Arithmetic of the modular function $j_{1,4}$

by

Chang Heon Kim and Ja Kyung Koo (Taejon)

We find a generator $j_{1,4}$ of the function field on the modular curve $X_{1}(4)$ by means of classical theta functions θ_{2} and θ_{3}, and estimate the normalized generator $N\left(j_{1,4}\right)$ which becomes the Thompson series of type $4 C$. With these modular functions we investigate some number theoretic properties.

1. Introduction. Let \mathfrak{H} be the complex upper half plane and let $\Gamma_{1}(N)$ be a congruence subgroup of $S L_{2}(\mathbb{Z})$ whose elements are congruent to $\left(\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right)$ $\bmod N(N=1,2, \ldots)$. Since the group $\Gamma_{1}(N)$ acts on \mathfrak{H} by linear fractional transformations, we get the modular curve $X_{1}(N)=\Gamma_{1}(N) \backslash \mathfrak{H}^{*}$, as the projective closure of the smooth affine curve $\Gamma_{1}(N) \backslash \mathfrak{H}$, with genus $g_{1, N}$. Since $g_{1, N}=0$ only for the eleven cases $1 \leq N \leq 10$ and $N=12$ ([9]), the function field $K\left(X_{1}(4)\right)$ of the curve $X_{1}(4)$ is a rational function field over \mathbb{C}.

In this article we will first find the field generator $j_{1,4}$ in Section 3 by making use of the classical Jacobi theta functions θ_{2} and θ_{3}. Furthermore, we will show that $\mathbb{Q}\left(j_{1,4}\right)=\mathbb{Q}(j, j(4 z))\left(j=\right.$ the modular invariant of $\left.S L_{2}(\mathbb{Z})\right)$ is the field of all modular functions in $K\left(X_{1}(4)\right)$ whose Fourier coefficients with respect to $q\left(=e^{2 \pi i z}, z \in \mathfrak{H}\right)$ are rational numbers. We will also find the relation between two modular functions $j_{1,4}$ and $j_{4}=\theta_{3}(z / 2) / \theta_{4}(z / 2)$ ([8]). In Section 4 we will estimate the normalized generator $N\left(j_{1,4}\right)$ of $K\left(X_{1}(4)\right)$ as the type of the field which turns out to be the Thompson series of type $4 C$, and will investigate the replication formulas for the coefficients of $N\left(j_{1,4}\right)$. When $\tau \in \mathfrak{H} \cap \mathbb{Q}(\sqrt{-d})$ for a square-free positive integer d, we will show that $N\left(j_{1,4}\right)(\tau)$ becomes an algebraic integer. Finally, in Section 5 we will construct some class fields over an imaginary quadratic field by applying Shimura theory and standard results of complex multiplication to our function $j_{1,4}$.

Throughout the article we adopt the following notations:

[^0]- \mathfrak{H}^{*} the extended complex upper half plane,
- $\Gamma(N)=\left\{\gamma \in S L_{2}(\mathbb{Z}) \mid \gamma \equiv I \bmod N\right\}$,
- $\Gamma_{0}(N)$ the Hecke subgroup $\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1) \right\rvert\, c \equiv 0 \bmod N\right\}$,
- $\bar{\Gamma}$ the inhomogeneous group of $\Gamma(=\Gamma / \pm I)$,
- $q_{h}=e^{2 \pi i z / h}, z \in \mathfrak{H}$,
- $M_{k}\left(\Gamma_{1}(N)\right)$ the space of modular forms of weight k with respect to the group $\Gamma_{1}(N)$,
- \mathbb{Z}_{p} the ring of p-adic integers,
- \mathbb{Q}_{p} the field of p-adic numbers.

2. Generators of $\Gamma_{1}(4)$. Let Γ be a congruence subgroups of $\Gamma(1)$ $\left(=S L_{2}(\mathbb{Z})\right)$. A subset \mathbb{F} of \mathfrak{H}^{*} is called a fundamental set for the group $\bar{\Gamma}$ if it contains exactly one representative of each class of points of \mathfrak{H}^{*} equivalent under $\bar{\Gamma}$. A set \mathbb{F} is called a fundamental region if \mathbb{F} contains a fundamental set and, for $z \in \mathbb{F}$ and $\gamma z \in \mathbb{F}$ with $\gamma(\neq I) \in \bar{\Gamma}, z$ is a boundary point of \mathbb{F}.

Although the following theorem is well known, we present its proof for the sake of completeness.

Theorem 1. Let $\bar{\Gamma}$ be a congruence subgroup of $\bar{\Gamma}(1)$ of finite index and \mathbb{F} be a fundamental region for $\bar{\Gamma}$. Then the sides of \mathbb{F} can be grouped into pairs $\lambda_{j}, \lambda_{j}^{\prime}(j=1, \ldots, s)$ in such a way that $\lambda_{j} \subseteq \mathbb{F}$ and $\lambda_{j}^{\prime}=\gamma_{j} \lambda_{j}$ where $\gamma_{j} \in \bar{\Gamma}(j=1, \ldots, s)$. γ_{j} 's are called boundary substitutions of \mathbb{F}. Furthermore, $\bar{\Gamma}$ is generated by the boundary substitutions $\gamma_{1}, \ldots, \gamma_{s}$.

Proof. For the first part, see [16], p. 58. For any $\gamma \in \bar{\Gamma}$, suppose that there exists a sequence of images of \mathbb{F}, that is, $\mathbb{F}, S_{1} \mathbb{F}, S_{2} \mathbb{F}, \ldots, S_{n} \mathbb{F}=\gamma \mathbb{F}$ $\left(S_{j} \in \bar{\Gamma}\right)$, each adjacent to its successor. Let $\mathbb{F} \cap S_{1} \mathbb{F} \supseteq \lambda_{j}^{\prime}$. Since $\gamma_{j} \lambda_{j}=$ λ_{j}^{\prime} and $\gamma_{j} \mathbb{F}$ is another fundamental region, $\gamma_{j} \mathbb{F}=S_{1} \mathbb{F}$, which yields that S_{1} $=\gamma_{j}$. Then $\gamma_{j} \lambda_{i}, \gamma_{j} \lambda_{i}^{\prime}(i=1, \ldots, s)$ form the sides of $S_{1} \mathbb{F}$ and $\left(\gamma_{j} \gamma_{i} \gamma_{j}^{-1}\right) \gamma_{j} \lambda_{i}$ $=\gamma_{j} \lambda_{i}^{\prime}$, i.e., $\gamma_{j} \gamma_{i} \gamma_{j}^{-1}(i=1, \ldots, s)$ are boundary substitutions of $S_{1} \mathbb{F}$.

Now, we use induction on n to show that $S_{n}(=\gamma)$ is generated by $\gamma_{1}, \ldots, \gamma_{s}$ and boundary substitutions are also generated by them. The case $n=1$ has been done. Denote the sides of $S_{n-1} \mathbb{F}$ by $\mu_{i}, \mu_{i}^{\prime}(i=1, \ldots, s)$. Let $L_{i} \mu_{i}=\mu_{i}^{\prime}$ for $i=1, \ldots, s$. Then, by induction hypothesis, S_{n-1} and $L_{i}(i=1, \ldots, s)$ are generated by $\gamma_{1}, \ldots, \gamma_{s}$. If $S_{n-1} \mathbb{F} \cap S_{n} \mathbb{F} \supseteq \mu_{j}^{\prime}$, then $L_{j} \mu_{j}=\mu_{j}^{\prime}$ implies that $L_{j} S_{n-1} \mathbb{F}=S_{n} \mathbb{F}$, i.e., $S_{n}=L_{j} S_{n-1}$. Hence, it is generated by $\gamma_{1}, \ldots, \gamma_{s}$. Also, the set of all points in \mathfrak{H} belonging to the region $S_{n} \mathbb{F}$ that can be reached by such sequences is open, and so is its complement in \mathfrak{H} which must be empty by connectedness of \mathfrak{H}. This completes the proof of the theorem.

