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On the Matsumoto zeta-function
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1. Introduction. Let, as usual, N and C denote the sets of natural
numbers and complex numbers, respectively. For m ∈ N let g(m) ∈ N,
f(j,m) ∈ N, and a

(j)
m ∈ C, 1 ≤ j ≤ g(m), and define the polynomials of

degree f(1,m) + . . .+ f(g(m),m)

Am(x) =
g(m)∏

j=1

(1− a(j)
m xf(j,m)).

Let s = σ + it be a complex variable and let pm denote the mth prime
number. In [10] K. Matsumoto introduced and considered the zeta-function
ϕ(s) given by

ϕ(s) =
∞∏
m=1

A−1
m (p−sm ).

Denote by meas{A} the Lebesgue measure of the set A, and let, for T > 0,

νtT (. . .) =
1
T

meas{t ∈ [0, T ] : . . .}
where instead of dots we write a condition satisfied by t. Assuming the
conditions

(1) g(m) ≤ c1pαm, |a(j)
m | ≤ pβm

with a positive constant c1 and non-negative constants α and β, K. Mat-
sumoto [10] proved two limit theorems for logϕ(s) in the complex plane.
Note that under the condition (1) the product in the definition of ϕ(s) con-
verges absolutely for σ > α+β+ 1 and defines a holomorphic function with
no zeros.

The first theorem from [10] considers the case σ > α+ β + 1. Let

V (T,R) = νtT (logϕ(σ0 + it) ∈ R)
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where R is a closed rectangle in C with edges parallel to the axes, and
logϕ(σ0 + it) is the following sum of principal values:

logϕ(σ0 + it) = −
∞∑
m=1

g(m)∑

j=1

Log (1− a(j)
m p−f(j,m)(σ0+it)

m ).

Theorem 1 (K. Matsumoto, [10]). Let σ0 > α + β + 1. Under the
condition (1) the following limit exists:

V (R;σ0) = lim
T→∞

V (T,R).

The second theorem of [10] deals with the case σ < α+ β + 1. Let % be
a constant with α+ β + 1/2 ≤ % < α+ β + 1, and assume that ϕ(s) can be
meromorphically continued to the region σ ≥ %. Moreover, let P be the set
of all possible zeros and poles of ϕ(s) in the strip % ≤ σ ≤ α+ β + 1, and

G = {s ∈ C : σ > %} −
⋃

s′=σ′+it′∈P
{s = σ + it′ : % ≤ σ ≤ σ′}.

For s0 = σ0 + it0 ∈ G the value of logϕ(s0) is defined by analytic continu-
ation along the path {s = σ + it0 : σ ≥ σ0}. Now let % < σ0 ≤ α + β + 1,
and

W (T,R) = νtT (σ0 + it ∈ G, logϕ(σ0 + it) ∈ R).

Theorem 2 (K. Matsumoto, [10]). Let the following conditions be satis-
fied :

(i) the condition (1);
(ii) the function ϕ(s) is meromorphic in the half-plane σ ≥ %, all poles

in this region are included in a compact set , and there is no pole on the line
σ = %;

(iii) for σ ≥ %,

ϕ(σ + it) = B|t|c2 ;

(iv) we have the estimate
T\
0

|ϕ(%+ it)|2 dt = BT.

Then, for any σ0 > %, the following limit exists:

W (R;σ0) = lim
T→∞

W (T,R).

Here and in what follows B denotes a number (not always the same)
bounded by a constant, and c2, c3, . . . are positive constants.

Note that, in fact, Theorems 1 and 2 are limit theorems in the sense of
the weak convergence of probability measures in C.
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In [11] and [12] K. Matsumoto himself and in [3] jointly with T. Hattori
treated the limit measure of Theorem 2 proving some precise upper and
lower bounds for it.

The function ϕ(s) is a generalization of Dirichlet series attached to cer-
tain cusp forms and also of the Dedekind zeta-function of algebraic number
fields. Limit theorems for these functions were obtained in [9] and [13], re-
spectively.

In [4] we generalized Theorems 1 and 2 proving two functional limit
theorems with a weight for the function ϕ(s).

