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This is a continuation of [13]; parts I and II are independent, but will be
used in part III.

5. The 2-class group. Let h(m) and h+(m) denote the class number of
Q(ζm) and Q(ζm+ζ−1

m ), respectively, and put h−(m) = h(m)/h+(m). In this
section we will show how the results on the 2-class field tower of quadratic
number fields can be used to improve the results of Stevenhagen [30] on the
parity of h+(m) for certain composite m with few prime factors.

Proposition 4. Let p ≡ q ≡ 1 mod 4 be primes, put L = Q(ζpq), and
let K and K+ be the maximal 2-extensions contained in L and L+ = L∩R,
respectively.

1. 2 |h(K+) if and only if (p/q) = 1;
2. if (p/q) = 1 and (p/q)4 = (q/p)4, then 2 |h(F ) for every subfield
F ⊆ L containing Q(

√
pq );

3. if (p/q)4 = (q/p)4 = +1, then 4 |h(K+).

P r o o f. By a result of Rédei and Reichardt [23, 24], the quadratic number
field k = Q(

√
pq ) admits a cyclic quartic extension F/k which is unramified

outside ∞ and which is normal over Q with Gal(F/Q) ' D4, the dihedral
group of order 8. The last property guarantees that F is either totally real or
totally complex; Scholz [26] has shown that F is real if and only if (p/q)4 =
(q/p)4.

Assume that F is real; then, for every subfield M of K+ containing
Q(
√
pq ), the extension FK+/K+ is unramified everywhere and is cyclic of

degree 2 (if Q(
√
p,
√
q ) ⊆M) or 4 (otherwise); by Hilbert’s theorem 94 this

implies that the class number of M is even.
If F is totally complex, we consider the field K+. In this case, K and

FK+ are totally complex quadratic extensions of K+ which are unramified
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at the finite primes. Let N be the quadratic subextension of FK/K+ differ-
ent from K and FK+. Then N is totally real and unramified at the finite
primes, and we see that K+ has even class number.

Finally, if (p/q)4 = (q/p)4 = +1, then k admits a cyclic octic extension
which is unramified outside ∞ and normal over Q; the same proof as above
shows that 4 |h(K+).

The fact that K+ has odd class number if (p/q) = −1 is given as Exer-
cise 10.4 in [32]; here is a short proof: since only p ramifies in the 2-extension
K+
p /Q, Theorem 10.4 in [32] (this is a very special case of the ambiguous

class number formula) says that K+
p has odd class number. Now K+

p /Q is
cyclic, and Q(

√
p ) is its unique quadratic subfield. Since q is inert in Q(

√
p ),

we conclude that Q must be the decomposition field of q, i.e. q is inert in
K+
p /Q. Thus q is the only ramifying prime in K+

pq/K
+
p , and again Theorem

10.4 proves our claim.
The fact that h2(K+) = 1 if (p/q) = −1 also follows from a result of

Milgram [19] and the class number formula.

The idea behind this proof can be found in van der Linden’s paper [15].
Our next result strengthens a result of Cornell and Washington [3], who
showed that h+(m) is even if m is divisible by at least four primes≡ 1 mod 4:

Proposition 5. Let m be an integer divisible by three distinct primes
≡ 1 mod 4; then 2 |h+(m).

P r o o f. It is sufficient to prove the claim for m = p1p2p3, where the
pj ≡ 1 mod 4 are pairwise distinct primes (this follows from the fact that
h+(m) |h+(mn), which is true by class field theory, since the maximal real
subfield of Q(ζm) does not have unramified quadratic extensions inside the
maximal real subfield of Q(ζmn)).

If two of them are quadratic residues of each other, then the claim follows
from Proposition 4.

