Q

+
M3/2N

Q

∑

1≤|q1|<Q

(
1− |q1|

Q

) ∑

n+q1,n∼N
ψn+q1ψn

∑

m∼M
m−1/2e(Amαt),

where t = t(n, q1) := (n+q1)β−nβ andA := X/(MαNβ). Splitting the range
of q1 into dyadic intervals and removing 1− q1/Q by partial summation, we
get

(2.3) |S|2 � (MN)2Q−1 + LM3/2NQ−1 max
1≤Q1≤Q

|S(Q1)|,

where

S(Q1) :=
∑

q1∼Q1

∑

n+q1,n∼N
ψn+q1ψn

∑

m∼M
m−1/2 e(Amαt).

If X(MN)−1Q1 ≥ ε0, by Lemma 2.2 of [12] we can transform the inner-
most sum to a sum over l and then using Lemma 2.3 of [12] with n = m we
can estimate the corresponding error term. As a result, we obtain

S(Q1)�
∑

q1∼Q1

∑

n+q1,n∼N
ψn+q1ψn

∑

l∈I
l−1/2 e(α̃(At)γ l1−γ)

+ {(XM−1N−1Q3
1)1/2 +M−1/2NQ1

+ (X−1MNQ1)1/2 + (X−2MN4)1/2}L,

where γ := 1/(1−α), α̃ = |1−α|·|α|α/(1−α), I := [c1AMα−1|t|, c2AMα−1|t|]
and cj = cj(α) are some constants. Exchanging the order of summation and
estimating the sum over l trivially, we find, for some l � X(MN)−1Q1, the
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inequality

S(Q1)� (XM−1N−1Q1)1/2
∣∣∣
∑∑

(n,q1)∈D1(l)

ψn+q1ψne(α̃(At)γ l1−γ)
∣∣∣(2.4)

+ {(XM−1N−1Q3
1)1/2 +M−1/2NQ1

+ (X−1MNQ1)1/2 + (X−2MN4)1/2}L,
where D1(l) is a suitable subregion of {(n, q1) : n ∼ N, q1 ∼ Q1}. Let
S1(Q1) be the double sums on the right-hand side of (2.4). Using Lem-
ma 2.6 of [12] to relax the range of q1, we see that there exists a real number
θ independent of (n, q1) such that

S1(Q1)� L
∑

n∼N

∣∣∣
∑

q1∼Q1

ψn+q1e(θq1)e(α̃(At)γ l1−γ)
∣∣∣.

If L ≤ Q1 ≤ Q, using again Cauchy’s inequality and a “Weyl shift” with
Q2 ≤ ε0

√
Q1 yields

|S1(Q1)/L|2 � (NQ1)2Q−1
2 +NQ1Q

−1
2

∑

1≤q2≤Q2

|S2(q1, q2)|,

where

S2(q1, q2) :=
∑

n∼N

∑

q1+q2,q1∼Q1

ψn+q1+q2ψn+q1e(t1(n, q1, q2))

and t1(n, q1, q2) := α̃Aγ l1−γ{t(n, q1 + q2)γ− t(n, q1)γ}. Writing n′ := n+ q1,
exchanging the order of summation and using Lemma 2.6 of [12], we can
deduce

S2(q1, q2) =
∑∑

(n′,q1)∈D2

ψn′+q2ψn′e(t1(n′ − q1, q1, q2))

� L
∑

n′∼N

∣∣∣
∑

q1∼Q1

e(θ′q1)e(T (n′, q1, q2))
∣∣∣,

where T (n′, q1, q2) := t1(n′−q1, q1, q2), D2 is a suitable subregion of {(n′, q1) :
n′ ∼ N, q1 ∼ Q1} and θ′ is a real number independent of (n′, q1). A final
application of Cauchy’s inequality and a “Weyl shift” with Q3 = Q2

2 gives

|S2(q1, q2)/L|2 � (NQ1)2Q−1
3 +NQ1Q

−1
3

∑

1≤q3≤Q3

∑

q1∼Q1

|S3(q1, q2, q3)|,

where S3(q1, q2, q3) :=
∑
n′∼N e(f(n′)) and f(n′) := T (n′, q1, q2) − T (n′,

q1 + q3, q2). It is easy to show that f(n′) satisfies the conditions of exponent
pair and f ′(n′) � XN−2Q−1

