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1. Introduction. The main goal of this paper is to call your attention
to the following family of polynomials.

Definition 1.1. For every a = b + c, where a, b, c are coprime natural
numbers the abc-polynomial is defined to be

fabc(x) =
bxa − axb + c

(x− 1)2 .

I discovered these polynomials when pursuing a rather naive approach
to the Masser–Oesterlé’s abc conjecture. The following argument describes
the idea.

Argument. Although the arithmetic abc conjecture is a great mystery,
its algebraic counterpart is a rather easy theorem. It looks like it was first
noticed by W. W. Stothers (cf. [19]). Later on it was generalized and redis-
covered independently by several people, including R. C. Mason (cf. [11])
and J. Silverman (cf. [17]).

Theorem. Suppose a + b + c = 0, where a, b, c are coprime, not all
constant , polynomials with coefficients in a field K with charK = 0. Suppose
R(x) ∈ K[x] is the product of all irreducible monic polynomials from K[x]
that divide abc. Then

degR ≥ max(deg a, deg b,deg c) + 1.

There are several proofs of this theorem, all involving derivatives or dif-
ferential forms. I will discuss two of them, probably the easiest ones, and
then try to translate them into the arithmetical setting.
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The easiest proof, due to Oesterlé (cf. [13]) is to differentiate the equality
a(x) + b(x) + c(x) = 0 and consider the Wrońskian

D =
∣∣∣∣
a b
a′ b′

∣∣∣∣ =
∣∣∣∣
b c
b′ c′

∣∣∣∣ =
∣∣∣∣
c a
c′ a′

∣∣∣∣ .

The theorem is then obtained by comparison of the degree of D and the
powers in which primes dividing abc divide D.

The second proof (the original proof of Stothers [19], cf. also Mason [11],
Silverman [17]) is to consider the map ϕ : P 1 → P 1 given by a(x)/c(x) and
apply the Hurwitz ramification formula.

Both of the above proofs are hard to follow in the arithmetic case. The
reason is that there is no such map ϕ and no non-zero differentiation. This is
related to the fact that the set of integers is naturally discrete so they do not
have any non-trivial deformations. However, the integers have “quantum”
deformations: for any positive integer a, one defines [a]q = qa−1 + . . .+ q+ 1
where q is a quantum parameter. Other people call this a q-expansion. The
classical integers are obtained by specializing q to 1.

Let us try therefore to “quantize” the abc conjecture. In order to deal
with positive integers we rewrite a + b + c = 0 as a = b + c, with a, b, c
positive, possibly switching a, b, and c and changing some signs. The equality
a = b+ c can then be quantized as [a]q = [b]q + [c]qqb.

Another way to go is [a]q = [b]qqc + [c]q. They yield basically the same.
Unfortunately, the extra q-factor cannot be avoided.

Following the first proof, consider

D =
1

q − 1

∣∣∣∣
b a

[b]q [a]q

∣∣∣∣ =
b(qa − 1)− a(qb − 1)

(q − 1)2 =
bqa − aqb + c

(q − 1)2 .

It naturally corresponds to the D in Oesterlé’s proof. Note now that this
is exactly the abc-polynomial fabc(q).

This abc-polynomial also arises if one tries to follow Stothers’ proof as a
non-trivial factor of the derivative of [a]q/[c]q:

(
[a]q
[c]q

)′
=
qc−1

[c]2q

(
bqa − aqb + c

(q − 1)2

)
.

So this is how these polynomials appear. The exact comparison with the
geometric case is definitely lost at this point. However, the abc-polynomials
do have some really nice properties.

First of all, it looks like they are always irreducible. This question is
naturally invariant under the switch of b and c because fabc(x) is reciprocal
to facb(x). In the case when it is irreducible, it is natural to call the cor-
responding field the abc-field . It only depends on the triple a = b + c and
not on the order of b and c. It has degree a− 2 and is unramified outside of
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abc, which follows from the direct calculation of the discriminant of fabc(x)
(Lemma 2.1).

Although the author has no knowledge of any previous investigations on
abc-polynomials in the general case, the particular case c = 1 (or b = 1) was
studied before. First of all, Nicolas and Schinzel studied the distribution of
roots of

fn,1,n−1(x) =
xn − nx+ (n− 1)

(x− 1)2

in the complex plane and obtained some remarkably precise results on it (cf.
[12]).

Also, M. Filaseta conjectured that fn+1,n,1(x) = (xn+xn−1+. . .+x+1)′

is always irreducible. He proved it for n being a prime power (cf. Theorem
3.1). T. Y. Lam conjectured that all the higher derivatives (xn+xn−1 + . . .+
x + 1)(k) are also irreducible. Using the methods of this paper (with some
significant modifications) for any fixed k one can prove the irreducibility for
almost all (in the sense of density) n. These results will appear elsewhere
in a joint paper with Filaseta and Lam. In this paper we prove that fabc(x)
are irreducible for the density one set of coprime triples (a = b+ c). We also
prove the same result for any fixed b. And for “good” b, that is, if there is a
prime p such that p ‖ b, we prove that all but finitely many abc-polynomials
are irreducible. To be more precise, it suffices to assume that c� b ln b.

The irreducibility results of this paper can be viewed as part of a more
general problem of irreducibility of the kernels of trinomials. It was exten-
sively studied by Schinzel (cf. [14]). From the older results on this topic
I should mention that of Selmer (cf. [16]).

The paper is organized as follows. Section 2 contains the results about
the distribution of roots of abc-polynomials in the usual and p-adic complex
numbers. The key Section 3 is devoted to the irreducibility results which rely
heavily on the results of Section 2. Section 4 contains some miscellaneous
remarks and heuristics that I have gathered in the unsuccessful attempt
to link the abc-polynomials closer to the abc conjecture from which they
originated.

