On the diophantine equation $x^{2}+b^{y}=c^{z}$

by

Pingzhi Yuan and Jiabao Wang (Hunan)

In 1993, Terai [3] conjectured that if $a^{2}+b^{2}=c^{2}$ with $(a, b, c)=1$ and a even, then the equation

$$
\begin{equation*}
x^{2}+b^{y}=c^{z} \tag{1}
\end{equation*}
$$

has the only positive integral solution $(x, y, z)=(a, 2,2)$. In 1995, using Baker's efficient method, Maohua Le proved that Terai's conjecture holds if $b>8 \cdot 10^{6}, b \equiv \pm 5(\bmod 8)$ and c is a prime power.

In this paper, by a completely different method, we prove the following
Theorem. If $a^{2}+b^{2}=c^{2},(a, b, c)=1, b \equiv \pm 5(\bmod 8)$ and c a prime, then Terai's Conjecture holds.

It is clear that the results in this paper cover that in [2].
Lemma. If $2 \nmid k$, then all integral solutions (X, Y, Z) of the equation

$$
\begin{equation*}
X^{2}+Y^{2}=2 k^{Z}, \quad(X, Y)=1, Z>0 \tag{2}
\end{equation*}
$$

can be given as follows:
(a) when Z is odd,

$$
X+Y \sqrt{-1}=2^{(1-Z) / 2}\left(X_{1}+Y_{1} \sqrt{-1}\right)^{Z}
$$

or

$$
Y+X \sqrt{-1}=2^{(1-Z) / 2}\left(X_{1}+Y_{1} \sqrt{-1}\right)^{Z}
$$

(b) when Z is even,

$$
\lambda_{1} X+\lambda_{2} Y \sqrt{-1}=2^{-Z / 2}\left(X_{1}+Y_{1} \sqrt{-1}\right)^{Z}(1+\sqrt{-1})
$$

or

$$
\lambda_{1} Y+\lambda_{2} X \sqrt{-1}=2^{-Z / 2}\left(X_{1}+Y_{1} \sqrt{-1}\right)^{Z}(1+\sqrt{-1})
$$

where $\lambda_{1}, \lambda_{2} \in\{1,-1\}$, and $\left(X_{1}, Y_{1}\right)$ runs over all integral solutions of the equation $X_{1}^{2}+Y_{1}^{2}=2 k,\left(X_{1}, Y_{1}\right)=1$.

1991 Mathematics Subject Classification: Primary 11D61.

Proof. From Theorems 6.7.1 and 6.7.4 of [1], we need only prove that X, Y in (a) and (b) are integers, and $(X, Y)=1$, and also that the solutions $X+Y \sqrt{-1}$ are all different for the different $X_{1}+Y_{1} \sqrt{-1}$. This is clear.

Proof of Theorem. Suppose that (x, y, z) is a solution of (1). Since $a^{2}+$ $b^{2}=c^{2},(a, b, c)=1,2 \mid a$, we may assume that

$$
a=2 s t, \quad b=s^{2}-t^{2}, \quad c=s^{2}+t^{2}, \quad s>t>0, \quad(s, t)=1 .
$$

From the proof of the Theorem of [2] we have $2 \mid y$ and $2 \mid z$, so $(x, m, n)=$ $(x, y / 2, z / 2)$ is a positive integral solution of the equation

$$
\begin{equation*}
x^{2}+b^{2 m}=c^{2 n} . \tag{3}
\end{equation*}
$$

By (3) and since b is odd, there exist integers b_{1}, b_{2} satisfying

$$
\begin{equation*}
b_{1}^{2 m}+b_{2}^{2 m}=2 c^{n}, \quad b_{1} b_{2}=b, \quad\left(b_{1}, b_{2}\right)=1 ; \tag{4}
\end{equation*}
$$

here we may assume, without loss of generality, that $b_{1}>0, b_{2}>0$. Since c is a prime power, for any given positive integer n, the equation

$$
\begin{equation*}
X^{2}+Y^{2}=2 c^{n}, \quad(X, Y)=1, \tag{5}
\end{equation*}
$$

has exactly eight integral solutions (X, Y). Note that the equation $X_{1}^{2}+Y_{1}^{2}=$ $2 c,\left(X_{1}, Y_{1}\right)=1$, has exactly eight integral solutions

$$
\left(X_{1}, Y_{1}\right)=\left(\lambda_{1}(s+t), \lambda_{2}(s-t)\right),\left(\lambda_{1}(s-t), \lambda_{2}(s+t)\right),
$$