Lemma 2. Let $\alpha=\left(\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right)$. Then $\pm \alpha \Gamma(2) \alpha^{-1}= \pm \Gamma_{1}(4)$.
Proof. Straightforward.

It is well known ([17], p. 84) that $\Gamma(2)$ has the following fundamental domain:

where $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Thus, by Lemma 2 we can come up with the fundamental domain $\alpha \mathbb{F}$ of $\Gamma_{1}(4)$ as follows:

Since T and $S T^{-4} S$ are in $\bar{\Gamma}_{1}(4)$, they generate the group $\bar{\Gamma}_{1}(4)$ by Theorem 1. There are 3 cusps $\infty, 0, \frac{1}{2}$ in $X_{1}(4)$ as seen in the above figure, whose widths are 1, 4 and 1, respectively. Here we observe that the first two are regular and the last one is irregular.
3. Hauptfunktionen of $K\left(X_{1}(4)\right)$ as a quotient of Jacobi theta functions. First, we recall the Jacobi theta functions $\theta_{2}, \theta_{3}, \theta_{4}$ defined by

$$
\theta_{2}(z)=\sum_{n \in \mathbb{Z}} q_{2}^{(n+1 / 2)^{2}}, \quad \theta_{3}(z)=\sum_{n \in \mathbb{Z}} q_{2}^{n^{2}}, \quad \theta_{4}(z)=\sum_{n \in \mathbb{Z}}(-1)^{n} q_{2}^{n^{2}}
$$

for $z \in \mathfrak{H}$. Then we have the following transformation formulas ([16], pp. 218-219):

$$
\begin{align*}
\theta_{2}(z+1) & =e^{\pi i / 4} \theta_{2}(z) \tag{1}\\
\theta_{3}(z+1) & =\theta_{4}(z) \tag{2}\\
\theta_{4}(z+1) & =\theta_{3}(z) \tag{3}\\
\theta_{2}(-1 / z) & =(-i z)^{1 / 2} \theta_{4}(z) \tag{4}\\
\theta_{3}(-1 / z) & =(-i z)^{1 / 2} \theta_{3}(z), \tag{5}\\
\theta_{4}(-1 / z) & =(-i z)^{1 / 2} \theta_{2}(z) \tag{6}
\end{align*}
$$

Put $j_{1,4}(z)=\theta_{2}(2 z)^{4} / \theta_{3}(2 z)^{4}$. Then we obtain the following theorem.
ThEOREM 3. (i) $\theta_{2}(2 z)^{4}, \theta_{3}(2 z)^{4} \in M_{2}\left(\Gamma_{1}(4)\right)$.
(ii) $K\left(X_{1}(4)\right)=\mathbb{C}\left(j_{1,4}(z)\right)$ and $j_{1,4}(\infty)=0$ (simple zero), $j_{1,4}(0)=1$, $j_{1,4}(1 / 2)=\infty$ (simple pole).

Proof. For the first part, we must check the invariance of the slash operator and the cusp conditions. Since T and $S T^{-4} S$ generate $\bar{\Gamma}_{1}(4)$, it is enough to check it for these generators.

$$
\begin{align*}
\left.\theta_{2}(2 z)^{4}\right|_{[T]_{2}} & =\theta_{2}(2 z+2)^{4}=\left(e^{\pi i / 2} \theta_{2}(2 z)\right)^{4} \quad \text { by }(1) \\
& =\theta_{2}(2 z)^{4}, \\
\text { (7) }\left.\quad \theta_{2}(2 z)^{4}\right|_{[S]_{2}} & =z^{-2} \theta_{2}(-2 / z)^{4}=z^{-2}\left\{(-i z / 2)^{1 / 2} \theta_{4}(z / 2)\right\}^{4} \quad \text { by }(4) \tag{7}\\
& =-\frac{1}{4} \theta_{4}(z / 2)^{4}, \\
\left.\theta_{2}(2 z)^{4}\right|_{\left[S T^{-4}\right]_{2}} & =-\left.\frac{1}{4} \theta_{4}(z / 2)^{4}\right|_{\left[T^{-4}\right]_{2}}=-\frac{1}{4} \theta_{4}(z / 2)^{4} \quad \text { by }(2) \text { and }(3), \\
\left.\theta_{2}(2 z)^{4}\right|_{\left[S T^{-4} S\right]_{2}} & =-\left.\frac{1}{4} \theta_{4}(z / 2)^{4}\right|_{[S]_{2}}=-\frac{1}{4} z^{-2}\left\{(-2 i z)^{1 / 2} \theta_{2}(2 z)\right\}^{4} \quad \text { by }(6) \\
& =\theta_{2}(2 z)^{4}, \\
\left.\theta_{3}(2 z)^{4}\right|_{[T]_{2}} & =\theta_{3}(2 z+2)^{4}=\theta_{3}(2 z)^{4} \quad \text { by }(2) \text { and }(3), \\
\left.(8) \quad \theta_{3}(2 z)^{4}\right|_{[S]_{2}} & =z^{-2} \theta_{3}(-2 / z)^{4}=z^{-2}\left\{(-i z / 2)^{1 / 2} \theta_{3}(z / 2)\right\}^{4} \quad \text { by }(5) \\
& =-\frac{1}{4} \theta_{3}(z / 2)^{4}, \\
\left.\theta_{3}(2 z)^{4}\right|_{\left[S T^{-4}\right]_{2}} & =-\left.\frac{1}{4} \theta_{3}(z / 2)^{4}\right|_{\left[T^{-4}\right]_{2}} \\
& =-\frac{1}{4} \theta_{3}(z / 2)^{4} \quad \text { by }(2) \text { and }(3), \\
\left.\theta_{3}(2 z)^{4}\right|_{\left[S T^{-4} S\right]_{2}} & =-\left.\frac{1}{4} \theta_{3}(z / 2)^{4}\right|_{[S]_{2}}=-\frac{1}{4} z^{-2}\left\{(-2 i z)^{1 / 2} \theta_{3}(2 z)\right\}^{4} \quad \text { by }(5) \\
& =\theta_{3}(2 z)^{4} .
\end{align*}
$$

Now we check the boundary conditions.
(i) $s=\infty$: Since $\theta_{2}(z)=2 q_{8}\left(1+q+q^{3}+\ldots\right)$, we have

$$
\theta_{2}(2 z)^{4}=2^{4} q\left(1+q^{2}+q^{6}+q^{12}+\ldots\right)^{4}
$$

Hence $\theta_{2}(2 z)^{4}$ has a simple zero at $s=\infty$. On the other hand, $\theta_{3}(2 z)^{4}=$ $\left(\sum_{n \in \mathbb{Z}} q^{n^{2}}\right)^{4}=\left(1+2 q+2 q^{4}+2 q^{9}+\ldots\right)^{4}$. Thus $\left.\theta_{3}(2 z)^{4}\right|_{s=\infty}=1$.
(ii) $s=0$:

$$
\begin{aligned}
\left.\theta_{2}(2 z)^{4}\right|_{s=0} & =\left.\lim _{z \rightarrow i \infty} \theta_{2}(2 z)^{4}\right|_{[S]_{2}}=\lim _{z \rightarrow i \infty}-\frac{1}{4} \theta_{4}(z / 2)^{4} \quad \text { by }(7) \\
& =-\frac{1}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
\left.\theta_{3}(2 z)^{4}\right|_{s=0} & =\left.\lim _{z \rightarrow i \infty} \theta_{3}(2 z)^{4}\right|_{[S]_{2}}=\lim _{z \rightarrow i \infty}-\frac{1}{4} \theta_{3}(z / 2)^{4} \quad \text { by }(8) \\
& =-\frac{1}{4}
\end{aligned}
$$

(iii) $s=1 / 2$: Observe that $\left(S T^{-2} S\right) \infty=1 / 2$.