If (p1/p2) = (p2/p3) = (p3/p1) = −1, then there exists an unramified
quaternion extension L of Q(

√
m ), which is normal over Q (see [14]). In

particular, L is either totally real or totally complex.
If it is totally real, then the extension LK+/K+ is unramified (where

K = Q(ζm) and K+ is its maximal real subfield).
If L is totally complex, then K/K+ and KL/K+ are two different CM-

extensions of K+ which are unramified outside ∞; the quadratic subexten-
sion of KL/K+ different from K and L is a totally real quadratic unramified
extension of K+. This proves the claim.

Yet another application of this trick is

Proposition 6. Let p ≡ −q ≡ −q′ ≡ 1 mod 4 be primes such that
(p/q) = (p/q′) = 1. Then 2 |h+(pqq′).
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P r o o f. Consider the quadratic number field Q(
√−pq ); since (p/q) = 1,

it has class number divisible by 4, and the results of Rédei and Reichardt
show that the 4-class field of k is generated by the square root of αq =
x + y

√
p, where x, y ∈ Z satisfy x2 − py2 = −qz2; the same is true with q

replaced by q′. Since both αq and αq′ have mixed signature, their product
is either totally positive or totally negative. The rest of the proof is clear.

Remark. Any of the primes p ≡ 1 mod 4 in the propositions above may
be replaced by p = 8. Note that (q/8)4 is defined by (q/8)4 = (−1)(q−1)/8

for all primes q ≡ 1 mod 8.

6. Morishima’s results. In this section we will generalize a result about
the 2-class group of certain cyclotomic fields first proved by Morishima in
[20]. There he also proved a result about capitulation in cyclic unramified
extensions of relative degree p, which we will give in the next section, along
with related results which will be useful in Section 8.

Theorem 4. Let k+ be a totally real number field , and let p be a principal
prime ideal k+. Assume that the class number of k+ is divisible by some
integer n, and let K+/k+ be a cyclic unramified extension of relative degree
n. Let k be a totally complex quadratic extension of k+ in which p is ramified ,
and put K = kK+. Then Cl(K) contains a subgroup of type (Z/2Z)n−1.

P r o o f. We use a lower bound for the rank of the relative class group

Clp(K/k) = ker(N : Clp(K)→ Clp(k))

due to Jehne [11], who showed that, for cyclic extensions K/k of prime
degree p, we have

(1) rank Clp(K/k) ≥ # Ram(K/k)− rankpEk/H − 1.

Here Ram(K/k) denotes the set of (finite and infinite) primes of k ramified
in K, and H = Ek ∩ NK× is the subgroup of units which are norms of
elements (or equivalently, by Hasse’s norm theorem, which are local norms).

Applying this to the quadratic extensionK/k+, we see that Ram(K/K+)
contains n primes above p, as well as the (K+ : Q) infinite primes; moreover,
H contains E2 (where E = EK+), hence (E : H) | (E : E2) = (K+ : Q), and
Jehne’s estimate gives rank Cl2(K/K+) ≥ n− 1.

Corollary 1. Let k be a complex subfield of Q(ζp), let K+ be an abelian
unramified extension of k+ of degree n, and put K = kK+. Then Cl2(K)
contains a subgroup of type (Z/2Z)n−1.

P r o o f. Observe that the prime ideal above p in k+ is principal (it is the
relative norm of 1− ζp), and apply Theorem 4.
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Although this result might help to explain why class groups of real sub-
fields of cyclotomic fields with small conductor are small, one should not
regard it as a support for Vandiver’s conjecture that p -h+(p). Of course,
Corollary 1 predicts that Cl(K) has a subgroup of type (Z/2Z)p−1 in this
case (with some p > 106, since Vandiver’s conjecture holds for smaller p),
but there is no reason to suspect that this should be impossible for fields with
large degree and discriminant. In fact, Cornell and Washington [3] showed
that there are cyclotomic fields Q(ζp) with h+(p) > p, and more recently
Jeannin [10] found many quintic cyclic fields with large class number.