A more detailed version of this paper, which in particular more fully ex-
plains the author’s motivation for studying the abc-polynomials, is currently
available in the Algebraic Number Theory Archives

(http://www.math.uiuc.edu/Algebraic-Number-Theory/)

or directly from the author.

Notations. Throughout the paper, if we write g(x) | fabc(x) we assume
that g ∈ Z[x] and fabc(x)/g(x) ∈ Z[x]. All signs � and � assume absolute
constants unless specified otherwise. The notation m ‖n means, as usual,
that m |n and gcd(m,n/m) = 1.
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2. Distribution of roots. First of all, let us calculate the discriminant
of the abc-polynomial.

Lemma 2.1. The discriminant of fabc(x) is equal to 2aa−3ba−4ca−4.

P r o o f. First of all, fabc(1) = 1
2 (bxa − axb + c)′′(1) = abc/2. Denote by

(u, v) the resultant of the polynomials u and v. Then the discriminant of
fabc(x) is calculated as follows:

1
b

(f, f ′) =
1
b

(
bxa − axb + c

(x− 1)2 ,
abxb−1(xc − 1)(x− 1)− 2(bxa − axb + c)

(x− 1)3

)

=
1
b

(
bxa − axb + c

(x− 1)2 ,
abxb−1(xc − 1)(x− 1)− 2(bxa − axb + c)

(x− 1)2

)
2
abc

=
1
b

(
bxa − axb + c

(x− 1)2 ,
abxb−1(xc − 1)

x− 1

)
2
abc

=
2
a2c

(
b(xc − 1)xb − c(xb − 1)

(x− 1)2 ,
xc − 1
x− 1

)
cb−1(ab)a−2

=
2

ab2c
cb−1(ab)a−2

(
b(xc − 1)xb

x− 1
− cx

b − 1
x− 1

,
xc − 1
x− 1

)
1
c

= 2aa−3ba−4cb−3
(
c
xb − 1
x− 1

,
xc − 1
x− 1

)

= 2aa−3ba−4cb−3cc−1 = 2aa−3ba−3ca−4.

Remark 2.1. The Mahler measure M of fabc(x) is at most 2a, which
can be shown by applying Mahler’s result [9] to the corresponding trino-
mial. Therefore Mahler’s estimate for the discriminant (cf. [10]) implies that
D(fabc(x)) ≤ (a−2)a−2(2a)2a−6 which is of about the same magnitude as the
exact value, especially if b is about the same as c. This means that the roots
are more or less uniformly distributed around the unit circle. In Theorem
2.1 we make it much more precise using the result of P. Erdős and P. Turán
(cf. [4]).
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Let us prove now that fabc(x) is the kernel of the corresponding trinomial
(i.e. it has no roots on the unit circle).

Lemma 2.2. (1) If bxa − axb + c = 0 and |x| = 1, then x = 1.
(2) fabc(1) = abc/2.
(3) fabc(x) is coprime to its reciprocal facb(x).

P r o o f. (1) If |x| = 1 then |bxa| = b, |axb| = a, |c| = c. So in order for x
to be the root the above three numbers have to lie on the same ray. So xb

and xa have to be 1. This implies that x = 1 because gcd(a, b) = 1.
(2) We actually proved it at the beginning of the proof of Lemma 2.1.
(3) If fabc(x) = facb(x) = 0 then

a

(
xb − 1
x− 1

· x
c − 1
x− 1

)
= fabc(x) + facb(x) = 0,

which is impossible by (1).

Lemma 2.3. For a = b+c, coprime, fabc(x) has exactly b−1 roots inside
and c− 1 outside the unit circle.

P r o o f. Instead of fabc(x) it is easier to consider the trinomial bxa −
axb + c itself. It has, besides the roots of fabc(x), a double root at 1. If
we deform c by a very small negative real number, −ε, then the polynomial
gε(x) = bxa−axb+(c−ε) will have simple roots close to the roots of fabc(x)
as well as two simple real roots near 1, one smaller and one greater than 1.
This follows from the fact that

bxa − axb + c− ε = −ε+
abc

2
(x− 1)2 +O(x− 1)3

as x→ 1. As a result, for ε small enough the number of roots of gε(x) inside
the unit circle is exactly one plus the number of roots of fabc(x) in there.
Notice now that if |x| = 1, then

|axb| = a = b+ c > b+ c− ε = |bxa|+ |c− ε| ≥ |bxa + c− ε|.
So, when x makes one revolution around 0 on the unit circle, axb makes b
revolutions and so does gε(x).

Therefore, gε(x) has b roots inside the unit circle, and fabc(x) has b− 1.
The remaining c− 1 roots of fabc(x) are outside the unit circle.

Lemma 2.4. If a is even then fabc(x) has no real roots. If a is odd it has
exactly one real root which is always negative.

P r o o f. If a is even, then b and c are odd (since a, b, and c are pairwise
coprime) and Descartes’ Rule of Signs implies that the polynomial bxa −
axb+c has at most and, hence, exactly two positive real roots corresponding
to the two roots at 1, and no negative real roots. Similarly, if a is odd, then
Descartes’ Rule of Signs implies that bxa − axb + c has the two positive
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roots at 1 and no other positive roots and exactly one negative real root.
The lemma follows.

The following lemma is a trivial observation that will be needed in The-
orem 3.7.

Lemma 2.5. If a ≥ 4 then for every root x = reiϕ of fabc(x) we have
r = |x| < 2.

P r o o f. First of all, if fabc(x) = 0 then

xc =
a

b
− c

bxb
.