1 q2q3 (n′ ∼ N). Hence we have

S3(q1, q2, q3)� (XN−2Q−1
1 q2q3)κNλ + (XN−2Q−1

1 q2q3)−1,
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which implies

S1(Q1)� {(XκN3−2κ+λQ4−κ
1 Q3κ

2 )1/4

+NQ1Q
−1/2
2 + (X−1N5Q5

1Q
−3
2 )1/4}L7/4

provided Q1 ≥ L, Q2 ≤ ε0
√
Q1. By Lemma 2.4(ii) of [12] optimizing Q2

over (0, ε0
√
Q1] yields

S1(Q1)� {(XκN3+4κ+λQ4+5κ
1 )1/(4+6κ) +N3/4+λ/(4+4κ)Q1

+NQ
3/4
1 + (X−2N10Q7

1)1/8}L7/4

provided Q1 ≥ L. In view of the term NQ
3/4
1 L7/4, this inequality holds

trivially when Q1 ≤ L. Inserting the preceding estimate in (2.4) yields, for
any Q1 ∈ [1, Q],

S(Q1)� {(X2+4κM−2−3κN1+κ+λQ6+8κ
1 )1/(4+6κ)

+X1/2M−1/2N1/4+λ/(4+4κ)Q
3/2
1

+ (X2M−2N2Q5
1)1/4 +(X2M−4N6Q11

1 )1/8 +(XM−1N−1Q3
1)1/2

+M−1/2NQ1 + (X−1MNQ1)1/2 + (X−2MN4)1/2}L7/4

=: (E1 + E2 + . . .+ E8)L7/4.

Since E5 ≤ E3 and E6 = (E4
4E8)1/5(M2Q1)−1/10, both E5 and E6 are

superfluous. Replacing Q1 by Q and inserting the bound obtained in (2.3),
we find, for any Q ∈ [L, N/L],

S � {(X2+4κM4+6κN5+7κ+λQ2+2κ)1/(8+12κ)(2.5)

+X1/4M1/2N5/8+λ/(8+8κ)Q1/4

+ (X2M4N6Q)1/8 + (X2M8N14Q3)1/16

+MNQ−1/2 + (X−1M2N3Q−1)1/2}L11/8,

where we have used the fact that (X−1M4N3Q−1)1/4 can be absorbed by
MNQ−1/2. In view of MNQ−1/2, the preceding estimate holds trivially
when Q ∈ (0, L].

If X(MN)−1Q1 ≤ ε0, we can remove m−1/2 by partial summation and
then estimate the sum over m by Kuz’min–Landau’s inequality ([4], The-
orem 2.1). Hence we see that (2.5) always holds for 0 < Q ≤ N/L. Using
Lemma 2.4(ii) of [12] to optimize Q over (0, N/L] yields

S � {(X2+4κM8+10κN9+11κ+λ)1/(12+16κ)

+ (X2κM8+10κN11+13κ+λ)1/(12+16κ)

+X1/6M2/3N3/4+λ/(12+12κ)

+M2/3N11/12+λ/(12+12κ) + (XM3N4)1/5

+ (XM6N9)1/10 + (XM7N10)1/11
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+ (X−1M14N23)1/22 +MN1/2 +X−1/2MN}L2

=: (F1 + F2 + . . .+ F10)L2.

Since

F2 = (F 6+3κ
4 F 5κ

5 )1/(6+8κ)N−κ(1+κ−λ)/((4+4κ)(6+8κ))

and F6 = (F 16
5 F 11

8 )1/27M−2/135, they are both superfluous. This proves
(2.1).

To prove (2.2), we take Q2 = ε0 min{√Q1, (X−1N2Q1)1/3} such that
|f ′(n′)| ≤ 1/2 for n′ ∼ N . Thus Kuz’min–Landau’s inequality gives
S3(q1, q2, q3) � (XN−2Q−1

1 q2q3)−1, from which we can deduce, as before,
the following inequality:

S � {(XM3N4)1/5 + (XM6N9)1/10 + (X4M10N11)1/16

+ (X2M10N13)1/16 + (XM7N10)1/11 + (X−1M14N23)1/22

+MN1/2 +X−1/2MN +M1/2N}L2

=: (G1 +G2 + . . .+G9)L2.