Let G be a region in the complex plane. Denote by H(G) the space of
functions analytic on G, equipped with the topology of uniform convergence
on compacta. Moreover, let T0 be a fixed positive number, and let w(τ) be
a positive function of bounded variation on [T0,∞). Set

U = U(T,w) =
T\
T0

w(τ) dτ,

and suppose that limT→∞ U(T,w) = ∞. Moreover, let B(S) stand for the
class of Borel subsets of the space S, and let D1 = {s ∈ C : σ > α+ β + 1}.
Define the probability measure

PT,w(A) =
1
U

T\
T0

w(τ)I{τ :ϕ(s+iτ)∈A} dτ, A ∈ B(H(D1)),

where IA denotes the indicator function of the set A.

Theorem 3 [4]. Under the condition (1) there exists a probability mea-
sure Pw on (H(D1),B(H(D1))) such that the measure PT,w converges weakly
to Pw as T →∞.

Now let D2 = {s ∈ C : σ > %0} where α + β + 1/2 ≤ %0 < α + β + 1.
Denote by M(D2) the space of functions meromorphic on D2 equipped with
the topology of uniform convergence on compacta and suppose that for the
functions w(τ) and ϕ(s) the estimate

(2)
T\
T0

w(τ)|ϕ(σ + iτ + it)|2 dτ = BU(1 + |t|)

holds for σ > %0 and for all real t. Define the probability measure

QT,w(A) =
1
U

T\
T0

w(τ)I{τ :ϕ(s+iτ)∈A} dτ, A ∈ B(M(D2)).

Theorem 4 [4]. Let the function ϕ(s) be meromorphic in the half-plane
σ > %0. Suppose that all poles in this region are included in a compact set.
Then under the conditions (1), (2) and (iii), (iv) of Theorem 2 there exists a
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probability measure Qw on (M(D2),B(M(D2))) such that the measure QT,w
converges weakly to Qw as T →∞.

In [5] and [6] we indicated the explicit form of the limit measures in
Theorems 3 and 4, respectively.

Denote by γ the unit circle on complex plane, and let

Ω =
∏
p

γp

where γp = γ for all primes p. With the product topology and pointwise mul-
tiplication the infinite-dimensional torus Ω is a compact topological group.
Therefore there exists the probability Haar measure m on (Ω,B(Ω)). Thus
we obtain a probability space (Ω,B(Ω),m). Let ω(p) stand for the projection
of ω ∈ Ω onto the coordinate space γp. Then, taking

ω(k) =
∏

pr‖k
ωr(p),

where pr‖k means that pr | k but pr+1 - k, we obtain an extension of the
function ω(p) to the set N as a completely multiplicative unimodular func-
tion.

Let D = {s ∈ C : σ > α+ β + 1/2}, and set, for s ∈ D and ω ∈ Ω,

ϕ(s, ω) =
∞∑

k=1

b(k)ω(k)
ks

,

where, for σ > α+ β + 1,

ϕ(s) =
∞∑

k=1

b(k)
ks

.

Lemma 1. The series
∞∑

k=1

b(k)ω(k)
ks

converges uniformly on compact subsets of D for m-almost all ω ∈ Ω.

P r o o f. Since b(k) = Bkα+β+ε [10], we see that, as N →∞,
∑

k≤N
|b(k)|2 = BN2(α+β+ε+1/2).

Therefore, the lemma is a consequence of Lemma 3.4.3 from [1]. See also
Lemma 5.1.6 of [7].

Lemma 1 shows that ϕ(s, ω) is an H(D)-valued random element defined
on the probability space (Ω,B(Ω),m). Let Pϕ denote the distribution of
ϕ(s, ω), and let Pj,ϕ be the restriction of Pϕ to (H(Dj),B(H(Dj))), j = 1, 2.
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Denote by Eξ the mean of the random variable ξ. Let X(τ, ω), ω ∈ Ω1,
τ ∈ R, be an ergodic process, E|X(τ, ω)| < ∞, with sample paths almost
surely integrable in the Riemann sense over every finite interval. Suppose
that the function w(τ) satisfies

(3)
1
U

T\
T0

w(τ)X(τ, ω) dτ = EX(0, ω) + o(1)

almost surely as T →∞.

Theorem 5 [5]. Under the conditions (1) and (3) the measure Pw in
Theorem 3 coincides with P1,ϕ.