Example. Let k be the quartic subfield of Q(ζ229); then k+ = Q(
√

229 )
has class number 3 and Hilbert class field K+ = k+(α), where α3 − 4α− 1
= 0. Computations with Pari [1] give Cl(K) ' Z/17Z× (Z/2Z)4. The sub-
group of order 17 comes from Cl(k) ' Z/3Z × Z/17Z, while Corollary 1
predicts that Cl(K) contains a subgroup of type (Z/2Z)2.

The next two corollaries give examples of cyclic quartic fields with infinite
class field tower:

Corollary 2. Let p ≡ 5 mod 8 be a prime; if the class number h of
k = Q(

√
p ) is ≥ 15, then the class field tower of the quartic cyclic field K

of conductor p is infinite (actually this holds for any complex cyclic quartic
field K containing k).

P r o o f. Let F be the Hilbert class field of k; by Corollary 1, the com-
positum KF has a class group of 2-rank r ≥ h − 1; by the criterion of
Golod–Shafarevich, KF has infinite 2-class field tower if

r ≥ 2 + 2
√

1 + rankE/E2 = 2 + 2
√

2h+ 1.

If h ≥ 14, this inequality is satisfied, and our claim follows (note that h is
odd).

Example. If p = 13693, then h = 15.

Corollary 3. Let p ≡ q ≡ 1 mod 4 be primes such that pq ≡ 5 mod 8;
assume that the fundamental unit ε of k = Q(

√
pq ) has positive norm,

and that h(k) ≥ 6. Then the two cyclic complex quartic subfields of Q(ζp)
containing k have infinite class field tower.

P r o o f. Since ε has positive norm, the prime ideals above p and q are
principal. Thus both ideals split in F/k (we use the same terminology as
above), and Ram(KF/F ) contains 2n prime ideals. This gives rank Cl2(KF )
≥ 2n− 1, and the bound of Golod–Shafarevich shows that KF has infinite
class field tower if h(k) ≥ 5; since h(k) is even, we actually have h(k) ≥ 6.
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Example. (a) If p = 5 and q = 353, then h = 6.
(b) According to Schoof [29], the plus class number of Q(ζp) for p = 3547

equals 16777; this implies that Q(ζp) has infinite class field tower.
(c) Cornacchia [2] has shown that the cyclic quintic extension of conduc-

tor 3931 has 2-class number 28; this implies that the subfield of degree 10
in Q(ζ3931) has infinite 2-class field tower.

Techniques similar to those used in the proof of Theorem 4 were used
by Martinet [17], Schmithals [25] and Schoof [27] to construct quadratic
number fields with infinite class field towers; note, however, that a related
construction by Matsumura [18] is incorrect: the error occurs in his proof
of Lemma 4. In fact, here is a counter-example to his Theorem 1: take
p = 17, q = −23, l = 3; his Theorem 1 predicts that the compositum K
of Q(

√−23,
√

17) and the cubic field of discriminant −23 has an ideal class
group with subgroup (2, 2). However, Cl(K) ' Z/7Z by direct computation.

Ozaki [22] found an original construction of real abelian fields with large
l-class groups; using l-adic L-functions and Iwasawa theory, he proved the
following result:

Proposition 7. There exist abelian extensions M/Q whose conductor is
a product of three different primes, such that rank Cll(M) exceeds any given
integer.

P r o o f. Fix an odd prime l; for a prime q ≡ 1 mod l, let kq denote
the subfield of Q(ζq) of degree l. Choose odd primes p, q and r such that
p ≡ q ≡ 1 mod l, and let n be the largest odd divisor of r − 1 such that
p(r−1)/n ≡ q(r−1)/n ≡ 1 mod r. Let K be the subfield of Q(ζr) with degree
n. Then L = Kkpkq is a normal extension of K with Gal(L/K) ' (l, l), and
the primes p and q split completely in K/Q.

Let M be any of the l− 1 intermediate fields of L/K different from Kkp
and Kkq; since these fields have conductor pqr, all the primes above p and q
in K (there are exactly 2n such primes) must ramify in M/K; since K is real,
it does not contain ζl, hence ranklE/H ≤ rankE/El = n−1, and (1) shows
that rank Cll(M/K) ≥ 2n−(n−1)−1 = n. Since (Cll(M) : NL/M Cll(L)) = l
by class field theory, we must have rank Cll(M/K) ≥ n− 1.