It is not difficult to verify that G2 = (G16
1 G

11
6 )1/27M−2/135, G4 =

(G15
3 G

11
6 )1/26(M2N11)−1/416, G9 = (G5G

2
6)1/3M−3/22. Thus G2, G4, G9 are

superfluous. This completes the proof.

For T = T (M,N) defined as in Section 1, we have the following result.

Theorem 3. Let α, β ∈ R with αβ(α−1)(β−1)(α+β−1)(2α+β−2) 6= 0,
X > 0, M ≥ 1, N ≥ 1, L := log(2 + XMN), |ϕm| ≤ 1 and I(m) be a
subinterval of [N, 2N ]. Then

T (M,N)� {(X5M10N8)1/16 + (X3M10N12)1/16 + (XM2N3)1/4

+ (X3M14N18)1/22 + (XM6N9)1/10 + (X7M30N24)1/40

+ (XM5N5)1/7 +MN1/2 +X−1MN}L3.

P r o o f. If X ≤ ε0N , then T � X−1MN by Kuz’min–Landau’s inequal-
ity. When X ≥ ε0N , using (2.3) with ψn = 1, we have, for any 1 ≤ Q ≤ ε0N ,

(2.6) |T |2 � (MN)2Q−1 + LM3/2NQ−1 max
1≤Q1≤Q

|T (Q1)|,

where

T (Q1) :=
∑

q∼Q1

∑

n∈I1(q)

∑

m∈J(n,q)

m−1/2e

(
X
mαt(n, q)
MαNβ

)
,

t(n, q) := (n + q)β − nβ , I1(q) is a subinterval of [N, 2N ] and J(n, q) a
subinterval of [M, 2M ].
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If L := X(MN)−1Q1 ≥ ε0, similarly to (2.4), we can prove, for some
l � L,

T (Q1)� (XM−1N−1Q1)1/2
∣∣∣
∑∑

(n,q)∈D(l)

e(f(n, q))
∣∣∣

+ {M−1/2NQ1 + (XM−1N−1Q3
1)1/2

+ (X−2MN4)1/2 + (X−1MNQ1)1/2}L,
where f(n, q) := α̃(XQ1/N)(l/L)α/(α−1){t(n, q)/(Nβ−1Q1)}1/(1−α) and
D(l) is a suitable subregion of {(n, q) : n ∼ N, q ∼ Q1}. It is easy to show
that f(n, q) satisfies the condition of Lemma 1.5 of [8] (which is a revised
form of Theorem 1 of Kolesnik [6]) with A = XN−1Q1/(Nβ−1Q1)1/(1−α),
∆ = Q1/N . By this lemma with (F,X, Y ) = (XN−1Q1, N,Q1), we obtain
the estimate

T (Q1)� {(X5M−3N−2Q8
1)1/6 + (X3M−3N2Q8

1)1/6(2.7)

+ (XM−1NQ2
1)1/2 + (X3M−4N4Q11

1 )1/8

+ (XM−2N3Q5
1)1/4 + (X7M−5N−6Q20

1 )1/10

+ (X2M−2Q7
1)1/4 + (X−2MN4)1/2 + (X−1MNQ1)1/2}L4,

where we have used the fact that M−1/2NQ1 + (XM−1N−1Q3
1)1/2 can be

absorbed by (XM−2N3Q5
1)1/4 + (X2M−2Q7

1)1/4 (in view of the hypothesis
X ≥ ε0N).

If L ≤ ε0, the Kuz’min–Landau inequality implies that (2.7) also holds.
Replacing Q1 by Q and inserting into (2.6) yield

|T |2 � {(X5M6N4Q2)1/6 + (X3M6N8Q2)1/6 + (XM2N3)1/2

+ (X3M8N12Q3)1/8 + (XM4N7Q)1/4 + (X7M10N4Q10)1/10

+ (X2M4N4Q3)1/4 + (MN)2Q−1}L5,

where we have eliminated two superfluous terms X−1M2N3Q−1 and
(X−1M4N3Q−1)1/2 (which can be absorbed by (MN)2Q−1). Using Lem-
ma 2.4(ii) of [12] to optimize Q over (0, ε0N ] gives the required result. This
concludes the proof.