Now suppose that the function w(τ) satisfies

(4)
1
U

T\
T0

w(τ)X(t+ τ, ω) dτ = EX(0, ω) + o(1 + |t|)c3

almost surely for all t ∈ R with some c3 > 0 as T →∞.

Theorem 6 [6]. Under the conditions of Theorem 4 and (4) the measure
Qw in Theorem 4 coincides with P2,ϕ.

Examples of functions w(τ) are given in [8].
The aim of this note is to obtain the universality property for the function

ϕ(s). Note that S. M. Voronin was the first who proved the universality of
the Riemann zeta-function [15]. Some new versions of the universality of
functions given by Dirichlet series were proposed in [1] and [2]. In the sequel,
we suppose that the function ϕ(s) is analytic in the strip D3 = {s ∈ C :
%0 < σ < α + β + 1} where α + β + 1/2 ≤ %0 < α + β + 1. Moreover, we
assume that

(5) M(m) :=
∣∣∣

g(m)∑

j=1
f(j,m)=1

a(j)
m

∣∣∣p−α−βm ≥ c4 > 0

for m ≥ 1.

Theorem 7. Let the conditions (1), (2), (iii) and (iv) of Theorem 2,
and (4), (5) be satisfied. Let K be a compact subset of the strip D3 with
connected complement. Let f(s) be a non-vanishing continuous function on
K which is analytic in the interior of K. Then for every ε > 0,

lim inf
T→∞

1
U

T\
T0

w(τ)I{τ :sups∈K |ϕ(s+iτ)−f(s)|<ε} dτ > 0.

The universality is an interesting and deep property of Dirichlet series.
There exists a conjecture of Prof. I. A. Ibragimov that all Dirichlet series
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have the universality property. However, we think that the conjecture is
too bold, because the proof of the universality of given Dirichlet series is
usually complicated, and there are Dirichlet series for which the known
methods are not applicable. On the other hand, all classical zeta-functions
(the Riemann zeta-function, Dirichlet L-functions, Dedekind zeta-functions)
are universal. This suggests searching for new classes of functions with the
universality property. The condition (5) is, of course, sufficiently strong,
which corresponds to the depth of the universality. The classical functions
usually have other good properties helpful in proving their universality.

Example. Let, for σ > 1,

ζa(s) =
∏
p

(
1− a(p)

ps

)−1

,

where a(m) is a completely multiplicative function such that 0 < c5 ≤
|a(m)| ≤ 1, and p denotes a prime number. It is not difficult to indicate some
conditions for the analytic continuation of ζa(s) to the strip 1/2 < % < σ < 1
and for the validity of conditions (iii) and (iv) of Theorem 2. For example,
it suffices to require some regularity condition for

∑

m≤x
a(m), x→∞.

The details can be found in [7].

The aim of this note is a generalization of the latter example. The Euler
product of this example has only a linear factor for each prime. But Theo-
rem 7 shows under the condition (5) the universality for the Euler product
which has a polynomial factor of arbitrarily high degree for each prime.
Moreover, in Theorem 7 a weight function is involved. Therefore Theorem 7
gives a generalization of the Example.

Denoting by p, as above, a prime number, we may change products and
sums over m to those over p. The condition (5) can be replaced by the
following one: for every ε > 0 and x→∞,

(6)
1

π(x)

∑

p≤x
M(p)<ε

1 = Bx−δ,

where δ ≥ 1/2, and π(x), as usual, denotes the number of primes not ex-
ceeding x.

Remark. Theorem 7 is true with the condition (6) instead of (5).

2. A limit theorem in the space of analytic functions. In order to
prove Theorem 7 first we must prove a limit theorem for the function ϕ(s)
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in the space of functions analytic on D3. To state such a theorem we will
give some lemmas.

Lemma 2. For almost all ω ∈ Ω, the product
∞∏
m=1

g(m)∏

j=1

(
1− ωf(j,m)(pm)a(j)

m

p
sf(j,m)
m

)−1

converges uniformly on compact subsets of D, and
∞∑

k=1

b(k)ω(k)
ks

=
∞∏
m=1

g(m)∏

j=1

(
1− ωf(j,m)(pm)a(j)

m

p
sf(j,m)
m

)−1

.

P r o o f. The lemma is a generalization of a similar result from [1]; see
also Theorem 5.1.7 of [7].