Since, for given n ∈ N, there are infinitely many primes r ≡ 1 mod n and
p ≡ q ≡ 1 mod lr, our claim follows.

Incidentally, the same argument works if we replace kp by the field of
degree l and conductor l2.

7. Capitulation of ideal classes. We want to study the following situ-
ation: let L/F be an abelian extension with Galois group G = Gal(L/F ) '
∆ × Γ , where ∆ and Γ are cyclic groups of coprime order. Let k and
K denote the fixed fields of Γ and ∆, respectively; then we can identify
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∆ = Gal(k/F ) ' Gal(L/K) and Γ = Gal(L/k) ' Gal(K/F ) (see Figure 1
for the Hasse diagrams).

L

l,
, K

k

l
,

,
F

1
l,

, ∆
Γ

l
,

,
G

Fig. 1

Let M be a G-module of order coprime to #∆ (e.g. M = Clp(L),
Clp(L/k), or κ = κL/k for primes p -#∆); we can decompose M using
the idempotents eφ of the group ring Z[∆] as M =

⊕
M(φ) with M(φ) =

eφ(M). Now we use (cf. Schoof [28])

Proposition 8. In this notation we have Ĥq(Γ,M)(φ) ' Ĥq(Γ,M(φ)).

P r o o f. Let φ 6= χ be different characters of ∆, and consider the sub-
module Ĥq(Γ,M(φ)); then Ĥq(Γ,M(φ))(χ) = 0, since eχ kills the image of
every x ∈ Ĥq(Γ,M(φ)). Thus the injection ı : Ĥq(Γ,M)(χ) ↪→ Ĥq(Γ,M)
actually lands in Ĥq(Γ,M(χ)), and we have an injection ı : Ĥq(Γ,M)(χ) ↪→
Ĥq(Γ,M(χ)). Summing over all inequivalent χ we get Ĥq(Γ,M) on both
sides, hence ı must be an isomorphism.

Since L/k is cyclic, we have an injection κ ↪→ Ĥ−1(Γ,EL) (see Iwasawa
[8]); here Ĥq denotes Tate’s cohomology groups. Taking the φ-parts of this
injection we find κ(φ) ↪→ Ĥ−1(Γ,EL)(φ). Now Proposition 8 shows that
κ(φ) ↪→ Ĥ−1(Γ,EL(φ)).

As a special case, let L and k be CM-fields with maximal real subfields
K and F , respectively (in particular, ∆ = {1, J}, where J denotes com-
plex conjugation). Then the minus part of Ĥ−1(Γ,EL) is Ĥ−1(Γ,E−L ) =
Ĥ−1(Γ,WL) ' NWL/W

1−σ
L , where NWL = {ζ ∈ WL : NL/kζ = 1}. We

have shown (compare Jaulent [9] and Kida [12]):

Proposition 9. Let L/k be a cyclic extension of CM-fields of odd prime
degree p. Then κ−L/k = κL/k ∩ Cl−(k) is isomorphic to a subgroup of

NWL/W
1−σ
L . In particular , #κ−L/k | p.

Let k be a number field containing a pth root of unity ζp. A cyclic exten-
sion L/k of degree p is called essentially ramified if L = k( p

√
α ) and αOk is

not the pth power of an ideal. In particular, subextensions of k( p
√
Ek )/k are

not essentially ramified. In [12], Kida showed (generalizing results of Moriya
[21] and Greenberg [5]) that κ−L/k = 1 if ζp 6∈ k, if L = k(ζpn) for some
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n ≥ 1, or if L/k is ramified outside p. We will now show that this result is
almost best possible:

Theorem 5. Let p be an odd prime and L/k a cyclic p-extension of
CM-fields. Then κ−L/k = 1 if and only if one of the following conditions
holds:

(i) ζp 6∈ k;
(ii) ζp ∈ k and L = k(ζpn) for some n ≥ 2;

(iii) ζp ∈ k and L/k is essentially ramified.