Considering the identities

$$
\begin{aligned}
\left.\theta_{2}(2 z)^{4}\right|_{[S]_{2}} & =-\frac{1}{4} \theta_{4}(z / 2)^{4} \quad \text { by }(7) \\
\left.\theta_{2}(2 z)^{4}\right|_{\left[S T^{-2}\right]_{2}} & =-\left.\frac{1}{4} \theta_{4}(z / 2)^{4}\right|_{\left[T^{-2}\right]_{2}}=-\frac{1}{4} \theta_{3}(z / 2)^{4} \quad \text { by }(3), \\
\left.\theta_{2}(2 z)^{4}\right|_{\left[S T^{-2} S\right]_{2}} & =-\left.\frac{1}{4} \theta_{3}(z / 2)^{4}\right|_{[S]_{2}}=-\frac{1}{4} z^{-2}\left\{(-2 i z)^{1 / 2} \theta_{3}(2 z)\right\}^{4} \quad \text { by }(5) \\
& =\theta_{3}(2 z)^{4}
\end{aligned}
$$

we get

$$
\left.\theta_{2}(2 z)^{4}\right|_{s=1 / 2}=\left.\lim _{z \rightarrow i \infty} \theta_{2}(2 z)^{4}\right|_{\left[S T^{-2} S\right]_{2}}=\lim _{z \rightarrow i \infty} \theta_{3}(2 z)^{4}=1
$$

The facts that

$$
\begin{aligned}
\left.\theta_{3}(2 z)^{4}\right|_{[S]_{2}} & =-\frac{1}{4} \theta_{3}(z / 2)^{4} \quad \text { by }(8) \\
\left.\theta_{3}(2 z)^{4}\right|_{\left[S T^{-2}\right]_{2}} & =-\left.\frac{1}{4} \theta_{3}(z / 2)^{4}\right|_{\left[T^{-2}\right]_{2}}=-\frac{1}{4} \theta_{4}(z / 2)^{4} \quad \text { by }(2), \\
\left.\theta_{3}(2 z)^{4}\right|_{\left[S T^{-2} S\right]_{2}} & =-\left.\frac{1}{4} \theta_{4}(z / 2)^{4}\right|_{[S]_{2}}=-\frac{1}{4} z^{-2}\left\{(-2 i z)^{1 / 2} \theta_{2}(2 z)\right\}^{4} \quad \text { by }(6) \\
& =\theta_{2}(2 z)^{4}
\end{aligned}
$$

imply

$$
\begin{aligned}
\left.\theta_{3}(2 z)^{4}\right|_{s=1 / 2} & =\left.\lim _{z \rightarrow i \infty} \theta_{3}(2 z)^{4}\right|_{\left[S T^{-2} S\right]_{2}}=\lim _{z \rightarrow i \infty} \theta_{2}(2 z)^{4} \\
& =\lim _{z \rightarrow i \infty} 2^{4} q\left(1+q^{2}+q^{6}+q^{12}+\ldots\right)^{4} \\
& =0 \quad \text { a simple zero. }
\end{aligned}
$$

Now, we prove the second part. From the well-known formula ([19], p. 39) concerning the sum of orders of zeros of modular forms, it follows that $\nu_{0}\left(\theta_{2}(2 z)^{4}\right)=\nu_{0}\left(\theta_{3}(2 z)^{4}\right)=1$. Hence $\theta_{2}(2 z)^{4}$ (resp. $\theta_{3}(2 z)^{4}$) has no other zeros in $X_{1}(4)$ except at $s=\infty$ (resp. $\left.s=1 / 2\right)$. Therefore $\left[K\left(X_{1}(4)\right)\right.$: $\left.\mathbb{C}\left(j_{1,4}(z)\right)\right]=\nu_{0}\left(j_{1,4}(z)\right)=1$, and so (ii) follows.

Let $K\left(X\left(\Gamma^{\prime}\right)\right)$ be the function field of the modular curve $X\left(\Gamma^{\prime}\right)=\Gamma^{\prime} \backslash \mathfrak{H}^{*}$. Suppose that the genus of $X\left(\Gamma^{\prime}\right)$ is zero. Let h be the width of the cusp ∞. By F we mean the field of all modular functions in $K\left(X\left(\Gamma^{\prime}\right)\right)$ whose Fourier coefficients with respect to q_{h} belong to \mathbb{Q}.

Lemma 4. Let $K\left(X\left(\Gamma^{\prime}\right)\right)=\mathbb{C}\left(J^{\prime}\right)$ for some $J^{\prime} \in K\left(X\left(\Gamma^{\prime}\right)\right)$. If $J^{\prime} \in F$, then $F=\mathbb{Q}\left(J^{\prime}\right)$.

Proof. First, note that F and \mathbb{C} are linearly disjoint over \mathbb{Q}. Indeed, let μ_{1}, \ldots, μ_{m} be the elements of \mathbb{C} which are linearly independent over \mathbb{Q}. Assume that $\sum_{i} \mu_{i} g_{i}=0$ with g_{i} in F. Let $g_{i}=\sum_{n} c_{i n} q_{h}^{n}$ with $c_{i n} \in \mathbb{Q}$. Then $\sum_{i} \mu_{i} c_{i n}=0$ for every n, so that $c_{i n}=0$ for all i and n. Hence $g_{1}=\ldots=g_{m}=0$. We then have the field tower

From the tower, we see that F and $\mathbb{C}\left(J^{\prime}\right)$ are linearly disjoint over $\mathbb{Q}\left(J^{\prime}\right)$ by [12], p. 361. Hence,

$$
1 \leq\left[F: \mathbb{Q}\left(J^{\prime}\right)\right] \leq\left[\mathbb{C} F: \mathbb{C}\left(J^{\prime}\right)\right] \leq\left[K\left(X\left(\Gamma^{\prime}\right)\right): K\left(X\left(\Gamma^{\prime}\right)\right)\right]=1,
$$

which yields that $F=\mathbb{Q}\left(J^{\prime}\right)$.
Lemma 5. If $\Gamma^{\prime}=\Gamma_{0}(N)$, then F is equal to $\mathbb{Q}(j, j(N z))$ where j is the modular invariant of $\Gamma(1)$.

Proof. Let $X\left(\Gamma^{\prime}\right)=X_{0}(N)$. We recall that $K\left(X_{0}(N)\right)=\mathbb{C}(j, j(N z))$ ([19], Proposition 2.10) and consider the field tower

Since F and \mathbb{C} are linearly disjoint over \mathbb{Q}, we claim that F and $\mathbb{C}(j, j(N z))$ are linearly disjoint over $\mathbb{Q}(j, j(N z))$. Therefore

$$
1 \leq[F: \mathbb{Q}(j, j(N z))] \leq[\mathbb{C} X: \mathbb{C}(j, j(N z))] \leq\left[K\left(X_{\Gamma^{\prime}}\right): K\left(X_{\Gamma^{\prime}}\right)\right]=1
$$

Consider the case $N=4$. Since $j_{1,4}$ has rational Fourier coefficients, from Lemmas 4 and 5 we derive

Theorem 6. $\mathbb{Q}(j, j(4 z))=\mathbb{Q}\left(j_{1,4}\right)$ is the field of all modular functions in $K\left(X_{1}(4)\right)$ whose Fourier coefficients with respect to q are rational numbers.