Since |ω(pm)| = 1, for σ > α + β + 1, both the series and the product
converge absolutely for any ω ∈ Ω, and thus the equality of the lemma
holds. By Lemma 1 the series of the lemma converges uniformly for almost
all ω ∈ Ω on compact subsets of D. Therefore by analytic continuation it
remains to show that the product of the lemma converges uniformly for
almost all ω ∈ Ω on compact subsets of D.

We can write the product in the form
∞∏
m=1

(
1 +

g(m)∑

j=1

ωf(j,m)(pm)a(j)
m

p
sf(j,m)
m

+ rm(s, ω)
)
,

where the series
∑∞
m=1 rm(s, ω) converges uniformly on compact subsets

of D. Thus it remains to prove that the series
∞∑
m=1

g(m)∑

j=1

ωf(j,m)(pm)a(j)
m

p
sf(j,m)
m

converges uniformly for almost all ω ∈ Ω on compact subsets of D. Clearly,
the study of the latter series can be replaced by that of the series

(7)
∞∑
m=1

g(m)∑

j=1
f(j,m)=1

ω(pm)a(j)
m

psm
=
∞∑
m=1

ω(pm)
psm

g(m)∑

j=1
f(j,m)=1

a(j)
m .

Let

ym(s, ω) =
ω(pm)
psm

g(m)∑

j=1
f(j,m)=1

a(j)
m .

Since ω(pm), m ∈ N, is a sequence of independent random variables (see
[7]), we see that ym(s, ω), m ∈ N, is a sequence of independent H(D)-valued
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random elements. It follows from the definition of ω(pm) that Eym(s, ·) = 0
for all m ∈ N. Moreover, for m ∈ N,

E|ym(s, ·)|2 ≤ 1

p2σ−2α−2β
m

,

and thus
∞∑
m=1

E|ym(s, ·)|2 <∞

for s ∈ D. Hence by the Kolmogorov three series theorem (see, for example,
[7], Theorem 1.2.11) the series (7) converges for almost all ω ∈ Ω for each
fixed s ∈ D. But if the Dirichlet series converges at the point s0 = σ0 + it0,
then it converges uniformly on compacta in the half-plane σ > σ0. From
this we deduce easily that the series (7) converges uniformly for almost all
ω ∈ Ω on compact subsets of D. This proves the lemma.

From Lemma 2 it follows that

ϕ̃(s, ω) =
∞∏
m=1

g(m)∏

j=1

(
1− ωf(j,m)(pm)a(j)

m

p
sf(j,m)
m

)−1

is an H(D)-valued random element defined on the probability space
(Ω,B(Ω),m). Denote by Pϕ̃ the distribution of ϕ̃(s, ω), and let P3,ϕ̃ be
the restriction of Pϕ̃ to (H(D3),B(H(D3))). Define the probability measure

VT,w(A) =
1
U

T\
T0

w(τ)I{τ :ϕ(s+iτ)∈A} dτ, A ∈ B(H(D3)).

Theorem 8. Under the conditions (1), (2), (4) and (iii), (iv) of Theo-
rem 2 the measure VT,w converges weakly to P3,ϕ̃ as T →∞.

The proof of Theorem 8 is similar to that of Theorem 6. In this case all
lemmas used in the proof of Theorem 6 are one-dimensional ones.

3. Proof of Theorem 7. First we state and prove some results necessary
for the proof of Theorem 7.

Lemma 3. Let G be a simply connected domain in C. Let {fm} be a
sequence in H(G) which satisfies:

(i) if µ is a complex Borel measure on (C,B(C)) with compact support
contained in G such that

∞∑
m=1

∣∣∣
\
C
fm dµ

∣∣∣ <∞,
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then \
C
sr dµ(s) = 0 for all r = 0, 1, 2, . . . ;

(ii) the series
∑∞
m=1 fm converges in H(G);

(iii) for any compact K ⊆ G,
∞∑
m=1

sup
s∈K
|fm(s)|2 <∞.

Then the set of all convergent series
∑∞
m=1 amfm with |am| = 1 is dense in

H(G).

P r o o f. The lemma is a one-dimensional case of Lemma 5.2.9 from [1];
its proof is also given in [7], Theorem 6.3.10.