Moreover , if #κ−L/k = p, then L = k( p
√
β ), βOk = bp, and κ−L/k = 〈[b]〉.

P r o o f. Since G is killed by p, so is H−1(G,EL) ' NWL/NWL ∩ E1−σ
L ;

thus NWL = 1 or NWL = 〈ζp〉. We start by showing κ−L/k = 1 if one of the
conditions (i)–(iii) is satisfied:

(i) In this case, clearly NWL = 1;
(ii) We have ζp = ζ1−σ

pn for a suitable choice of σ, hence NWL ⊆ E1−σ
L ;

(iii) Assume that κ−L/k 6= 1; then it has order p, and there exists an ideal

class c = [a] ∈ Cl−p (k) such that aOL = α and α1−σ = ζp. This implies
(αp)1−σ = 1, i.e. β = αp ∈ k, and thus K = k( p

√
β ). But now βOk = ap,

and K/k is not essentially ramified.

Now assume that κ−L/k = 1; if (i) holds, then we are done, hence we
may assume that ζp ∈ k. Since K/k is cyclic, there exists a β ∈ k such
that K = k( p

√
β ). If (iii) holds, i.e. if K/k is essentially ramified, we are

done; assume therefore that βOk = bp for some integral ideal b. Since L/F
is normal, we must have β1+J = ξp for some ξ ∈ k× by Galois theory;
thus (β)1+J = (bp)1+J = (ξ)p, and we get b1+J = (ξ), in other words,
[b] ∈ Cl−(k). But bOL = k( p

√
β ) shows that b capitulates, and now our

assumption κ−L/k = 1 implies that bOk = (α) is principal. Thus β = αpε for
some unit ε ∈ Ek. Since ε2 = ζη for some root of unity ζ ∈ Wk and a real
unit η ∈ Ek+ , we find

L = k( p
√
β ) = k( p

√
αpε ) = k( p

√
ε ) = k( p

√
ε2 ) = k( p

√
ζη ).

But now β1+J = ξp implies that η2 = (ζη)1+J is also a pth power in k×, and
we finally find L = k( p

√
ζ ), i.e. we are in case (ii). The last remark follows

from the second half of our proof.

8. Blowing up class groups. In this section we will study the be-
haviour of ideal class groups under transfer in cyclic extensions. The starting
point of our considerations was the following observation: let k be a subfield
of K = Q(ζn), and assume that a prime p - (K : k) divides the class number
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h(k) of k; then the transfer of ideal classes j : Cl(k) → Cl(K) is injective,
and p |h(K).

Take for example n = 23 and k = Q(
√−23 ): here 3 |h(k), (K : k) = 11,

and hence 3 |h(K). This simple method does, however, not explain why
3 |h(K) for K = Q(ζ31): although k = Q(

√−31 ) has class number 3, the
degree (K : k) = 15 is divisible by 3. From Theorem 5 we know that
j : Cl(k)→ Cl(K) is injective in this case also (since Cl(k) = Cl−(k)), hence
3 |h(K). The class number formula, on the other hand, shows that even
32 |h(K). This is explained by the following proposition, which generalizes
a result in [21] (Satz 2 and §4):

Proposition 10. Let K/k be a ramified cyclic extension of prime degree
p, put r = rank Clp(k), and let γ denote the rank of κK/k. Then # Clp(K) ≥
pr−γ # Clp(k).

P r o o f. Consider the exact sequence

(2) 1 → NClp(K) → Clp(K) N→ Clp(k) → 1.

Here the norm map N : Clp(K)→ Clp(k) is onto by class field theory since
K/k is ramified, and NClp(K) is the kernel of this map by definition. Now
clearly κ ⊆ pCl(k) := {c ∈ Cl(k) : cp = 1} and pCl(k)j ⊆ NClp(K); this
shows immediately that #NClp(K) ≥ #pCl(k)j ≥ (pCl(k) : κ) = pr−γ .