Define $j_{4}(z)=\theta_{3}(z / 2) / \theta_{4}(z / 2)$. Let F_{4} be the field of all modular functions of level 4 whose Fourier expansions with respect to q_{4} have rational coefficients. Then by [19], Proposition 6.9, we know that $F_{4}=\mathbb{Q}(j(z), j(4 z)$, $\left.f_{1,0}(z)\right)$ where $f_{1,0}(z)$ is a Fricke function. Also by [8], Theorem 18, we see that $F_{4}=\mathbb{Q}\left(j_{4}\right)$. Since $j_{1,4}$ has rational Fourier coefficients, we have
$j_{1,4} \in F_{4}$. Hence we are able to express $j_{1,4}$ as a rational function of j_{4}. On the other hand, it is not difficult to derive that

$$
\theta_{2}(2 z)=\frac{1}{2}\left(\theta_{3}(z / 2)-\theta_{4}(z / 2)\right) \quad \text { and } \quad \theta_{3}(2 z)=\frac{1}{2}\left(\theta_{3}(z / 2)+\theta_{4}(z / 2)\right) .
$$

From the above we get
Theorem 7.

$$
j_{1,4}(z)=\left(\frac{j_{4}(z)-1}{j_{4}(z)+1}\right)^{4} .
$$

4. Some remarks on Thompson series. Let Γ be a Fuchsian group of the first kind and $f \in K(X(\Gamma))$. We call f normalized if its q series is $q^{-1}+0+a_{1} q+a_{2} q^{2}+\ldots$

Lemma 8. The normalized generator of a genus zero function field is unique.

Proof. Let Γ be a Fuchsian group such that the genus of the curve $\Gamma \backslash \mathfrak{H}^{*}$ is zero. Assume that $K(X(\Gamma))=\mathbb{C}\left(J_{1}\right)=\mathbb{C}\left(J_{2}\right)$ where J_{1} and J_{2} are normalized. We can then write their Fourier expansions as

$$
J_{1}=q^{-1}+0+a_{1} q+a_{2} q^{2}+\ldots \quad \text { and } \quad J_{2}=q^{-1}+0+b_{1} q+b_{2} q^{2}+\ldots
$$

Observe that $1=\left[K(X(\Gamma)): \mathbb{C}\left(J_{i}\right)\right]=\nu_{0}\left(J_{i}\right)=\nu_{\infty}\left(J_{i}\right)$ for $i=1,2$. Hence, J_{1} and J_{2} have only one zero and one pole whose orders are simple. We see that the only poles of J_{i} occur at ∞. Then, $J_{1}-J_{2}$ has no poles because the two series start with q^{-1}. So, it should be a constant. Since $J_{1}-J_{2}=\left(a_{1}-b_{1}\right) q+\ldots$, this constant must be zero. This proves the lemma.

Let \mathfrak{F} be the set of functions $f(z)$ satisfying the following conditions:
(i) $f(z) \in K\left(X\left(\Gamma^{\prime}\right)\right)$ for some discrete subgroup Γ^{\prime} of $S L_{2}(\mathbb{R})$ that contains $\Gamma_{0}(N)$ for some N.
(ii) The genus of the curve $X\left(\Gamma^{\prime}\right)$ is 0 and its function field $K\left(X\left(\Gamma^{\prime}\right)\right)$ is equal to $\mathbb{C}(f)$.
(iii) In a neighborhood of $\infty, f(z)$ is expressed in the form:

$$
f(z)=q^{-1}+\sum_{n=0}^{\infty} a_{n} q^{n}, \quad a_{n} \in \mathbb{C} .
$$

We say that a pair (G, ϕ) is a moonshine for a finite group G if ϕ is a function from G to \mathfrak{F} and the mapping $\sigma \rightarrow a_{n}(\sigma)$ from G to \mathbb{C} is a generalized character of G when $\phi_{\sigma}(z)=q^{-1}+a_{0}(\sigma)+\sum_{n=1}^{\infty} a_{n}(\sigma) q^{n}$ for $\sigma \in G$. In particular, ϕ_{σ} is a class function of G.

Finding or constructing a moonshine (G, ϕ) for a given group G, however, involves some nontrivial work. This is because for each element σ of G, we have to find a natural number N and a Fuchsian group Γ^{\prime} containing
$\Gamma_{0}(N)$ in such a way that the function field $K\left(X\left(\Gamma^{\prime}\right)\right)$ is equal to $\mathbb{C}\left(\phi_{\sigma}\right)$ and the coefficients $a_{n}(\sigma)$ of the expansion of $\phi_{\sigma}(z)$ at ∞ induce generalized characters for all $n \geq 1$.

Let j be the modular invariant of $\Gamma(1)$ whose q-series is

$$
\begin{equation*}
j=q^{-1}+744+196884 q+\ldots=\sum_{r} c_{r} q^{r} . \tag{9}
\end{equation*}
$$

Then $j-744$ is the normalized generator of $\Gamma(1)$. Let M be the monster simple group of order approximately $8 \cdot 10^{53}$. Thompson proposed that the coefficients in the q-series for $j-744$ be replaced by the representations of M so that we obtain a formal series

$$
H_{-1} q^{-1}+0+H_{1} q+H_{2} q^{2}+\ldots
$$

in which the H_{r} are certain representations of M called head representations. H_{r} has degree c_{r} as in (9), for example, H_{-1} is the trivial representation (degree 1), while H_{1} is the sum of this and the degree 196883 representation and H_{2} is the sum of the former two and the degree 21296876 representation ([20]). The following theorem conjectured by Thompson and proved by Borcherds shows that there exists a moonshine for the monster group M.

Theorem 9. The series

$$
T_{m}=q^{-1}+0+H_{1}(m) q+H_{2}(m) q^{2}+\ldots
$$

is the normalized generator of a genus zero function field arising from a group between $\Gamma_{0}(N)$ and its normalizer in $P S L_{2}(\mathbb{R})$, where m is an element of M and $H_{r}(m)$ is the character value of the head representation H_{r} at m ([1], [3]).

Now we consider the case $\Gamma^{\prime}=\Gamma_{1}(4)$. We will then construct the normalized generator from the modular function $j_{1,4}$ mentioned in Theorem 3. We have

$$
\begin{aligned}
\frac{16}{j_{1,4}(z)} & =\frac{16 \theta_{3}(2 z)^{4}}{\theta_{2}(2 z)^{4}} \\
& =\frac{\left(1+2 q+2 q^{4}+2 q^{9}+2 q^{16}+\ldots\right)^{4}}{q\left(1+q^{2}+q^{6}+q^{12}+q^{20}+\ldots\right)^{4}} \\
& =q^{-1}+8+20 q-62 q^{3}+216 q^{5}-641 q^{7}+1636 q^{9}+\ldots,
\end{aligned}
$$

which is in $q^{-1} \mathbb{Z}[[q]]$ because $q\left(1+q^{2}+q^{6}+q^{12}+\ldots\right)^{4} \in q \mathbb{Z}[[q]]^{\times}$. Let $N\left(j_{1,4}\right)=16 / j_{1,4}-8$. Then by [3], Lemma 8, Table 4, and checking the coefficients of $q^{i}, i \leq 5$ ([1]) we have

Theorem 10. $N\left(j_{1,4}\right)$ is the normalized generator of $K\left(X_{1}(4)\right)$, which corresponds to the Thompson series of type $4 C$.