If r > 1 then

rc ≤ a

b
+
c

b
= 1 +

2c
b
.

If c < b then we estimate r < 1 + 2/b, as
(

1 +
2
b

)c
= 1 +

2c
b

+R,

where the remainder term R is obviously positive. In this case, because
b > a/2, r < 1 + 4/a ≤ 2.

If c > b, then we estimate

r ≤
(

1 +
2c
b

)1/c

≤ (2c+ 1)1/c < 2

because c ≥ 3 for a ≥ 4.

Lemma 2.6. For every ε > 0 there exists some positive constant A(ε)
such that for every x = reiϕ which is a root of fabc(x), its absolute value r
satisfies the inequality

|r − 1| < (1 + ε)
2
a

ln(2a) if a ≥ A(ε).

P r o o f. It is clearly enough to prove the upper bound due to the sym-
metry of the problem. We proceed as in the previous lemma, so we get

r ≤
(

1 +
2c
b

)1/c

.

If c < b the bound is even better than what we need.
If c > b, then r ≤ (1 + 2c/b)1/c implies

ln r ≤ 1
c

ln
(

1 +
2c
b

)
≤ 1
c

ln(2c+ 1).

So if c� 1 (“�” depends on ε) we have

r < 1 +
(

1 +
ε

3

)
1
c

ln(2c+ 1) < 1 +
(

1 +
ε

2

)
1
c

ln(2c).
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So if a� 1 (“�” depends on ε) then

r < 1 + (1 + ε)
2
a

ln(2a),

which proves the lemma.

The following result is due to P. Erdős and P. Turán.

Theorem (P. Erdős–P. Turán, [4]). Suppose the roots of the polynomial
f(x) = anx

n + . . . + a1x + a0 are denoted by xk = rke
iϕk , k = 1, . . . , n.

For every 0 ≤ ϕ ≤ ψ ≤ 2π denote by Nf (ϕ,ψ) the number of xk such that
ϕ ≤ ϕk ≤ ψ. Then

∣∣∣∣Nf (ϕ,ψ)− ψ − ϕ
2π

n

∣∣∣∣ < 16

√
n ln
|a0|+ |a1|+ . . .+ |an|√

|a0an|
.

Remark 2.2. Instead of the Erdős–Turán theorem one can also use a
somewhat similar result of Bilu ([1]), which in the case of abc-polynomials
gives a little bit worse and ineffective bound.

Now we apply the above theorem to fabc(x).

Theorem 2.1. In the above notations for any ϕ, ψ,∣∣∣∣Nfabc(ϕ,ψ)− ψ − ϕ
2π

n

∣∣∣∣ ≤ 12
√
n ln(n+ 1),

where n = a− 2 = deg fabc(x).

P r o o f. By the Erdős–Turán theorem applied to bxa − axb + c we have∣∣∣∣Nfabc(ϕ,ψ)− ψ − ϕ
2π

n

∣∣∣∣ ≤
∣∣∣∣Nbxa−axb+c(ϕ,ψ)− ψ − ϕ

2π
(n+ 2)

∣∣∣∣+ 2

< 16

√
n ln

2a√
a− 1

+ 2.

One can easily check that, say, for n ≥ 100,

16

√
n ln

2a√
a− 1

+ 2 < 12
√
n ln(n+ 1)

when a = n + 2. And for n < 100 the theorem is true anyway because
12
√
n ln(n+ 1) > n.

Remark 2.3. In the case b = 1 there is a much more precise result of
Nicolas and Schinzel (cf. [12]). It would be very interesting to extend it to
the general case.

Consider now the distribution of roots of fabc(x) in the p-adic complex
fields for p | abc. First of all, we decompose fabc(x) modulo primes that divide
either a, b, or c.
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Lemma 2.7. (1) For every p | a,

fabc(x) ≡ b
(
xa1 − 1
x− 1

)q
(x− 1)q−2 mod p,

where q = pk is the maximum power of p dividing a and a1 = a/q.

(2) For every p | b,

fabc(x) ≡ −c
(
xb1 − 1
x− 1

)q
(x− 1)q−2 mod p,

where, similar to above, q = pk, b = qb1, (b1, p) = 1.
(3) For every p | c,

fabc(x) ≡ bxb
(
xc1 − 1
x− 1

)q
(x− 1)q−2 mod p,

where q = pk, c = qc1, (c1, p) = 1.

P r o o f. The proofs of all three statements are straightforward. Let us
prove just one of them, say (3). The A ≡ B below means that A − B =
pU(x), where U(x) is a rational function with integer coefficients and monic
denominator. We have

fabc(x) =
bxa − axb + c

(x− 1)2 ≡ bxa − axb
(x− 1)2 ≡ bxb

xc − 1
(x− 1)2

= bxb
xc1q − 1
xq − 1

· x
q − 1

(x− 1)2 ≡ bxb
(
xc1 − 1
x− 1

)q
(x− 1)q−2.

This proves the desired formula.

Because of the above decomposition, it is very natural to consider the
roots in the p-adic complex field as coming in clusters around the a1th (or
b1th, c1th) roots of unity and 0 (for p | c) and ∞ (for p | b). The p-adic
distance between the above roots of unity is obviously equal to 1, so the
clusters do not have common roots.

Lemma 2.8. Suppose that p | a, a = qa1, (p, a1) = 1, q = pk. Suppose
we fix a p-adic complex field with valuation v, v(p) = 1. Then for every
ζ 6= 1, ζa1 = 1, we have exactly p roots xi of fabc(x) with v(xi − ζ) = 1/p,
exactly p2 − p roots with v(xi − ζ) = 1/(p2 − p), exactly p3 − p2 roots with
v(xi − ζ) = 1/(p3 − p2), and so on, until exactly pk − pk−1 roots with
v(xi − ζ) = 1/(pk − pk−1).