Next we shall apply Theorems 2 and 3 to treat

SI :=
∑

m1∼M1

∑

m2∼M2

∑

m3∼M3

ψm2e

(
X

mα1
1 mα2

2 m−α2
3

Mα1
1 Mα2

2 M−α2
3

)
,

SII :=
∑

m1∼M1

∑

m2∼M2

∑

m3∼M3

ϕm1ψm2e

(
X

mα1
1 mα2

2 m−α2
3

Mα1
1 Mα2

2 M−α2
3

)
,

which are general forms of (1.4). The following results will be used in the
proof of Theorem 1.
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Corollary 1. Let αj ∈ R with α1α2(α2+1)(α1−jα2−j) 6= 0 (j = 1, 2),
X > 0, Mj ≥ 1, |ϕm1 | ≤ 1, |ψm2 | ≤ 1 and let Y := 2+XM1M2M3. If (κ, λ)
is an exponent pair , then for any ε > 0,

SII � {(X4+6κM9+11κ+λ
1 M8+10κ

2 M4+6κ
3 )1/(12+16κ)

+X1/3M
3/4+λ/(12+12κ)
1 M

2/3
2 M

1/3
3 + (X3M8

1M
6
2M

4
3 )1/10

+ (X5M20
1 M14

2 M8
3 )1/22 +X1/6M

11/12+λ/(12+12κ)
1 M

2/3
2 M

1/3
3

+ (XM1M
2
2 )1/2 + (X2M23

1 M14
2 M8

3 )1/22 +M1M2

+X−1/2M2M3 +X−1M1M2M3}Y ε.
In particular , if X ≥M3 ≥M1, then

SII � {(X186M407
1 M350

2 M186
3 )1/536(2.8)

+ (X164M385
1 M328

2 M164
3 )1/492 + (X3M8

1M
6
2M

4
3 )1/10

+ (X5M20
1 M14

2 M8
3 )1/22 + (XM1M

2
2 )1/2}Y ε,

SII � {(X13M15
1 M22

2 M4
3 )1/26 + (X2M2

1M
3
2M3)1/4(2.9)

+ (X9M11
1 M18

2 )1/18 + (XM4
1M

3
2M3)1/4}Y ε.

P r o o f. If M ′3 := X/M3 ≤ ε0, the Kuz’min–Landau inequality implies

SII � X−1M1M2M3.

Next we suppose M ′3 ≥ ε0. As before, using Lemma 2.2 of [12] to the sum
over m3 and estimating the corresponding error term by Lemma 2.3 there
with n = m1, we obtain

SII � X−1/2M3S+(X1/2M2+M1M2+X−1/2M2M3+X−1M1M2M3) log Y,

where

S :=
∑

m1∼M1

∑

m2∼M2

∑

m′3∼M ′3
ϕ̃m1 ψ̃m2ξm′3e

(
α̃2X

mβ1
1 mβ2

2 m′β2
3

Mβ1
1 Mβ2

2 M ′β2
3

)

=
∑

m1∼M1

∑

m′2∼M ′2
ϕ̃m1 ξ̃m′2e

(
α̃2X

mβ1
1 m′β2

2

Mβ1
1 M ′β2

2

)
,

and βj := αj/(1+α2) (j = 1, 2), α̃2 := |1+α2|·|α2|−β2 , |ϕ̃m1 | ≤ 1, |ψ̃m2 | ≤ 1,
|ξm′3 | ≤ 1, M ′2 := M2M

′
3, ξ̃m′2 :=

∑∑
m2m′3=m′2

ψ̃m2ξm′3 . By Theorem 2 with
(M,N) = (M ′2,M1) we estimate S to get the first assertion.

In particular taking (κ, λ) = BA2
(

1
6 ,

4
6

)
=
(

11
30 ,

16
30

)
yields

SII � {(X186M407
1 M350

2 M186
3 )1/536 + (X164M385

1 M328
2 M164

3 )1/492

+ (X3M8
1M

6
2M

4
3 )1/10 + (X5M20

1 M14
2 M8

3 )1/22

+ (X82M467
1 M328

2 M164
3 )1/492 + (XM1M

2
2 )1/2
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+ (X2M23
1 M14

2 M8
3 )1/22

+M1M2 +X−1/2M2M3 +X−1M1M2M3}Y ε
=: (H1 +H2 + . . .+H10)Y ε.