Remark 11. Let $V=\bigoplus_{n \in \mathbb{Z}} V_{n}$ be the infinite-dimensional graded representation of the monster simple group constructed by Frenkel et al. ([6], [7]). For each element m of the monster, we write the Thompson series as

$$
T_{m}=\sum_{n \in \mathbb{Z}} \operatorname{Tr}\left(m \mid V_{n}\right) q^{n}
$$

where $\operatorname{Tr}\left(m \mid V_{n}\right)$ is the trace of m on the vector space V_{n} and q is a formal variable which can usually be thought of as a complex number with $|q|<1$. Let m be the conjugacy class of order 4 and type C in Atlas notation [2], and set

$$
N\left(j_{1,4}\right)=q^{-1}+\sum_{n \geq 1} H_{n}(m) q^{n}
$$

Since $N\left(j_{1,4}\right)$ is the Thompson series of m by Theorem 10, the results of [1] show that the coefficients $H_{n}(m)$ are the traces $\operatorname{Tr}\left(m \mid V_{n}\right)$ and satisfy the relation

$$
\begin{aligned}
& p^{-1} \exp \left(-\sum_{i>0} \sum_{\substack{k>0 \\
n \in \mathbb{Z}}} \operatorname{Tr}\left(m^{i} \mid V_{k n}\right) p^{k i} q^{n i} / i\right) \\
&=\sum_{k \in \mathbb{Z}} \operatorname{Tr}\left(m \mid V_{k}\right) p^{k}-\sum_{n \in \mathbb{Z}} \operatorname{Tr}\left(m \mid V_{n}\right) q^{n}
\end{aligned}
$$

where p is also a formal variable which can be thought of as a complex number with $|p|<1$. The above identities then imply that $N\left(j_{1,4}\right)$ is completely replicable, and lead us to the recursion formulas (9.1) in [1], which later in this section turn out to be the same as ours (18) provided we put $H_{n}\left(m^{2}\right)=H_{n}^{(2)}$ (the coefficient of q^{n} of the 2-plicate of $N\left(j_{1,4}\right)$).

Observe that $\bar{\Gamma}_{1}(4)=\bar{\Gamma}_{0}(4)$ as transformation groups, but the algorithm presented here is different from Conway-Norton's.

Following Norton's idea ([15], also see [1], [3] and [11]), we will state some replication formulas on the coefficients of $N\left(j_{1,4}\right)$. Let N be a positive integer and S be a subset of Hall divisors of N. By $N+S$ we mean the subgroup of $P S L_{2}(\mathbb{R})$ generated by $\Gamma_{0}(N)$ and all Atkin-Lehner involutions $W_{Q, N}$ for $Q \in S$. We assume that the genus of the curve $X(N+S)$ is zero. Let $t=q^{-1}+\sum_{m \geq 1} H_{m} q^{m}$ be the normalized generator of the function field of $X(N+S)$ as a completely replicable function. Then for each $n \geq 1$, there exists a unique polynomial $X_{n}(t)$ in t such that $X_{n}(t) \equiv n^{-1} q^{-n} \bmod$ $q \mathbb{C}[[q]]$. In particular, $X_{1}(t)=t$. Write $X_{n}(t)=n^{-1} q^{-n}+\sum_{m \geq 1} H_{m, n} q^{m}$. Let $p=e^{2 \pi i y}$ for $y \in \mathfrak{H}$ and $q=e^{2 \pi i z}$ as usual. We then understand $t(y)$ and $t(z)$ as $p^{-1}+\sum_{m \geq 1} H_{m} p^{m}$ and $q^{-1}+\sum_{m \geq 1} H_{m} q^{m}$, respectively. Observe that $X_{n}(t)$ can be viewed as the coefficient of p^{n} in $\log p^{-1}-\log (t(y)-t(z))$
([15], p. 185). To this end it suffices to show that

$$
\left.\frac{1}{n!} \cdot \frac{\partial^{n}}{\partial p^{n}}(-\log p-\log (t(y)-t(z)))\right|_{p=0}
$$

is a polynomial in t, which is congruent to $n^{-1} q^{-n} \bmod q \mathbb{C}[[q]]$. Since

$$
\log p^{-1}-\sum_{n \geq 1} X_{n}(t) p^{n}=\log (t(y)-t(z)),
$$

we get by taking exponential on both sides,

$$
\begin{equation*}
p^{-1} \exp \left(-\sum_{n \geq 1} X_{n}(t) p^{n}\right)=t(y)-t(z) . \tag{10}
\end{equation*}
$$

If we compare the coefficients of the terms p^{2}, p^{3} and p^{4} in (10), we have

$$
\begin{gather*}
\frac{1}{2}\left(t^{2}-2 X_{2}(t)\right)=H_{1}, \tag{11}\\
-\frac{1}{6}\left(t^{3}-6 t \cdot X_{2}(t)+6 X_{3}(t)\right)=H_{2}, \tag{12}\\
\frac{1}{24}\left(t^{4}-12 t^{2} \cdot X_{2}(t)+12 X_{2}(t)^{2}+24 t \cdot X_{3}(t)-24 X_{4}(t)\right)=H_{3} . \tag{13}
\end{gather*}
$$

Let $t^{(2)}$ be the normalized generator of the function field of $X\left(N^{(2)}+S^{(2)}\right)$ and define $t^{\left(2^{l}\right)}$ to be $\left(t^{\left(2^{l-1}\right)}\right)^{(2)}$, where $N^{(2)}=N /(2, N)$ and $S^{(2)}$ is the set of all Q in S which divide $N^{(2)}$. Write $t^{(s)}=q^{-1}+\sum_{m \geq 1} H_{m}^{(s)} q^{m}$. Also define the operator U_{n} such that for $f(z)=\sum_{l \in \mathbb{Z}} a_{l} q^{l}$,

$$
\left.f(z)\right|_{U_{n}}=n \sum_{l \in \mathbb{Z}} a_{n l} q^{l} .
$$

Then Koike ([11]) proved the following formulas called 2-plication and 4plication, respectively:

$$
\begin{gather*}
X_{2}(t)=\frac{1}{2}\left(\left.t\right|_{U_{2}}+t^{(2)}(2 \tau)\right), \tag{14}\\
X_{4}(t)=\frac{1}{4}\left(\left.t\right|_{U_{4}}+\left.t^{(2)}\right|_{U_{2}}(2 \tau)+t^{(4)}(4 \tau)\right) . \tag{15}
\end{gather*}
$$

Then by (11) and (14), it follows that

$$
\begin{equation*}
\frac{1}{2} t^{2}-\frac{1}{2}\left(\left.t\right|_{U_{2}}+t^{(2)}(2 \tau)\right)=H_{1} . \tag{16}
\end{equation*}
$$

Also by (11)-(15) we get

$$
\begin{equation*}
\frac{1}{4}\left(\left.t\right|_{U_{2}}\right)^{2}+\left.\frac{1}{2} t\right|_{U_{2}} \cdot t^{(2)}(2 \tau)-H_{2} t-\left.\frac{1}{4} t\right|_{U_{4}}=H_{3}+\frac{1}{2} H_{1}^{2}-\frac{1}{2} H_{1}^{(2)} . \tag{17}
\end{equation*}
$$