Let

fm = fm(s) = −
g(m)∑

j=1

log
(

1− a
f(j,m)
m a

(j)
m

p
sf(j,m)
m

)

with am ∈ γ. Here

log(1 + z) = z − z2

2
+
z3

3
− . . . , |z| < 1.

Lemma 4. Let the condition (5) or (6) be satisfied. Then the set of all
convergent series

∑∞
m=1 fm(s) is dense in H(D3).

P r o o f. Let m0 be a fixed natural number. First we prove that the set
of all convergent series

(8)
∑
m>m0

amf̃m, am ∈ γ,

where

f̃m = f̃m(s) = −
g(m)∑

j=1

log
(

1− a
(j)
m

p
sf(j,m)
m

)
,

is dense in H(D3). Let {ãm : ãm ∈ γ} be a sequence such that the series

(9)
∞∑
m=1

ãm
˜̃
fm

converges in H(D3). Here

˜̃
fm = ˜̃

fm(s) =
{
f̃m, m ≥ m0,
0, m < m0.
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We show that such a sequence {ãm} exists. Clearly,

f̃m(s) =
g(m)∑

j=1
f(j,m)=1

a
(j)
m

psm
+ rm(s),

where rm(s) = Bpα+2β−2σ
m in view of (1), and thus the series

(10)
∞∑
m=1

rm(s)

converges uniformly on compact subsets of D3. As in the proof of Lemma 2,
we find that the series

∞∑
m=1

ω(pm)
psm

g(m)∑

j=1
f(j,m)=1

a(j)
m

converges uniformly for almost all ω ∈ Ω on compact subsets of D3. Conse-
quently, there exists a sequence {ãm} such that the series

∞∑
m=1

ãm
psm

g(m)∑

j=1
f(j,m)=1

a(j)
m , ãm ∈ γ,

converges in H(D3). This together with the convergence of the series (10)
shows that (9) converges in H(D3).

Now let gm = ãm
˜̃
fm. In order to prove the denseness of the set of all

convergent series (8) it suffices to show that the set of all convergent series

(11)
∞∑
m=1

amgm, am ∈ γ,

is dense in H(D3). For this aim we will verify the hypotheses of Lemma 3.
From the definition of gm we know that the hypothesis (ii) of Lemma 3 is
satisfied. Moreover, for any compact K ⊂ D3,

∞∑
m=1

sup
s∈K
|gm(s)|2 <∞,

that is, the hypothesis (iii) of Lemma 3 is also satisfied. Therefore, it remains
to verify the hypothesis (i) of Lemma 3.

Let µ be a complex Borel measure with compact support contained in
D3 such that

(12)
∞∑
m=1

∣∣∣
\
C
gm(s) dµ

∣∣∣ <∞.
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Set

hm(s) =
ãm
psm

g(m)∑

j=1
f(j,m)=1

a(j)
m .

Then
∞∑
m=1

|gm(s)− hm(s)| <∞

uniformly on compact subsets of D3. Consequently, in view of (12),
∞∑
m=1

∣∣∣
\
C
hm(s) dµ

∣∣∣ <∞,

or

(13)
∞∑
m=1

∣∣∣
\
C
p−sm

g(m)∑

j=1
f(j,m)=1

a(j)
m dµ

∣∣∣ <∞.

Let D′3 = {s ∈ C : %′0 < σ < 1} where %′0 = %0 − (α + β) ≥ 1/2, and
let h(s) = s− (α+ β). Moreover, let µh−1(A) = µ(h−1A), A ∈ B(C). Then
µh−1 is a complex Borel measure with compact support contained in D′3.
Consequently, (13) yields

∞∑
m=1

∣∣∣∣
\
C

1

ps+α+β
m

g(m)∑

j=1
f(j,m)=1

a(j)
m dµh−1

∣∣∣∣ <∞,

or

(14)
∞∑
m=1

|%(log pm)|
∣∣∣p−α−βm

g(m)∑

j=1
f(j,m)=1

a(j)
m

∣∣∣ <∞,

where

%(z) =
\
C
c−sz dµh−1(s).

Hence, taking into account (5), we deduce that
∞∑
m=1

|%(log pm)| <∞.

So, we have obtained the same situation as in the proof of Lemma 6.5.4
from [7], and we have\

C
sr dµh−1(s) = 0 for all r = 0, 1, 2, . . .
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Hence we deduce that\
C
srdµ(s) = 0 for all r = 0, 1, 2, . . .