P r o o f. The roots of fabc(x) that are inside the unit ball with center
ζ 6= 1, ζa1 = 1, are the roots of bxa−axb+c, because v(ζ−1) = 0. Consider
the polynomial g(x) = b(ζ + x)a − a(ζ + x)b + c. Its roots are exactly the
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differences between roots of fabc(x) and ζ. We have

g(x) = (bζa − aζb + c) +
a∑

j=1

xj
[
b

(
a

j

)
ζa−j − a

(
b

j

)
ζb−j

]
.

So

g(x) = a(1− ζb) +
a∑

j=1

xj
[
b

(
a

j

)
ζa−j − a

(
b

j

)
ζb−j

]
.

So, if g(x) = u0 + u1x + u2x
2 + . . . + uax

a, then v(u0) = k. For 1 ≤ j ≤ a
if v(uj) < k or v

((
a
j

))
< k then v(uj) = v

((
a
j

))
. It is standard and easy to

check that

v

((
a

j

))
= v

(
a

j

)
for 1 ≤ j ≤ pk.

So, for any 0 ≤ n < k the least j such that v(uj) ≤ n is j = pk−n.
Combined with the Newton polygon method (cf. N. Koblitz, [8], Chapter

4) this proves the lemma.

Lemma 2.9. Suppose p | a, a = pka1, (a1, p) = 1. Then there are exactly
p− 2 roots xi of fabc(x) with v(xi − 1) = 1/(p− 2) (no such roots if p = 2),
also exactly p2 − p roots with v(xi − 1) = 1/(p2 − p), . . . exactly pk − pk−1

roots with v(xi − 1) = 1/(pk − pk−1).

P r o o f. Similar to the lemma above, consider

g(x) = fabc(1 + x) =
b(1 + x)a − a(1 + x)b + c

x2 =
a∑

j=2

xj−2
[
b

(
a

j

)
− a
(
b

j

)]
.

If g(x) = u0 + u1x+ u2x
2 + . . .+ ua−2x

a−2, then for 1 ≤ j ≤ pk − 2,

v(uj) = v

(
b

(
a

j + 2

))
= v

(
a

j + 2

)

whenever at least one (consequently all) of the above three numbers is less
than k.

Notice also that v(u0) = k if p 6= 2 and v(u0) = k − 1 if p = 2.
The rest of the proof is absolutely similar to that of the above lemma.

Lemma 2.10. Suppose p | c, c = pkc1, (c1, p) = 1. Then there are exactly
b roots xi of fabc(x) such that v(xi) = k/b. The remaining c − 2 roots are
located in clusters around c1th roots of unity , exactly as for p | a.

P r o o f. When we look for xi such that v(xi) > 0 it is enough to consider
g(x) = bxa − axb + c.

We have v(c) = k, v(a) = 0, and the first statement follows easily from
the Newton polygon method. The proof of the second one is completely
parallel to the two lemmas above and is omitted for brevity.
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Lemma 2.11. Suppose p | b, b = pkb1, (b1, p) = 1. Then there are exactly
c roots with v(xi) = −k/c. The remaining b−2 roots are located in the same
way as for p | a.

P r o o f. Let us just recall that the roots of fabc are reciprocal to the roots
of facb. Then everything follows from the previous lemma.

3. Irreducibility results. We start with some relatively simple irre-
ducibility results and proceed gradually to the harder and stronger ones.

Theorem 3.1. Suppose c = 1 and b = pk, where p is a prime. Then
fabc(x) is irreducible.

P r o o f. In the p-adic complex plane there is just one root xi of fabc(x)
with v(x) < 0. For all the rest v(x) = 0. So if fabc(x) = g1(x)g2(x) then
one of gi, say g1, has leading coefficient ±1. But this is impossible as all the
roots lie strictly inside the unit circle (Lemma 2.3).

Remark 3.1. This result is due to M. Filaseta. Together with the first
part of the next theorem it is probably all that was known about the irre-
ducibility of abc-polynomials prior to this paper.

Theorem 3.2. For any a = b+ c, coprime, fabc(x) is irreducible if a = p
or a = 2p, where p is an odd prime.

P r o o f. If a = p then fabc(1 + x) is Eisenstein, so we are left with the
case a = 2p. In the p-adic complex plane, we have p roots xi of fabc(x) with
v(xi + 1) = 1/p and p − 2 roots xi of fabc(x) with v(xi − 1) = 1/(p− 2).
If f(x) = g(x)h(x) then, obviously, one of the polynomials g, h has to con-
tain all roots from one cluster and one has to contain all roots from another
one. This implies that, say, deg g = p, deg h = p − 2, a contradiction by
Lemma 2.4.

Theorem 3.3. For any a = b + c, coprime, the abc-polynomial is ir-
reducible if a = pl, where p and l are distinct primes and the order of p
in (Z/lZ)∗ does not divide the number N, which is the integer from 1 to l
defined by the property N ≡ (−2/p) mod l.

P r o o f. Consider the roots of fabc(x) in the p-adic complex field. They
come in clusters around lth roots of unity ζl. If ζl 6= 1 then there are exactly
p roots around it, at equal distance, v(xi − ζ) = 1/p. If fabc(x) = g(x)h(x)
and g, h are with integer coefficients, then v(g(ζl)) is an integer, because
p is unramified in Z(ζl). Therefore if g contains one root from the cluster
of ζl it contains all of them. The same is true if ζl = 1. Therefore, either
deg g ≡ 0 mod p and deg h ≡ −2 mod p, or the other way around. The same
is obviously true for l instead of p.
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As deg g and deg h are both less than a− 2, we can assume that

deg g ≡ 0 mod p, deg g ≡ −2 mod l.