If we compare the coefficients of $q^{2 k}$ and $q^{2 k+1}(k \geq 1)$ of both sides in (16) and (17) and carry out some routine calculation, we find that the coefficients of t and $t^{(2)}$ satisfy the following recursion formulas for $k \geq 1$:

$$
\begin{aligned}
H_{4 k}= & H_{2 k+1}+\frac{H_{k}^{2}-H_{k}^{(2)}}{2}+\sum_{1 \leq j<k} H_{j} H_{2 k-j}, \\
H_{4 k+1}= & H_{2 k+3}-H_{2} H_{2 k}+\frac{H_{2 k}^{2}+H_{2 k}^{(2)}}{2}+\frac{H_{k+1}^{2}-H_{k+1}^{(2)}}{2} \\
& +\sum_{1 \leq j \leq k} H_{j} H_{2 k-j+2} \\
& +\sum_{1 \leq j<k} H_{j}^{(2)} H_{4 k-4 j}+\sum_{1 \leq j<2 k}(-1)^{j} H_{j} H_{4 k-j} \\
H_{4 k+2}= & H_{2 k+2}+\sum_{1 \leq j \leq k} H_{j} H_{2 k-j+1} \\
H_{4 k+3}= & H_{2 k+4}-H_{2} H_{2 k+1}-\frac{H_{2 k+1}^{2}-H_{2 k+1}^{(2)}}{2} \\
& +\sum_{1 \leq j \leq k+1} H_{j} H_{2 k-j+3} \sum_{1 \leq j \leq 2 k}^{(2)} H_{4 k-4 j+2}+\sum_{1 \leq j \leq 2}(-1)^{j} H_{j} H_{4 k-j+2}
\end{aligned}
$$

From the above formulas, we see that if $m=4$ or $m>5$ then H_{m} is determined by the coefficients H_{i} and $H_{i}^{(2)}$ for $1 \leq i<m$, so if we know all the coefficients $H_{m}^{(s)}$ for $m=1,2,3$, and 5 together with $s=2^{l}$ then we can work out all the coefficients H_{m}.

Now we take $N=4$ and $S=\{1\}$. Then t is precisely $N\left(j_{1,4}\right)$ and $t^{(2)}$ is the normalized generator of the function field of $X_{0}(2)$ and for $l \geq 2$, $t^{\left(2^{l}\right)}$ is the normalized generator of the function field of $X_{0}(1)$. Hence we summarize the above results as follows.

THEOREM 12. If we know the 12 coefficients $H_{1}, H_{2}, H_{3}, H_{5}, H_{1}^{(2)}, H_{2}^{(2)}$, $H_{3}^{(2)}, H_{5}^{(2)}, H_{1}^{(4)}, H_{2}^{(4)}, H_{3}^{(4)}$ and $H_{5}^{(4)}$, then all the coefficients H_{m} of the modular function $N\left(j_{1,4}\right)$ can be determined.

Observe that actually we do know the above 12 coefficients:

$$
\begin{aligned}
& H_{1}=20, H_{2}=0, H_{3}=-62, H_{5}=216 \quad \text { by the definition of } N\left(j_{1,4}\right), \\
& H_{1}^{(2)}=276, H_{2}^{(2)}=-2048, H_{3}^{(2)}=11202, H_{5}^{(2)}=184024 \quad \text { by }[10], \\
& H_{1}^{(4)}=196884, H_{2}^{(4)}=21493760, H_{3}^{(4)}=864299970, \\
& H_{5}^{(4)}=333202640600 \text { by }[3] .
\end{aligned}
$$

Here, the modular function $j_{1,2}$ is defined by $j_{1,2}(z)=\theta_{2}(z)^{8} / \theta_{4}(2 z)^{8}$ for $z \in \mathfrak{H}$.

It is worth finding when the modular function $N\left(j_{1,4}\right)$ could be an algebraic integer. We close this section by showing the following number theoretic result.

Theorem 13. Let d be a square-free positive integer. For $\tau \in \mathbb{Q}(\sqrt{-d}) \cap$ $\mathfrak{H}, N\left(j_{1,4}\right)(\tau)$ is an algebraic integer.

Proof. Let $j(z)=q^{-1}+744+196884 q+\ldots$ It is well known that $j(\tau)$ is an algebraic integer for $\tau \in \mathbb{Q}(\sqrt{-d}) \cap \mathfrak{H}$ ([13], [19]). For algebraic proofs, see [4], [14] and [18]. Let $J=j / 1728$. Then we know that

$$
J=\frac{4}{27} \cdot \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}} \quad \text { where } \quad \lambda=\frac{\theta_{2}(z)^{4}}{\theta_{3}(z)^{4}}=j_{1,4}\left(\frac{z}{2}\right)
$$

([16], p. 228). Hence,

$$
j(2 \tau)=2^{8} \cdot \frac{\left(j_{1,4}(\tau)^{2}-j_{1,4}(\tau)+1\right)^{3}}{j_{1,4}(\tau)^{2}\left(j_{1,4}(\tau)-1\right)^{2}}=\frac{\left(N^{2}-32 N+448\right)^{3}}{(N-24)^{2}(N-8)^{2}}
$$

where $N=N\left(j_{1,4}\right)(\tau)$. This implies that $N\left(j_{1,4}\right)(\tau)$ is integral over $\mathbb{Z}[j(2 \tau)]$. Therefore it is integral over \mathbb{Z} for $\tau \in \mathbb{Q}(\sqrt{-d}) \cap \mathfrak{H}$.
5. Explicit class fields generated by the modular function $j_{1,4}$. Let Γ be a Fuchsian group of the first kind. Then $\Gamma \backslash \mathfrak{H}^{*}(=X(\Gamma))$ is a compact Riemann surface. Hence, there exists a projective nonsingular algebraic curve V, defined over \mathbb{C}, biregularly isomorphic to $\Gamma \backslash \mathfrak{H}^{*}$. We specify a Γ-invariant holomorphic map φ of \mathfrak{H}^{*} to V which gives a biregular isomorphism of $\Gamma \backslash \mathfrak{H}^{*}$ to V. In that situation, we call (V, φ) a model of $\Gamma \backslash \mathfrak{H}^{*}$. Now we assume that the genus of $\Gamma \backslash \mathfrak{H}^{*}$ is zero. Then its function field $K(X(\Gamma))$ is equal to $\mathbb{C}\left(J^{\prime}\right)$ for some $J^{\prime} \in K(X(\Gamma))$.

Lemma 14. $\left(\mathbb{P}^{1}(\mathbb{C}), J^{\prime}\right)$ is a model of $\Gamma \backslash \mathfrak{H}^{*}$.
Proof. First, we view J^{\prime} as a meromorphic function on $\Gamma \backslash \mathfrak{H}^{*}$. By defining

$$
J^{\prime}(z)= \begin{cases}{[1: 0]} & \text { if } z \text { is a pole } \\ {\left[J^{\prime}(z): 1\right]} & \text { otherwise },\end{cases}
$$

we get a holomorphic function of $\Gamma \backslash \mathfrak{H}^{*}$ to \mathbb{P}^{1}, as a map between compact Riemann surfaces. We denote it again by J^{\prime}. Now for any $c_{0} \in \mathbb{C}$, we consider $J^{\prime}-c_{0}$. Since $K(X(\Gamma))=\mathbb{C}\left(J^{\prime}\right)=\mathbb{C}\left(J^{\prime}-c_{0}\right)$ and $[K(X(\Gamma))$: $\left.\mathbb{C}\left(J^{\prime}-c_{0}\right)\right]=\nu_{0}\left(J^{\prime}-c_{0}\right)$ where ν_{0} is the sum of orders of zeros, we have $\nu_{0}\left(J^{\prime}-c_{0}\right)=1$. Therefore there exists a unique point $z_{0} \in \Gamma \backslash \mathfrak{H}^{*}$ such that $J^{\prime}\left(z_{0}\right)=c_{0}$. This implies the bijectivity of J^{\prime}. Since any injective holomorphic mapping between two Riemann surfaces is biholomorphic ([5], Corollary 2.5), the assertion follows.