Since X ≥ M3 ≥ M1, we have H5 ≤ H2, H7 ≤ H4, Hj ≤ H6 (8 ≤ j ≤ 10)
and thus H5, Hj (7 ≤ j ≤ 10) are superfluous. This proves (2.8).

The last inequality can be proved similarly by using Theorem 7 of [12]
with (M1,M2,M3) = (M1, 1,M ′2). This completes the proof.

Corollary 2. Let αj ∈ R with α1α2(α1−1)(α1−2)(α2 +1)(α1−α2−1)
6= 0, X > 0, Mj ≥ 1, |ψm2 | ≤ 1 and let Y := 2 +XM1M2M3. If M3 ≥M1,
then for any ε > 0 we have

SI � {(X7M8
1M

10
2 M6

3 )1/16 + (X5M12
1 M10

2 M6
3 )1/16(2.10)

+ (XM3
1M

2
2M

2
3 )1/4 + (X3M9

1M
7
2M

4
3 )1/11

+ (X2M9
1M

6
2M

4
3 )1/10 + (X17M24

1 M30
2 M10

3 )1/40

+ (X5M10
1 M10

2 M4
3 )1/14 + (XM1M

2
2 )1/2 +X−1M1M2M3}Y ε,

SI � {(X15M11
1 M22

2 M4
3 )1/26 + (X2M2

1M
3
2M3)1/4 + (X3M3

2M3)1/4(2.11)

+ (X11M7
1M

18
2 )1/18 +M2M3 +X−1M1M2M3}(log 2Y )4.

P r o o f. As before we may suppose M ′3 := X/M3 ≥ ε0 and prove

SI � X−1/2M3T(2.12)

+ (X1/2M2 +M1M2 +X−1/2M2M3 +X−1M1M2M3) log Y,

where

T :=
∑

m1∼M1

∑

m2∼M2

∑

m′3∈I3
g(m1)ψ̃m2ξm′3e

(
α̃2X

mβ1
1 mβ2

2 m′β2
3

Mβ1
1 Mβ2

2 M ′β2
3

)
,

I3 := [c3(m1/M1)α1(m2/M2)α2M ′3, c4(m1/M1)α1(m2/M2)α2M ′3],

and βj , α̃2, ψ̃m2 , ξm′3 are defined as before, cj = cj(α2) are constants, g(m1)

is a monomial with |g(m1)| ≤ 1. We define ξ̃m′2 and M ′2 in the same way as
in the proof of Corollary 1. Exchanging the order of summation, we have

T =
∑

m′2∼M ′2
ξ̃m′2

∑

m1∈I1(m′2)

g(m1)e
(
α̃2X

mβ1
1 m′β2

2

Mβ1
1 M ′2

β2

)
,

where I1(m′2) is a subinterval of [M1, 2M1]. Removing g(m1) by partial
summation and estimating the double sum obtained by Theorem 3 with
(M,N) = (M ′2,M1), we find
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T � {(X5M8
1M

′10
2 )1/16 + (X3M12

1 M ′10
2 )1/16 + (XM3

1M
′2
2 )1/4

+ (X3M18
1 M ′14

2 )1/22 + (XM9
1M

′6
2 )1/10 + (X7M22

1 M ′26
2 )1/36

+ (XM5
1M

′5
2 )1/7 +M

1/2
1 M ′2}Y ε.

Inserting into (2.12) and noticing that the last four terms on the right-
hand side of (2.12) can be absorbed by (XM1M

2
2 )1/2, we obtain (2.10). The

inequality (2.11) is (2.7) of [13] with (M1,M2,M3) = (M2,M1,M3) and
(α1, α2, α3) = (α2, α1,−α2). This concludes the proof.