This shows that the hypothesis (i) of Lemma 3 is satisfied. Now by Lemma 3
we have the denseness of all convergent series (11), and thus of all convergent
series (8).

Now let the condition (6) be satisfied. We will prove that, taking into
account the change of notation (pm ∼ p),
(15)

∑
p

|%(log p)| <∞.

Clearly, by (14) we have

(16)
∑
p

M(p)≥ε

|%(log p)| <∞.

We observe that %(log p) = Bp−δ1 with δ1 > 1/2. Thus, by (6), we find

∑

p≤x
M(p)<ε

|%(log p)| = B
∑

p≤x
M(p)<ε

1
pδ1

=
Bπ(x)
xδ+δ1

+B

x\
2

du

uδ1+δ = B.

Hence ∑
p

M(p)<ε

|%(log p)| <∞,

and this together with (16) implies (15). So, the rest of the proof coincides
with that when the condition (5) is used.

Let x0(s) ∈ H(D3), K be a compact subset of D3 and ε > 0. We fix m0

such that

(17) sup
s∈K

( ∑
m>m0

g(m)∑

j=1

∞∑

l=2

|a(j)
m |l

lp
lσf(j,m)
m

)
<
ε

4
.

From the denseness of all convergent series (8) we see that there exists a
sequence {ãm : ãm ∈ γ} such that

(18) sup
s∈K

∣∣∣x0(s)−
∑

m≤m0

f̃m(s)−
∑
m>m0

ãmf̃m(s)
∣∣∣ < ε

2
.

Set

am =
{

1, m ≤ m0,
ãm, m > m0.



Matsumoto zeta-function 13

Then (17) and (18) imply

sup
s∈K

∣∣∣x0(s)−
∞∑
m=1

fm(s)
∣∣∣ = sup

s∈K

∣∣∣x0(s)−
∑

m≤m0

f̃m(s)−
∑
m>m0

fm(s)
∣∣∣

≤ sup
s∈K

∣∣∣x0(s)−
∑

m≤m0

f̃m(s)−
∑
m>m0

ãmf̃m(s)
∣∣∣

+ sup
s∈K

∣∣∣
∑
m>m0

ãmf̃m(s)−
∑
m>m0

fm(s)
∣∣∣

<
ε

2
+ sup
s∈K

(
2
∑
m>m0

g(m)∑

j=1

∞∑

l=2

|a(j)
m |l

lp
lσf(j,m)
m

)
< ε.

Since x0(s), K and ε are arbitrary, this proves the lemma.

By Theorem 8 the probability measure

1
U

T\
0

w(τ)I{τ :ϕ(s+iτ)∈A} dτ, A ∈ B(H(D3)),

converges weakly to the measure P3,ϕ̃ as T →∞ where P3,ϕ̃ is the distribu-
tion of the H(D3)-valued random element

ϕ̃(s, ω) =
∞∏
m=1

g(m)∏

j=1

(
1− ωf(j,m)(pm)a(j)

m

p
sf(j,m)
m

)−1

, ω ∈ Ω.

Now we will find the support of the measure Ps,ϕ̃. Denote by SX the support
of the random element X. Let G be a region in C.

Lemma 5. Let {Xm} be a sequence of independent H(G)-valued random
elements and suppose that the series

∑∞
m=1Xm converges almost surely.

Then the support of the sum of this series is the closure of the set of all
f ∈ H(G) which may be written as a convergent series

f =
∞∑
m=1

fm, fm ∈ SXm .

P r o o f. This is Theorem 1.7.10 of [7].

Let

S = {f ∈ H(D3) : f(s) 6= 0 or f(s) ≡ 0}.
Lemma 6. The support of the measure P3,ϕ̃ is the set S.

P r o o f. The sequence {ω(pm) : m ∈ N} is a sequence of independent
random variables. Thus
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{ g(m)∑

j=1

log
(

1− ωf(j,m)(pm)a(j)
m

p
sf(j,m)
m

)−1

: m ∈ N
}

is a sequence of independent H(D3)-valued random elements. The support
of each ω(pm) is the unit circle γ. Therefore the support of the random
elements

g(m)∑

j=1

log
(

1− ωf(j,m)(pm)a(j)
m

p
sf(j,m)
m

)−1

, m ∈ N,

is the set
{
f ∈ H(D3) : f(s) = −

g(m)∑

j=1

log
(

1− af(j,m)a
(j)
m

p
sf(j,m)
m

)
with a ∈ γ

}
.