Let $G_{\mathbb{A}}$ be the adelization of $G=G L_{2}(\mathbb{Q})$. Put

$$
\begin{aligned}
G_{p} & =G L_{2}\left(\mathbb{Q}_{p}\right) \quad(p \text { a rational prime }), \\
G_{\infty} & =G L_{2}(\mathbb{R}), \\
G_{\infty+} & =\left\{x \in G_{\infty} \mid \operatorname{det}(x)>0\right\}, \\
G_{\mathbb{Q}_{+}} & =\left\{x \in G L_{2}(\mathbb{Q}) \mid \operatorname{det}(x)>0\right\} .
\end{aligned}
$$

We define the topology of $G_{\mathbb{A}}$ by taking $U=\prod_{p} G L_{2}\left(\mathbb{Z}_{p}\right) \times G_{\infty+}$ to be an open subgroup of $G_{\mathbb{A}}$. Let K be an imaginary quadratic field and ξ be an embedding of K into $M_{2}(\mathbb{Q})$. We call ξ normalized if it is defined by $a\binom{z}{1}=\xi(a)\binom{z}{1}$ for $a \in K$ where z is the fixed point of $\xi\left(K^{\times}\right)\left(\subset G_{\mathbb{Q}_{+}}\right)$in \mathfrak{H}. Observe that the embedding ξ defines a continuous homomorphism of $K_{\mathbb{A}}^{\times}$into $G_{\mathbb{A}+}$, which we denote again by ξ. Here $G_{\mathbb{A}+}$ is the group $G_{0} G_{\infty+}$ with G_{0} the nonarchimedean part of $G_{\mathbb{A}}$, and $K_{\mathbb{A}}^{\times}$is the idele group of K.

Let \mathcal{Z} be the set of open subgroups S of $G_{\mathbb{A}+}$ containing $\mathbb{Q}^{\times} G_{\infty+}$ such that $S / \mathbb{Q}^{\times} G_{\infty+}$ is compact. For $S \in \mathcal{Z}$, we see that $\operatorname{det}(S)$ is open in $\mathbb{Q}_{\mathbb{A}}^{\times}$. Therefore the subgroup $\mathbb{Q}^{\times} \cdot \operatorname{det}(S)$ of $\mathbb{Q}_{\mathbb{A}}^{\times}$corresponds to a finite abelian extension of \mathbb{Q}, which we write k_{S}. Put $\Gamma_{S}=S \cap G_{\mathbb{Q}_{+}}$for $S \in \mathcal{Z}$. Then it is known ([19], Proposition 6.27) that $\Gamma_{S} / \mathbb{Q}^{\times}$is a Fuchsian group of the first kind commensurable with $\Gamma(1) /\{ \pm 1\}$. Let $U^{\prime}=\left\{x=\left(x_{p}\right) \in U \mid x_{p} \in U_{p}^{\prime}\right.$ for all finite $p\}$ where $U_{p}^{\prime}=\left\{\left.\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in G L_{2}\left(\mathbb{Z}_{p}\right) \right\rvert\, c \equiv 0 \bmod N \mathbb{Z}_{p}\right\}$. We then have

Lemma 15. (i) $\mathbb{Q}^{\times} U^{\prime} \in \mathcal{Z}$.
(ii) $k_{S}=\mathbb{Q}$, if $S=\mathbb{Q}^{\times} U^{\prime}$.
(iii) $\Gamma_{S}=\mathbb{Q}^{\times} \Gamma_{0}(N)$ if $S=\mathbb{Q}^{\times} U^{\prime}$.

Proof. First, we observe that $\mathbb{Q}^{\times} U^{\prime}$ is an open subgroup of $\mathbb{Q}^{\times} U$. Hence, for (i), it is enough to show that $\mathbb{Q}^{\times} U / \mathbb{Q}^{\times} G_{\infty+}$ is compact. But we know that $\mathbb{Q}^{\times} U / \mathbb{Q}^{\times} G_{\infty+}=\prod G L_{2}\left(\mathbb{Z}_{p}\right)$ is compact. For (ii), note that \mathbb{Q} corresponds to the norm group $\mathbb{Q}^{\times} \cdot \mathbb{Q}_{\mathbb{A}}^{\times \infty}$ with $\mathbb{Q}_{\mathbb{A}}^{\times \infty}=\mathbb{R}^{\times} \times \prod_{p} \mathbb{Z}_{p}^{\times}$. We claim that $\operatorname{det} U^{\prime}=\mathbb{Q}_{\mathbb{A}}^{\times \infty}$. Indeed, it is obvious that $\operatorname{det} U^{\prime} \subset \mathbb{Q}_{\mathbb{A}}^{\times \infty}$. Conversely, for any element $\left(\alpha_{p}\right) \in \mathbb{Q}_{\mathbb{A}}^{\times \infty}$, take $y_{p}=\left(\begin{array}{cc}1 & 0 \\ 0 & \alpha_{p}\end{array}\right)$. Then $\left(y_{p}\right) \in U^{\prime}$ and $\operatorname{det}\left(y_{p}\right)=\left(\operatorname{det} y_{p}\right)=\left(\alpha_{p}\right)$. Finally, if $S=\mathbb{Q}^{\times} U^{\prime}$ then we come up with $\Gamma_{S}=\mathbb{Q}^{\times} U^{\prime} \cap G_{\mathbb{Q}_{+}}=\mathbb{Q}^{\times}\left(U^{\prime} \cap G_{\mathbb{Q}_{+}}\right)=\mathbb{Q}^{\times} \Gamma_{0}(N)$.

Remark 16. For $z \in K \cap \mathfrak{H}$, we consider a normalized embedding ξ_{z} : $K \rightarrow M_{2}(\mathbb{Q})$ defined by $a\binom{z}{1}=\xi_{z}(a)\binom{z}{1}$ for $a \in K$. Then z is the fixed point of $\xi_{z}\left(K^{\times}\right)$in \mathfrak{H}. Let $\left(V_{S}, \varphi_{S}\right)$ be a model of $\Gamma_{S} \backslash \mathfrak{H}^{*}$. By Lemma $15(\mathrm{iii})$, $\Gamma_{S}=\mathbb{Q}^{\times} \Gamma_{0}(4)=\mathbb{Q}^{\times} \Gamma_{1}(4)$ when $S=\mathbb{Q}^{\times} U^{\prime}$ with $N=4$. By Theorem 3 and Lemma 14, we can take $\varphi_{S}=j_{1,4}$ and $V_{S}=\mathbb{P}^{1}$. Now it follows from [19], Proposition $6.31(\mathrm{ii})$, that $j_{1,4}(z)$ belongs to $\mathbb{P}^{1}\left(K^{\text {ab }}\right)$ where $K^{\text {ab }}$ is the maximal abelian extension of K. Furthermore, $\theta_{i}(z)$ has no zeros in \mathfrak{H} for $i=2,3,4$. Hence, $j_{1,4}(z)$ in fact is in $K^{\text {ab }}$ for $z \in K \cap \mathfrak{H}$.