3. Proof of Theorem 1. We shall prove only

(3.1) ∆(1, 1, 2;x)�ε x
47/131+ε,

since this implies ∆(x)�ε x
47/131+ε by a simple convolution argument. For

this we recall some standard notations. Let u := (u1, u2, u3) be a permuta-
tion of (1, 1, 2) and let N := (N1, N2) ∈ N2. We write ψ(t) := {t}− 1/2 ({t}
is the fractional part of t) and define

S(u,N;x) :=
∑

1
ψ((x/(nu1

1 nu2
2 ))1/u3),

where the summation condition of
∑

1 is nu1
1 nu2+u3

2 ≤ x, n1(≤)n2, n1 ∼
N1, n2 ∼ N2. The notation n1(≤)n2 means that n1 = n2 for u1 < u2, and
n1 < n2 otherwise. It is well known that for proving (3.1) it suffices to verify

S(u,N;x)� x47/131+ε for u = (1, 1, 2), (2, 1, 1), (1, 2, 1).

Since S(1, 1, 2,N;x) � x5/14+ε (see [10], p. 263), it remains to consider
u = (2, 1, 1), (1, 2, 1). We shall prove the desired estimate for u = (2, 1, 1)
in two cases according to the size of N1, which we shall formulate as two
lemmas. The case of u = (1, 2, 1) can be treated similarly (more easily).
We recall that we have N1 ≤ N2 ≤ G := x/(N2

1N2), N1N2 ≤ x1/2 when
u = (2, 1, 1). This fact will be used (implicitly) many times in the proofs of
Lemmas 3.1 and 3.2.

Lemma 3.1. For u = (2, 1, 1), we have

S(u,N;x)�ε {(x186N35
1 )1/536 + (xN2

1 )1/4 + (x40N7
1 )1/116 + x5/14}xε.

In particular , if N1 ≤ x118/655, then S(u,N;x)�ε x
47/131+ε.

P r o o f. By Lemma 2.5 of [12], we have, for any H ≥ 1,

(3.2) S(u,N;x)� H−1N1N2 + (log x) max
1≤H0≤H

H−1
0 |S(H0,N)|,

where

S(H0,N) :=
∑

h∼H0

ah
∑

n1∼N1

∑

n2∼N2

e(hx/(n2
1n2)), |ah| ≤ 1.
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The inequalities (2.8) and (2.9) with (X,M1,M2,M3) = (GH0, N1,H0, N2)
imply

S(H0,N)� {(G186N407
1 N186

2 )1/536 + (GN1H0)1/2 + χ1 + χ2}H0x
ε,

S(H0,N)� {(G13N15
1 N4

2H
9
0 )1/26 + (G2N2

1N2H0)1/4 + (G9N11
1 H9

0 )1/18

+ (xN2
1 )1/4}H0x

ε

=: {D1 +D2 +D3 + (xN2
1 )1/4}H0x

ε,

with χ1 := (G3N8
1N

4
2H
−1
0 )1/10 and χ2 := (G5N20

1 N8
2H
−3
0 )1/22, where we

have used the fact that (G164N385
1 N164

2 )1/492 ≤ (G186N407
1 N186

2 )1/536 (in
view of N1 ≤ x1/4). From these, we deduce that for any H0 ≥ 1,

S(H0,N)�
{

(G186N407
1 N186

2 )1/536 + (GN1H0)1/2

+ (xN2
1 )1/4 +

∑

1≤j≤2

∑

1≤k≤3

Rj,k

}
H0x

ε,

where Rj,k := min{χj , Dk}. Since



R1,1 ≤ (χ45
1 D

13
1 )1/58 = (x40N7

1 )1/116,

R1,2 ≤ (χ5
1D

2
2)1/7 = x5/14,

R1,3 ≤ (χ5
1D3)1/6 = (x36N11

1 )1/108,




R2,1 ≤ (χ33
2 D

13
1 )1/46 = (x28N19

1 )1/92 < x5/14,

R2,2 ≤ (χ11
2 D

6
2)1/17 = (x11N4

1 )1/34 < x5/14,

R2,3 ≤ (χ11
2 D

3
3)1/14 = (x24N23

1 )1/84 < x5/14,

and (x36N11
1 )1/108 ≤ (x40N7

1 )1/116, we have

S(H0,N)� {(G186N407
1 N186

2 )1/536 + (GN1H0)1/2

+ (xN2
1 )1/4 + (x40N7

1 )1/116 + x5/14}H0x
ε.

Inserting into (3.2) and optimizing H by Lemma 2.4(iii) of [12] yield the
desired estimate.