where $\lambda_{1}, \lambda_{2} \in\{1,-1\}$; then, by (4), $(X, Y)=\left(b_{1}^{m}, b_{2}^{m}\right)$ is a solution of (5).
It follows from the Lemma that if n is odd, then

$$
\begin{equation*}
\lambda_{1} b_{1}^{m}+\lambda_{2} b_{2}^{m} \sqrt{-1}=2^{(1-n) / 2}\left(X_{1}+Y_{1} \sqrt{-1}\right)^{n} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{1} b_{2}^{m}+\lambda_{2} b_{1}^{m} \sqrt{-1}=2^{(1-n) / 2}\left(X_{1}+Y_{1} \sqrt{-1}\right)^{n}, \quad \lambda_{1}, \lambda_{2} \in\{1,-1\} . \tag{7}
\end{equation*}
$$

Owing to the symmetry of (6) and (7), it is sufficient for the proof only to consider the case of (6) with $X_{1}=s+t, Y_{1}=s-t$. By (6),
(8) $\lambda_{1} b_{1}^{m} 2^{(n-1) / 2}=(s+t) \sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1}(s+t)^{2 i}\left(-(s-t)^{2}\right)^{(n-1-2 i) / 2}$,
(9) $\quad \lambda_{2} b_{2}^{m} 2^{(n-1) / 2}=(s-t) \sum_{i=0}^{(n-1) / 2}\binom{n}{2 i+1}(s-t)^{2 i}(-1)^{i}(s+t)^{n-1-2 i}$.

From (8), (9) and $b_{1} b_{2}=b=s^{2}-t^{2}, b_{1}>0, b_{2}>0$, we have

$$
\begin{equation*}
b_{1}=s+t, \quad b_{2}=s-t . \tag{10}
\end{equation*}
$$

Let p be a prime factor of $s+t, p^{\alpha}\left\|s+t, p^{\beta}\right\| n, \alpha \geq 1, \beta \geq 0$. Since $p \geq 3$, we have

$$
\operatorname{ord}_{p}(2 i+1) \leq \frac{\log (2 i+1)}{\log p}<2 i, \quad \forall i \in \mathbb{N} .
$$

Hence,

$$
\begin{align*}
\binom{n}{2 i+1}(s+t)^{2 i}=n\binom{n-1}{2 i} \frac{(s+t)^{2 i}}{2 i+1} & \equiv 0\left(\bmod p^{\beta+1}\right) \tag{11}\\
& i=1,2, \ldots,(n-1) / 2
\end{align*}
$$

From (8), (10), (11), we get

$$
\begin{equation*}
n \equiv 0\left(\bmod b_{1}^{m-1}\right) \tag{12}
\end{equation*}
$$

Therefore, if $b_{1}=s+t>3$, then $n \geq 5^{m-1} \geq 2 m+1$ when $m>1$, and hence

$$
2 c^{n}>2 c^{2 m+1}>2\left((s+t)^{2} / 2\right)^{2 m}>(s+t)^{2 m}+(s-t)^{2 m}
$$

contradicting (10) and (4). If $b_{1}=s+t=3$, then $s=2, t=1, b=3, c=5$, and it is easy to prove that $3^{2 m}+1=2 \cdot 5^{n}, 2 \nmid n$, has only the solution $(m, n)=(1,1)$.

If n is even, then

$$
\begin{equation*}
b_{1}^{m}+b_{2}^{m} \sqrt{-1}=\left(A+B\left(s^{2}-t^{2}\right) \sqrt{-1}\right)(1+\lambda \sqrt{-1}) \tag{13}
\end{equation*}
$$

where A, B are integers, and $\left(A, B\left(s^{2}-t^{2}\right)\right)=1, \lambda \in\{1,-1\}$, whence

$$
\begin{equation*}
b_{1}^{m}=A-\lambda B\left(s^{2}-t^{2}\right), \quad b_{2}^{m}=\lambda A+B\left(s^{2}-t^{2}\right) \tag{14}
\end{equation*}
$$

From (5) and $\left(A, B\left(s^{2}-t^{2}\right)\right)=1$, we get $\left(b_{1} b_{2}, s^{2}-t^{2}\right)=1$, but this is impossible. This completes the proof of the Theorem.

Acknowledgements. The authors wish to thank the Editor for his valuable suggestions.

References

[1] L. K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
[2] M. Le, A note on the diophantine equation $x^{2}+b^{y}=c^{z}$, Acta Arith. 71 (1995), 253-257.
[3] N. Terai, The Diophantine equation $x^{2}+q^{m}=p^{n}$, ibid. 63 (1993), 351-358.
Department of Mathematics and Mechanics
Changsha Railway University
Hunan 410075
P.R. China

E-mail: slx@csru.edu.cn