Therefore deg g = pN, where N is the number from the statement of this
theorem.

We can be a bit more precise. As g(x) does not contain the roots around
1, and contains all or none of the roots from any of the clusters, its reduction
modulo p has to be of the form u(x)p, where u(x) is some polynomial dividing
(xl − 1)/(x− 1). But it is an elementary fact from the theory of cyclotomic
fields that (xl − 1)/(x− 1) splits modulo p into the product of prime factors
of the same degree k, where k is the order of p in (Z/lZ)∗. As deg u = N , k
must divide N. But we assumed that it does not, so the theorem is proven.

Remark 3.2. It looks like for most pairs (p, l) either (p, l) or (l, p) satisfies
that extra condition from the above theorem. However, it is not the case,
say, for p = 5, l = 31. So the above theorem is not applicable for a = 155.

Theorem 3.4. If c = 2, then fabc(x) is irreducible.

P r o o f. By Lemma 2.10, in the 2-adic field we have b roots xi of fabc(x)
with v2(xi) = 1/b. So fabc(x) is irreducible (actually, Eisenstein).

Theorem 3.5. If c = p, p is odd prime, and a is even, then fabc(x) is
irreducible.

P r o o f. In the p-adic complex field we have b roots xi of fabc(x) with
vp(xi) = 1/b and p − 2 roots with vp(xi − 1) = 1/(p− 2). So if fabc(x) =
g(x)h(x) then deg g = b,deg h = p−2 or the other way around, contradiction
by Lemma 2.4.

Remark 3.3. The above theorems establish irreducibility for triples hav-
ing density zero. The following theorem proves the irreducibility for a posi-
tive density set of triples abc.

Theorem 3.6. If b and c are both square-free and greater than 1, then
fabc(x) is irreducible.

P r o o f. By the obvious symmetry of the problem, we can assume that
b > c. Then consider any prime p | c. In p-adic complex numbers there are
exactly b roots of fabc(x) with p-adic valuation 1/b. If f(x) = g(x)h(x),
deg g ≥ deg h, then g has to contain all these roots. As this is true for any
p | c, h has constant term ±1.

Consider now any prime p | b. There are, again, exactly c roots of fabc(x)
with p-adic valuation −1/c. Either g or h must contain them all. If this
is h, then deg h ≥ c, which contradicts the equality deg g + deg h = a − 2
(< b+ c). So, it is g again. As this is true for all p | b, h(x) is monic. As h(x)
only contains roots with 0 p-adic valuations for all p | bc, we can apply the
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argument of Theorem 3.3 to show that the residue of deg h(x) modulo any
such p is 0 or −2. This implies that

bc | deg h · (deg h+ 2).

Therefore deg h · (deg h+2) ≥ bc > c2, so deg h > c−2. But this contradicts
the fact that

deg h(x) = a− 2− deg g(x) ≤ a− 2− b = c− 2.

Remark 3.4. The above argument does not work in the case c = 1 as
we have to have at least one prime dividing c to conclude that deg g(x) ≥ b.

Before going any further let us prove the following three lemmas.

Lemma 3.1. As always, we have a = b+c, coprime. Suppose p | a (or p | b
or p | c) and ζ 6= 1 is a non-trivial a1th (or b1th or c1th) root of unity (in
the notation of Lemmas 2.8–2.11). Consider its cluster of roots of fabc(x) in
p-adic complex numbers. Suppose now that g(x) | fabc(x). Then the number
of roots of g(x) from the cluster of ζ is always divisible by p.

P r o o f. We will consider the case p | a, because the same proof works
in the other two cases as well. Suppose a = pka1. It follows from the proof
of Lemma 2.8 that the Newton polygon for F (x) = fabc(ζ + x) has k non-
horizontal edges of length p and pi(p− 1), i = 1, . . . , k − 1, with slopes 1/p
and 1/(pi(p− 1)) respectively. Since the corresponding cyclotomic field is
unramified at p, the Newton polygon for G(x) = g(ζ + x) has only integral
vertices. Because G(x) |F (x), all edges of G are edges or parts of edges
of F. But there are no integral points inside the non-horizontal edges of the
Newton polygon for F so the non-horizontal part of the Newton polygon
for G consists of the whole edges of the one for F . Therefore the number of
roots of g(x) near ζ is a sum of some numbers from the set {p, pi(p − 1) :
i = 1, . . . , k − 1}. All of them are divisible by p, which completes the proof
of the lemma.

Remark 3.5. One can also formulate and prove a similar result for the
cluster of 1.

Lemma 3.2. Suppose a = b + c is a coprime triple and g(x) | fabc(x).
Then we have the following.

(1) If p ‖ b (or , more generally , if pk ‖ b, gcd(k, c) = 1) then g(x) contains
all or no roots xi of fabc(x) with vp(xi) < 0.

(2) If pk ‖ b and deg g(x) < c/ gcd(k, c) then g(x) contains no roots xi
with vp(xi) < 0. As a result , if deg g(x) < c/ log2 b then g(x) is monic. (If
b = 1 we treat c/ log2 b as +∞, so the above condition is always satisfied.)

P r o o f. If pk ‖ b, k ≥ 1, then there are c such roots xi of fabc(x) with
vp(xi) = −k/c. If N of them are the roots of g(x) then Nk/c ∈ Z. This
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implies that in (1), N is 0 or c, and in (2), N = 0. The second conclusion
in (2) is because gcd(k, c) ≤ k ≤ log2 b.

Lemma 3.3. Suppose g(x) is a polynomial with integral coefficients which
divides fabc(x). Denote by A the following rational number associated with
g(x):

A =
∑

g(xi)=0

(1− xi).