Lemma 3.2. For u = (2, 1, 1), we have

S(u,N;x)� {(x7/N5
1 )1/17 + (x17/N3

1 )1/47 + (x11/N4
1 )1/29

+ (x13/N2
1 )1/36 + (x5/N4

1 )1/12 + x103/294}xε.
In particular , if N1 ≥ x118/655, then S(u,N;x)�ε x

47/131+ε.

P r o o f. Corollary 2 with (X,M1,M2,M3) = (GH0, N1,H0, N2) gives

S(H0,N)� {L(H0) + (G5N12
1 N6

2H
−1
0 )1/16 + (GN3

1N
2
2H
−1
0 )1/4(3.3)

+ (G3N9
1N

4
2H
−1
0 )1/11 + (G2N9

1N
4
2H
−2
0 )1/10}H0x

ε

=: {L(H0) + σ1 + σ2 + σ3 + σ4}H0x
ε,
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S(H0,N)� {(G15N11
1 N4

2H
11
0 )1/26 + (G2N2

1N2H0)1/4(3.4)

+ (G3N2H
2
0 )1/4 + (G11N7

1H
11
0 )1/18}H0x

ε

=: {E1 + E2 + E3 + (G11N7
1H

11
0 )1/18}H0x

ε,

where
L(H0) := (G7N8

1N
6
2H0)1/16 + (G17N24

1 N10
2 H7

0 )1/40

+ (G5N10
1 N4

2H0)1/14 + (GN1H0)1/2,

and we have used the fact that G−1N1N2H
−1
0 can be absorbed by

(GN3
1N

2
2H
−1
0 )1/4 in (3.3), both N2 and G−1N1N2H

−1
0 by (G3N2H

2
0 )1/4

in (3.4). From (3.3) and (3.4), we deduce that for any H0 ≥ 1,

S(H0,N)�
{
L(H0) + (G11N7

1H
11
0 )1/18 +

∑

1≤j≤4

∑

1≤k≤3

Sj,k

}
H0x

ε,

where Sj,k := min{σj , Ek}. It is easy to verify that



S1,1 ≤ (σ88

1 E13
1 )1/101 = (x70N3

1 )1/202 < x103/294,

S1,2 ≤ (σ4
1E2)1/5 = x7/20 < x103/294,

S1,3 ≤ (σ8
1E3)1/9 = (x13/N2

1 )1/36,



S2,1 ≤ (σ22

2 E13
1 )1/35 = (x13/N4

1 )1/35,

S2,2 ≤ (σ2E2)1/2 = (x3/N1)1/8,

S2,3 ≤ (σ2
2E3)1/3 = (x5/N4

1 )1/12,



S3,1 ≤ (σ121

3 E26
1 )1/147 = (x48N14

1 )1/147 ≤ x103/294,

S3,2 ≤ (σ11
3 E4

2)1/15 = (x5N1)1/15 < x103/294,

S3,3 ≤ (σ11
3 E2

3)1/13 = x9/26 < x103/294,



S4,1 ≤ (σ55

4 E26
1 )1/81 = (x52N17

1 )1/162 < x103/294,
S4,2 ≤ (σ5

4E
4
2)1/9 = (x6N1)1/18 < x103/294,

S4,3 ≤ (σ5
4E

2
3)1/7 = (x5/N1)1/14,

and (x13/N4
1 )1/35 ≤ (x3/N1)1/8, (x5/N1)1/14 ≤ (x3/N1)1/8. Consequently,

we obtain, for any H0 ≥ 1, the inequality

S(H0,N)� {L(H0) + (G11N7
1H

11
0 )1/18 + (x13/N2

1 )1/36

+ (x3/N1)1/8 + (x5/N4
1 )1/12 + x103/294}H0x

ε.

Inserting this estimate in (3.2) and using Lemma 2.4(iii) of [12] to optimize
H, we find

S(u,N;x)� {(x7/N5
1 )1/17 + (x17/N3

1 )1/47 + (x11/N4
1 )1/29

+ (x13/N2
1 )1/36 + (x3/N1)1/8 + (x5/N4

1 )1/12 + x103/294}xε.
Observing that (x3/N1)1/8 ≤ (x11/N4

1 )1/29, we get the required estimate.
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