Consequently, by Lemma 5, the support of the H(D3)-valued random ele-
ment

log ϕ̃(s, ω) = −
∞∑
m=1

g(m)∑

j=1

log
(

1− ωf(j,m)(pm)a(j)
m

p
sf(j,m)
m

)

is the closure of the set of all convergent series
∑∞
m=1fm(s). Here we pre-

serve the notation of Lemma 4. By Lemma 4 the set of these series is dense
in H(D3). The map h : H(D3) → H(D3) defined by h(f) = exp{f},
f ∈ H(D3), is a continuous function sending log ϕ̃(s, ω) into ϕ̃(s, ω) and
sending H(D3) into S\{0}. Therefore the support of ϕ̃(s, ω) contains S\{0}.
On the other hand, the support of ϕ̃(s, ω) is a closed set. By the Hurwitz
theorem (see [14], Section 3.4.5) we have S \ {0} = S. Thus

(19) Sϕ̃ ⊇ S.
Clearly,

g(m)∏

j=1

(
1− ωf(j,m)(pm)a(j)

m

p
sf(j,m)
m

)−1

, s ∈ D3, ω ∈ Ω,

is non-zero for all m ∈ N. Thus ϕ̃(s, ω) is an almost surely convergent
product of non-vanishing factors. Applying the Hurwitz theorem again, we
conclude that ϕ̃(s, ω) ∈ S almost surely. Therefore Sϕ̃ ⊆ S. This and (19)
prove the lemma.

Before the proof of Theorem 7 we state the Mergelyan theorem as the
following lemma.

Lemma 7. Let K be a compact subset of C whose complement is con-
nected. Then any continuous function f(s) on K which is analytic in the
interior of K is approximable uniformly on K by polynomials in s.

The proof is given in [16].
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Proof of Theorem 7. First we suppose that f(s) has non-vanishing ana-
lytic continuation to H(D3). Denote by G the set of functions g ∈ H(D3)
such that

sup
s∈K
|g(s)− f(s)| < ε.

By Lemma 6 the function f(s) is contained in the support S of the random
element ϕ̃(s, ω). Since by Theorem 8 the measure VT,w converges weakly to
the measure P3,ϕ̃ as T → ∞ and the set G is open, we deduce from the
properties of weak convergence and support that

lim inf
T→∞

1
U

T\
T0

w(τ)I{τ :sups∈K |ϕ(s+iτ)−f(s)|<ε} dτ ≥ P3,ϕ̃(G) > 0.

Now let f(s) be as in the statement of the theorem. Then in view of
Lemma 7 there exists a sequence {pn(s)} of polynomials such that pn(s)→
f(s) as n → ∞ uniformly on K. Since f(s) 6= 0 on K, we have pn0 6= 0 on
K for sufficiently large n0, and

(20) sup
s∈K
|f(s)− pn0(s)| < ε/4.

Since the polynomial pn0(s) has only finitely many zeros, there exists a
region G1 whose complement is connected such that K ⊂ G1 and pn0(s) 6= 0
on G1. Thus there exists a continuous version log pn0(s) on G1, and log pn0(s)
is analytic in the interior of G1. Therefore by Lemma 7 there exists a sequence
{qn(s)} of polynomials such that qn(s) → log pn0(s) as n → ∞ uniformly
on K. Thus, for sufficiently large n1,

sup
s∈K
|pn0(s)− eqn1 (s)| < ε/4.

Hence and from (20) we have

(21) sup
s∈K
|f(s)− exp{qn1(s)}| < ε/2.

From the first part of the proof we deduce that

lim inf
T→∞

1
U

T\
T0

w(τ)I{τ :sups∈K |ϕ(s+iτ)−exp{qn1 (s)}|<ε/2} dτ > 0.

This together with (21) proves the theorem.

The author would like to express his deep gratitude to Professor Kohji
Matsumoto for careful studying of and comments on the first version of
this paper, for indication of some inaccuracies and for suggestions how to
improve the results obtained.
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