(a) Suppose p | a. Then p |A (i.e. vp(A) > 0).
(b) Suppose fabc(x) = g(x)h(x), p ‖ b (or , more generally , pk ‖ b, gcd(k, c)

= 1). Then p always divides at least one of the two numbers A(g) and A(h).
(c) Suppose fabc(x) = g(x)h(x), p ‖ c (or , more generally , pk ‖ c, gcd(k, b)

= 1). Then p always divides at least one of A(g) and A(h).

P r o o f. (a) By Lemma 3.1 the number of roots of g(x) in every cluster
of ζ 6= 1 is divisible by p. Therefore

Al =
∑

ζ 6=1

∑

g(xi)=0
vp(xi−ζ)>0

(1− xi)xli +
∑

g(xi)=0
vp(xi−1)>0

(1− xi)xli

≡
∑

ζ 6=1

#{xi : vp(xi − ζ) > 0} · (1− ζ)ζl ≡ 0,

where α ≡ β means that vp(α− β) > 0.
(b) By Lemma 3.2 either g(x) or h(x) contains no roots xi with vp(xi)

< 0. So either Al(g) or Al(h) is divisible by p as in (a).
(c) Lemma 3.2 applied to facb(x) and the reciprocals of g(x) and h(x)

implies that either g(x) or h(x) contains no roots with vp(x) > 0. The rest
is as in (a).

Theorem 3.7. Suppose b = 1 and a ≥ 3 is square-free. Then fabc(x) =
fa,1,a−1(x) is irreducible.

P r o o f. Suppose f(x) = g(x)h(x). Consider two numbers, A = A(g) and
B = A(h). Because b = 1 they are both integers. By Lemma 3.3 and because
a is square-free they are both divisible by a.

By Lemma 2.5 for every root xi of fabc(x), |xi| < 2. Therefore Re(xi) < 2,
Re(1− xi) > −1. So,

A =
∑

g(xi)=0

(1− xi) > − deg g > −a

and the same for B. Since

A+B = A(fabc(x)) =
∑

bxa
i
−axb

i
+c=0

(1− xi) = a,

the only possibility (up to the switch of g and h) is that A = a, B = 0.
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Because b = 1, for every prime p | c we have just one root of fabc(x) in
p-adic complex numbers with vp(xi) > 0. If g(x) does not have it then as in
the proof of Lemma 3.3(a) we have p |A. Because A = a and a ≡ 1 mod p
we conclude that for every p | c, g(x) has the corresponding root. But this
implies that h(x) does not have it, so the constant term of h(x) is ±1. This
is impossible because by Lemma 2.3 all the roots of fabc(x) are outside the
unit circle on the complex plane.

Remark 3.6. The above theorem proves irreducibility for a positive den-
sity set of a. I first proved it under the additional assumption that c = a−1
is also square-free. By arguing as at the beginning of the next theorem, one
can also prove that fabc(x) is irreducible if b = 1 and

(∏

p|a
p
)2 ∏

p|a−1

p > 9a2

with 9 being a really lazy constant.
One can also prove that the right hand side of the above inequality can

be replaced by C · a log2 a where C is some small effective constant. This
can be done by considering the sums of xi − 1/xi instead of 1 − xi. This
will be included in our joint paper with M. Filaseta and T. Y. Lam which
is currently in preparation.

The remaining part of this paper is in fact motivated by this joint work.
In particular, Theorem 3.10 and its Corollary may be viewed as generaliza-
tions of the special case b = 1 which was first obtained as part of this joint
work.

Remark 3.7. The following theorem is our main result. It proves that
fabc(x) is irreducible for the set of coprime triples having density one (which
will be justified in Theorem 3.9).

Theorem 3.8. Consider all coprime triples a = b + c, b < c. Then for
every ε > 0 if a is large enough, and

(1)
(∏

p|a
p
)2(∏

p‖b
p
)(∏

p‖c
p
)
> (4 + ε)a2b

then fabc(x) is irreducible.

P r o o f. We will assume in the proof that ε < 1. Suppose fabc(x) =
g(x)h(x). Consider A = A(g) and B = A(h) (in the notation of Lemma 3.3).
Then if the leading coefficient of g(x) is b1 and the leading coefficient of h(x)
is b2 then b1b2 = b and A and B are rational numbers with denominators
dividing b1 and b2 respectively. Also, by Lemma 3.3 if p | a then p |A and
p |B and if p ‖ b or p ‖ c then p divides at least one of A,B. Therefore,
bAB ∈ Z and it is divisible by (

∏
p|a p)

2(
∏
p‖b p)(

∏
p‖c p). On the other
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hand, by Lemma 2.6 if a� 1 then

|A| ≤ deg(g) · (1 + max(|xi|)) ≤
(

2 +
ε

5

)
deg(g).

The same is true for h. Because deg(g) and deg(h) are both less than a,

bAB <

(
2 +

ε

5

)2

a2b < (4 + ε)a2b.

The condition (1) now implies that AB = 0. We may and will assume that
A = 0. To complete the proof of the theorem we first prove the following
proposition which says that if A = 0 then deg(g) is small.

Proposition 3.1. In the above notation, if A = 0 then for a� 1,

deg(g) < 28
√
a ln a.

P r o o f. The basic idea is that the roots xi of fabc(x) are somewhat
uniformly distributed around the unit circle so Re(1− xi) is almost always
positive and when it is negative it is rather small in absolute value. To be
more precise, Lemma 2.6 implies that for a large enough,

ri < 1 +
3 ln a
a

, where xi = rie
ϕi , −π < ϕi ≤ π.