Example. Put k = Q(
√

229 ), and let K be the sextic subfield of Q(ζ229).
Computations ([16]) show that h(k) = h(K) = 3: now Proposition 10 says
that the class group of k capitulates in K.

For our next result, we will need some results of Inaba [7] (see Gras [4]
for a modern exposition) on Galois modules of cyclic groups. Let G = 〈σ〉
be a finite group of prime order p, and let M be a finite G-module of order
pt for some t ∈ N. Define the submodules Mk = {m ∈ M : m(1−σ)k = 1}
and M (k) = {m ∈M : mpk = 1}, and let ν = 1+σ+σ2 + . . .+σp−1 = j ◦N
denote the “algebraic norm” on M . Then

1. 1 = M0 ⊆M1 ⊆ . . . ⊆Mn = M for a sufficiently big n ∈ N. Moreover,
Mj = Mj+1 if and only if Mj = M ;

2. (Mn : Mn−1) ≤ . . . ≤ (M2 : M1) ≤ #M1;
3. If Mν = 1, then M (n) = Mn(p−1), and in particular #M1 ≤ (M :

Mp) ≤ (#M1)p−1; if moreover Mp 6= 1, then (M : Mp) ≥ pp−2#M1.

We will also need the existence of polynomials f, g, h ∈ Z[X] such that

p = (1− σ)p−1f(σ) + νg(σ),(3)

ν = (1− σ)p−1 + ph(σ).(4)

Let K/k be a cyclic extension of prime degree p, and let σ be a generator
of the Galois group G = Gal(K/k). An ideal class c of Cl(K) is called
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ambiguous if it is fixed under the action of G, i.e. if cσ = c. The ambiguous
ideal classes form a subgroup Am(K/k) of Cl(K).

Proposition 11. If K/k is a cyclic ramified extension of prime degree,
then

# Am(K/k) = (NCl(K) : Cl(K)1−σ)# Cl(k);

in particular , # Am(K/k) is divisible by hk.

P r o o f. Applying the snake lemma to the exact and commutative dia-
gram (note that the surjectivity of the norm map N : Cl(K)→ Cl(k) follows
from class field theory since K/k is completely ramified)

1 → Cl(K)1−σ → Cl(K)1−σ → 1
↓ ↓ ↓

1 → NCl(K) → Cl(K) N→ Cl(k) → 1

and using the fact that the alternating product of the orders of finite groups
in an exact sequence is 1, we find

(NCl(K) : Cl(K)1−σ) = (Cl(K) : Cl(K)1−σ)# Cl(k).

Since (Cl(K) : Cl(K)1−σ) = # Am(K/k), the claimed equality follows.

In the special case γ = 0, Theorem 6 below was given (without proof)
by Tateyama [31]:

Theorem 6. If (Clp(K) : Clp(k)j) = pa for some a ≤ p − 2 + γ, then
Clp(k)j = Clp(K)p.

P r o o f. Put M = Clp(K). We claim that M (1−σ)p−1
= 1. In fact, assume

that this is false. Then Mp−1 6= M , hence p ≤ (Mp : Mp−1) ≤ . . . ≤ (M2 :
M1); this shows #M ≥ (M : Mp−1) . . . (M2 : M1)#M1 ≥ pp−1#M1. Since
M1 = Amp(K/k), we get # Clp(K) ≥ pp−1# Clp(k) = pp−1+γ# Clp(k)j ,
where we have used Proposition 11.

Thus (1 − σ)p−1 kills M , and (3) and (4) imply that Mp = Mν . Since
Mν = Clp(k)j , the claim follows.

We now define the subgroup νClp(K) by the exact sequence

(5) 1 → νClp(K) → Clp(K) ν→ Clp(k)j → 1.

In other words, νClp(K) is the subgroup of Clp(K) killed by the algebraic
norm ν.