Theorem 17. Let K be an imaginary quadratic field and let ξ_{z} be the normalized embedding for $z \in K \cap \mathfrak{H}$. Then $j_{1,4}(z) \in K^{\mathrm{ab}}$ and $K\left(j_{1,4}(z)\right)$ is a class field of K corresponding to the subgroup $K^{\times} \cdot \xi_{z}^{-1}\left(\mathbb{Q}^{\times} U^{\prime}\right)$ of $K_{\mathbb{A}}^{\times}$.

Proof. From Lemma 15(ii) and (iii), if $S=\mathbb{Q}^{\times} U^{\prime}$ with $N=4$ then $k_{S}=\mathbb{Q}$ and $\Gamma_{S}=\mathbb{Q}^{\times} \Gamma_{1}(4)$. Since $j_{1,4}$ gives a model of the curve $X_{1}(4)$, we can take $\varphi_{S}=j_{1,4}$. Now the assertion follows from [19], Proposition 6.33 and Remark 16.

In view of standard results on complex multiplication, it is interesting to investigate whether the value $N\left(j_{1,4}\right)(\alpha)$ is a generator for a certain full ray class field if α is the quotient of a basis of an ideal belonging to the maximal order in $\mathbb{Q}(\sqrt{-d})$. We first need a result on complex multiplication.

ThEOREM 18. Let \mathfrak{F}_{N} be the field of modular functions of level N rational over $\mathbb{Q}\left(e^{2 \pi i / N}\right)$, and let k be an imaginary quadratic field. Let \mathfrak{O}_{k} be the maximal order of k and \mathfrak{A} be an \mathfrak{O}_{k}-ideal such that $\mathfrak{A}=\left[z_{1}, z_{2}\right]$ and $z=$ $z_{1} / z_{2} \in \mathfrak{H}$. Then the field $k \mathfrak{F}_{N}(z)$ generated over k by all values $f(z)$ with $f \in \mathfrak{F}_{N}$ and f defined at z is the ray class field over k with conductor N.

Proof. [13], Ch. 10, Corollary of Theorem 2.
Remark 19. When $N=2, \mathfrak{F}_{2}$ is the field of all modular functions of level 2 rational over \mathbb{Q}. On the other hand, it is a well-known fact that $K(X(\Gamma(2)))=\mathbb{C}(\lambda)$ where λ is the classical modular function of level 2. Then by Lemma $4, \mathfrak{F}_{2}=\mathbb{Q}(\lambda)$. Hence by Theorem $18, k(\lambda(z))$ is the ray class field over k with conductor 2 where z is chosen as in the theorem.

Theorem 20. Let k and \mathfrak{O}_{k} be as in Theorem 18. Put $\mathfrak{O}_{k}=x \mathbb{Z}+\mathbb{Z}$ and $\mathfrak{A}=x \mathbb{Z}+2 \mathbb{Z}$ for $x \in \mathfrak{H}$. If $N_{k / \mathbb{Q}}(x)$ is an even integer, then \mathfrak{A} is an \mathfrak{O}_{k}-ideal and $N\left(j_{1,4}\right)(x / 2)$ generates a ray class field over k with conductor 2 .

Proof. Note that \mathfrak{A} is an \mathfrak{O}_{k}-ideal if and only if $x \cdot \mathfrak{A} \subseteq \mathfrak{A}$. Since $x \cdot \mathfrak{A}=x^{2} \mathbb{Z}+2 x \mathbb{Z}, x \cdot \mathfrak{A} \subseteq \mathfrak{A}$ is equivalent to $x^{2} \in \mathfrak{A}$. Let $x^{2}-\operatorname{Tr}_{k / \mathbb{Q}}(x) \cdot x+$ $N_{k / \mathbb{Q}}(x)=0$ be the equation of x. Since $\operatorname{Tr}_{k / \mathbb{Q}}(x)$ and $N_{k / \mathbb{Q}}(x)$ are in \mathbb{Z}, we have $x^{2} \in \mathfrak{A}$ if and only if $N_{k / \mathbb{Q}}(x) \in 2 \mathbb{Z}$. Next, we observe that

$$
\lambda(z)=\frac{\theta_{2}(z)^{4}}{\theta_{3}(z)^{4}}=j_{1,4}\left(\frac{z}{2}\right) \quad \text { and } \quad N\left(j_{1,4}\right)=\frac{16}{j_{1,4}}-8 .
$$

Hence

$$
k\left(N\left(j_{1,4}\right)\left(\frac{x}{2}\right)\right)=k\left(j_{1,4}\left(\frac{x}{2}\right)\right)=k(\lambda(x))
$$

is the ray class field with conductor 2 by Remark 19.
Corollary 21. With the notations of Theorem $20, N\left(j_{1,4}\right)(x / 2)$ belongs to the maximal order in the ray class field $k(\lambda(x))$ over k with conductor 2 .

Proof. This is immediate from Theorems 13 and 20.

References

［1］R．E．Borcherds，Monstrous moonshine and monstrous Lie superalgebras，Invent． Math． 109 （1992），405－444．
［2］J．H．Conway，R．T．Curtis，S．P．Norton，R．A．Parker，and R．A．Wilson， Atlas of Finite Groups，Clarendon Press， 1985.
［3］J．H．Conway and S．P．Norton，Monstrous moonshine，Bull．London Math．Soc． 11 （1979），308－339．
［4］M．Deuring，Die Typen der Multiplikatorenringe elliptischer Funktionenkörper， Abh．Math．Sem．Univ．Hamburg 14 （1941），197－272．
［5］O．Foster，Lectures on Riemann Surfaces，Springer， 1981.
［6］I．B．Frenkel，J．Lepowsky，and A．Meurman，Vertex Operator Algebras and the Monster，Academic Press，Boston， 1988.
［7］—，一，—，A natural representation of the Fischer－Griess monster with the modular function J as character，Proc．Nat．Acad．Sci．U．S．A． 81 （1984），3256－3260．
［8］C．H．Kim and J．K．Koo，On the modular function j_{4} of level 4 ，preprint．
［9］－，一，On the genus of some modular curve of level N，Bull．Austral．Math．Soc． 54 （1996），291－297．
［10］－，一，On the modular function $j_{1,2}$ ，in preparation．
［11］M．Koike，On replication formula and Hecke operators，preprint，Nagoya Univer－ sity．
［12］S．Lang，Algebra，Addison－Wesley， 1993.
［13］－，Elliptic Functions，Springer， 1987.
［14］A．Néron，Modèles minimaux des variétés abéliennes sur les corps locaux et globaux， Publ．Math．I．H．E．S． 21 （1964），5－128．
［15］S．P．Norton，More on moonshine，in：Computational Group Theory，Academic Press，London，1984，185－195．
［16］R．Rankin，Modular Forms and Functions，Cambridge Univ．Press，Cambridge， 1977.
［17］B．Schoeneberg，Elliptic Modular Functions，Springer， 1973.
［18］J．－P．Serre and J．Tate，Good reduction of abelian varieties，Ann．of Math． 88 （1968），492－517．
［19］G．Shimura，Introduction to the Arithmetic Theory of Automorphic Functions， Publ．Math．Soc．Japan 11，Tokyo， 1971.
［20］J．G．Thompson，Some numerology between the Fischer－Griess monster and the elliptic modular function，Bull．London Math．Soc． 11 （1979），352－353．

Department of Mathematics
Korea Advanced Institute of Science and Technology
Taejon 305－701，Korea
E－mail：kch＠math．kaist．ac．kr
jkkoo＠math．kaist．ac．kr

Received on 6．12．1996
and in revised form on 1．4．1997
（3093）

[^0]: 1991 Mathematics Subject Classification: 11F03, 11F11, 11F22, 11R04, 11R37, 14H55.
 Supported by KOSEF research grant 95-K3-0101 (RCAA).