Therefore Re(1−xi) > −3(ln a)/a. Also, it follows that if |ϕi| > 4
√

ln a/
√
a

then for a� 1,

cosϕi <
(

1− 7 ln a
a

)
.

In this case

Re(1− xi) = 1− ri cosϕi > 1−
(

1 +
3 ln a
a

)(
1− 7 ln a

a

)
.

This is greater than 3(ln a)/a for a� 1.
By Theorem 2.1 the number of roots of fabc(x) with |ϕi| ≤ 4

√
ln a/

√
a

is bounded by

8
√

ln a
2π
√
a
n+ 12

√
n ln(n+ 1) < 14

√
a ln a.

So if deg g(x) ≥ 28
√
a ln a then for more than half of the roots of g(x) we

have |ϕi| > 4
√

ln a/
√
a and by the above calculations A = Re(A) is positive.

As we assumed that A = 0, the proposition is proven.

So, it is enough to show that fabc(x) cannot have divisors of small degree.
First of all, for a � 1, g(x) must be monic by Lemma 3.2(2). Then if its
constant term is not ±1 at least one of its roots has absolute value of at
least 21/deg g. And if its constant term is ±1 Lemma 2.2(3) allows us to apply
Smyth’s result [18] to conclude that one of its roots has absolute value of at
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least β1/deg g, where β3−β− 1 = 0. For a� 1 this is impossible by Lemma
2.6, so the theorem is proven.

Remark 3.8. Instead of using Smyth’s result one can give a self-con-
tained proof of the above theorem by showing that the sums of (1 − xi)xli
over the roots of g(x) are zeros for 1 ≤ l ≤ deg g (cf. [3]).

Remark 3.9. The constant 4 + ε in the above theorem can be improved
to 2 + ε by noticing that deg(g) + deg(h) = a− 2 and that A and B cannot
be too negative as a corollary of Theorem 2.1. One can also make the a� 1
condition above explicit, for any fixed ε.

Theorem 3.9. The number of coprime triples a = b + c, b < c, with
a ≤ A which satisfy

(2)
(∏

p|a
p
)2(∏

p‖b
p
)(∏

p‖c
p
)
� a2b

is bounded by CA20/11 lnA where C is some constant independent of A.

P r o o f. Decompose a = a1a
2
2, where a1 is square-free. Then

∏
p|a p ≥ a1.

Also, we can decompose (not uniquely) b = b1b
2
2b

3
3 and c = c1c

2
2c

3
3, where

b1 =
∏
p‖b p and c1 =

∏
p‖c p. Then

a2bc = a2
1a

4
2b1b

2
2b

3
3c1c

2
2c

3
3

and because a2
1b1c1 � a2b by (2), we get

a4
2b

2
2b

3
3c

2
2c

3
3 � c� a.

It follows that either a2b2 � a2/11, a2c2 � a2/11, or b3c3 � a1/11. The
argument for the first two situations is similar, so we only give the argument
when a2b2 � a2/11 and b3c3 � a1/11. Suppose first that a2b2 � a2/11. Then
the number of triples (a, b, c) with a = b+ c is bounded by
∑

1≤a2≤A1/2

#{a ∈ [1, A] : a2
2 | a}

∑

1≤b2≤A1/2

#{b ∈ [1, A] : b22 | b, b� (a2b2)11/2}

�
∑

1≤a2≤A1/2

A

a2
2

( ∑

1≤b2≤A2/11/a2

(a2b2)11/2

b22
+

∑

A2/11/a2<b2≤A1/2

A

b22

)

�
∑

1≤a2≤A1/2

A

a2
2
A1−2/11a2 �

∑

1≤a2≤A1/2

A2−2/11

a2
� A20/11 lnA.

For b3c3 � a1/11 the number of triples (a, b, c) with a = b+ c is bounded
by∑

1≤b3≤A1/3

#{b ∈ [1, A] : b33 | b}
∑

1≤c3≤A1/3

#{c ∈ [1, A] : c33 | c, c� (b3c3)11}
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�
∑

1≤b3≤A1/3

A

b33

( ∑

1≤c3≤A1/11/b3

(b3c3)11

b33
+

∑

A1/11/b3<c3≤A1/3

A

b33

)

�
∑

1≤b3≤A1/3

A

b33
A1−2/11b23 �

∑

1≤b3≤A1/3

A2−2/11

b3
� A20/11 lnA.

Combining the above, we see that the number of coprime triples (a, b, c)
as in the theorem is O(A20/11 lnA).

Corollary 3.1. The set of coprime triples where fabc(x) is reducible
has density zero in the set of all coprime triples.

P r o o f. This follows from Theorems 3.8 and 3.9 and the well-known
fact that the number of coprime pairs (a, b) where a > b with a ≤ A is
asymptotically equivalent to 6

π2 · A2

2 . According to Donald Knuth (cf. [7], p.
324) this fact is due to L. Dirichlet.

Now we consider what happens if one fixes b. When b = 2 then fabc(x) is
always irreducible by Theorem 3.4. Also, Theorem 3.5 gives a partial result
for b being an odd prime. The following theorem (with the corollary after
it) shows that for any fixed b the abc-polynomial is irreducible for the set of
a’s having density one. In the following theorem and its corollary some of
the implied constants in � and � depend on b.

Theorem 3.10. If b is fixed , then the number of coprime triples a = b+c
with a < A and

(3)
(∏

p|a
p
)2(∏

p‖c
p
)
� a2

is at most C(b)A13/15, where C(b) is some constant depending on b.

P r o o f. As in Theorem 3.9, decompose a = a1a
2
2 and c = c1c

2
2c

3
3. Because

a2c = a2
1a

4
2c1c

2
2c

3
3 and (3) implies that a2

1c1 � a2, we get

a4
2c

2
2c

3
3 � c� a.