Proposition 12. If rank Clp(k)j ≥ rank Clp(K)−(p−3), then νClp(K)
is elementary abelian.

P r o o f. Put M = νClp(K); then Clp(k)j ⊆ M1, since Cl(k)j is clearly
killed by 1 − σ. If Mp 6= 1, then (M : Mp) ≥ pp−2#M1 shows that
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rank Clp(K) ≥ rankM ≥ p − 2 + rankM1 ≥ p − 2 + rank Cl(k)j , which
contradicts our assumption.

Theorem 7. If p ≥ 3 and rank Clp(k)j = rank Clp(K), then Clp(k)j =
Clp(K)p.

P r o o f. Since pCl(k)j ⊆ νClp(K) ⊆ Clp(K), our second assumption
implies that rank νClp(K) = r. Thus all groups in the exact sequence (5)
have the same p-rank, and now our claim follows since νClp(K) is elementary
abelian by Proposition 12.

For cyclic extensions K/Q, already Moriya [21] noticed that Clp(K) can-
not be cyclic if # Clp(K) ≥ p2. This was generalized by Guerry ([6], Theo-
rem I.9):

Corollary 4. If K/k is a cyclic p-extension (p ≥ 3), then Clp(K) is
cyclic and non-trivial if and only if Clp(K)/Clp(k)j ' Z/pZ.

P r o o f. Assume that Clp(K) is cyclic. If Clp(k)j 6= 1, then Clp(K) and
Clp(k)j have the same rank (i.e. 1), and Theorem 7 proves our claim. Assume
therefore that Clp(k)j = 1. Then we have Clp(K) ' Z/pZ by Inaba’s results:
put M = Clp(K) and observe that Mν = 1; if Mp were non-trivial, then
(M : Mp) ≥ pp−2#M1 ≥ p2 (since M 6= 1 implies M1 6= 1) shows that M
would have rank at least 2, contradicting our assumption. Thus Mp = 1,
and our claim follows.

For the other direction, assume that Clp(K)/Clp(k)j ' Z/pZ. Then
a = 1 in Theorem 6, so Clp(k)j = Clp(K)p and (Clp(K) : Clp(K)p) =
(Clp(K) : Clp(k)j) = p, and Clp(K) is cyclic and non-trivial.

Remark. For odd primes p, all the results in this section hold with
Cl(K), Clp(K) etc. replaced by the corresponding minus class groups
Cl−(K), Cl−p (K) etc. This follows at once from the following proposition,
which shows that there is an exact sequence for the minus part of class
groups corresponding to (2).

Proposition 13. Let K/k be a cyclic extension of CM-fields which is
completely ramified. Then the following sequence is exact :

1 → NCl−p (K) → Cl−p (K) N→ Cl−p (k) → 1.

P r o o f. We only have to show that the norm N : Cl−p (K) → Cl−p (k) is
surjective. To this end, take a class c ∈ Cl−p (k), and let J denote complex
conjugation; then there is an ideal class C ′ ∈ Clp(K) such that c = NC ′.
But c ∈ Cl−p (k) implies c = c(1−J)/2 since J acts as −1, and we get c =

c(1−J)/2 = NC for C = C ′(1−J)/2. Moreover, C ∈ Cl−p (K) since it is killed
by 1 + J .
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Example. Take k = Q(
√−31 ), and let K be the sextic subfield of

Q(ζ31). Then Cl−(k) ' Z/3Z, and the first condition of Theorem 5 shows
that no class of Cl−(k) capitulates inK. By Proposition 10 we have h−(K) ≡
0 mod 9; the tables in [32] actually show that h−(K) = 9, hence Theorem 6
(applied to the minus part) shows that Cl−(K) ' Z/9Z.
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[24] L. R éde i und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der
Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math.
170 (1933), 69–74.

[25] B. Schmitha l s, Konstruktion imaginärquadratischer Körper mit unendlichem
Klassenkörperturm, Arch. Math. (Basel) 34 (1980), 307–312.
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