It follows that either a2 � a2/15, c2 � a2/15, or c3 � a1/15. The ar-
gument for the first two situations is similar so we only give the argument
when a2 � a2/15 and c3 � a1/15. Suppose first that a2 � a2/15. Then the
number of triples (a, b, c) with a = b+ c is bounded by

∑

1≤a2≤A
#{a : a2

2 | a, a� a
15/2
2 , a ≤ A}

�
∑

1≤a2≤A2/15

(
a

15/2
2

a2
2

)
+

∑

A2/15≤a2≤A

(
A

a2
2

)
� A13/15.
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For c3 � a1/15 the number of triples (a, b, c) with a = b + c is bounded
by

∑

1≤c3≤A
#{c : c33 | c, c� c

1/5
3 , c ≤ A}

�
∑

1≤c3≤A1/15

c12
3 +

∑

A1/15≤c3≤A

(
A

c33

)
� A13/15.

Combining all the estimates gives the theorem.

Corollary 3.2. For any fixed b, fabc(x) is irreducible for a set of natural
numbers a coprime to b having density one.

P r o o f. This follows from Theorems 3.8 and 3.10 and a trivial observa-
tion that #{a : a < A, gcd(a, b) = 1} � A.

If b is good in the sense that there is a prime p which divides it in exactly
the first power, then the following theorem proves that all but finitely many
abc-polynomials are irreducible. It also provides a rather small bound for
the possible exceptions. Note that almost all (in the sense of density) b’s are
good in the above sense.

Theorem 3.11. Suppose p is a prime, p ‖ b. Suppose also that c ≥
bmax(κ, log2 b), where κ = 11.21685874 . . . is such that βκ = 1 + 2κ, where
β3 − β − 1 = 0. Then fabc(x) is irreducible.

P r o o f. Suppose fabc(x) = g(x)h(x). Then as in Lemma 3.2 one of the
polynomials g(x), h(x) has none of the c roots xi of fabc(x) with vp(xi) < 0.
We may assume this is g(x). Then deg g(x) ≤ b − 2. By our assumption
deg g ≤ b − 2 < b < c/ log2 b, so by Lemma 3.2(2), g(x) is monic. If its
constant term is not ±1 then at least one of its roots has absolute value
of at least 21/d, where d = deg(g). If its constant term is ±1, by Lemma
2.2(3) one can still conclude that one of its roots has absolute value of at least
β1/d with β as above, by applying Smyth’s result on the Lehmer’s conjecture
(cf. [18]).

As a result, we get a root x of g(x) and therefore of fabc(x) with |x| ≥
β1/d > β1/b. But by the estimate in the proof of Lemma 2.5,

|x| ≤
(

1 +
2c
b

)1/c

.

Combining the above, we get

βc/b <

(
1 +

2c
b

)
.

Therefore for κ as in the theorem, c/b < κ. The theorem follows.
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4. Miscellanea and heuristics. First of all, combining the results of
Section 3 one can easily check that fabc(x) is always irreducible for all a ≤ 24
except for f9,5,4 (and f9,4,5, of course) and f16,15,1. It is a simple exercise to
verify their irreducibility separately by the same methods (cf. [3]) or one can
just check it, say, with Maple. By the way, Maple can be used to verify the
irreducibility up to a couple of hundreds. I do not know if the irreducibil-
ity is related in any way to the abc conjecture. The main Theorem 3.8 is
about the triples which are not interesting from the point of view of the
abc conjecture. However, Theorems 3.11 and 3.1 do include some interesting
triples.

Let us now discuss a little the hypothetical approaches to the abc con-
jecture using the abc-polynomials. The first idea would be to try something
similar to the geometric case, i.e. to construct a second polynomial, gabc(x),
such that (f, g) is globally bounded but locally big. By this I mean that it
has to be on the one hand divisible by a (large) power of any p dividing abc
and, on the other hand, be bounded by some inequalities on the complex
plane. The main problem is to capture the rather subtle dependence of the
distribution of the roots of fabc(x) inside the clusters upon k (in the notation
of Lemmas 2.8–2.11) without making the degree or coefficients of g(x) too
large.

Two other things one can try are the following.

1. One can try to study Arakelov geometry of some curves related to
fabc(x), e.g. the hyperelliptic curve y2 = fabc(x) over Q, and the elliptic
curve y2 = x(x − 1)(x − λ) over the abc-field, where fabc(λ) = 0. As far as
hyperelliptic curves are concerned there is a recent result of I. Kausz (cf.
[6]) on ω2 of semistable hyperelliptic curves. Although y2 = fabc(x) is not a
semistable model its fibers are under control. A more serious problem is that
its genus depends on a and Kausz’s estimates “at infinity” depend heavily
on the genus as they involve a choice of a metric on the relative dualizing
sheaf of the universal stable curve of given genus.

2. Modulo the irreducibility conjecture, one can try to investigate some
invariants of abc-fields, like Galois group, regulator, or ζ-function. One thing
which is quite obvious is that there are lots of abc-units hanging around.
(By abc-units I mean elements of the abc-field which have zero valuations
for all primes not dividing abc.) Namely, x, xa − 1, xb − 1, xc − 1 and
all divisors of the last three polynomials evaluated at the root of abc-
polynomial are abc-units. For instance, we have a lot of solutions of the
equation x + y = 1 in abc-units. The theory of S-units and S-unit equa-
tions is well developed (cf., e.g., [2], [5], [15]). I do not know, however, if
it is better to apply the theory to the roots of fabc(x) instead of just to
b/a+ c/a = 1.
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