# Analogs of $\Delta(z)$ for triangular Shimura curves 

by<br>Shujuan Ji (New York, N.Y.)

We construct analogs of the classical $\Delta$-function for quotients of the upper half plane $\mathcal{H}$ by certain arithmetic triangle groups $\Gamma$ coming from quaternion division algebras $B$. We also establish a relative integrality result concerning modular functions of the form $\Delta(\alpha z) / \Delta(z)$ for $\alpha$ in $B^{+}$. We give two explicit examples at the end.

1. Introduction. By a triangular Shimura curve, we mean the canonical model $X_{\Gamma}$ of $\Gamma \backslash \mathcal{H}$, the quotient of the upper half plane $\mathcal{H}$ by a cocompact arithmetic triangle subgroup $\Gamma$ of $S L_{2}(\mathbb{R})$. To be concise, let $F$ be a totally real algebraic number field of degree $d$, and $B$ a quaternion algebra over $F$, with $B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_{2}(\mathbb{R}) \oplus \mathbb{H}^{d-1}$, where $\mathbb{H}$ is the Hamilton quaternion algebra. Let $O$ be an order of $B$, and $\Gamma(O)=\{\gamma \in O$ : $\gamma O=O, N_{B / F}(\gamma)$ is totally positive $\}$. A Fuchsian group $\Gamma$ of the first kind is called arithmetic if it is commensurable with $\Gamma(O)$ for some $B$ and $O$. It is triangular if it can be generated by 3 elliptic or parabolic elements $\gamma_{1}, \gamma_{2}$ and $\gamma_{3}$ such that $\gamma_{1} \gamma_{2} \gamma_{3}= \pm I$. Its fundamental domain is the union of two copies of hyperbolic triangles. $\Gamma$ is cocompact unless $F=\mathbb{Q}$ and $B=M_{2}(F)$, in which case $\Gamma$ is commensurable with $S L_{2}(\mathbb{Z})$.

A well-known example is given by $\Gamma(2):=\left\{\gamma \in S L_{2}(\mathbb{Z}): \gamma \equiv 1\right.$ $(\bmod 2)\}$, whose fundamental domain has all of its vertices at infinity ("cusp"), namely at $0,1, \infty$. Even the modular group $S L_{2}(\mathbb{Z})$ belongs to this class, as its fundamental domain has vertices $i, \varrho=e^{2 \pi i / 3}$ and $\infty$. The function fields of $\Gamma(2) \backslash \mathcal{H}$ and $S L_{2}(\mathbb{Z}) \backslash \mathcal{H}$ are generated by the classical elliptic modular functions $\lambda(z)$ and $j(z)$, respectively. Moreover, there is a distinguished modular form $\Delta(z)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}, q=e^{2 \pi i z}$ for $S L_{2}(\mathbb{Z})$, which spans the space of cusp forms of weight 12 for $S L_{2}(\mathbb{Z})$. By a well-known theorem, one knows that, for any $N \geq 1$, the modular function $\Delta(N z) / \Delta(z)$ is, when suitably normalized, integral over $\mathbb{Z}[j]$ (see [Lang]). This fact leads to many interesting results in number theory and geometry.

[^0]In this paper, we find analogs of $\Delta(z)$ and prove such an integrality result for arithmetic triangular groups $\Gamma$ which are cocompact. We also give two explicit examples in the last section.

A complete (finite) list of cocompact arithmetic triangle groups $\Gamma$, given by congruence conditions, is available ([Ta], $\S 3 \& \S 5$; [Sh1], p. 82). Furthermore, one knows by Shimura that the algebraic curve $\Gamma \backslash \mathcal{H}$ and the three vertices are defined over an explicit extension $M_{\Gamma}$ of $F$. For each such $\Gamma$, we first find weights $k$ such that $\mathcal{S}_{k}(\Gamma)$ is one-dimensional, generated by an $F_{\Gamma}$-rational modular function with a unique zero at one of the vertices of $\Phi$; we call this function $\Delta_{B, \Gamma}$ (or $\Delta_{B}$ for short). We also present some explicit analogs $j_{B}(z)$ of the classical $j$-function. The fact that they exist is a consequence of Shimura's theory of canonical models ([Sh1]) (see Theorem 3 in $\S 4$ ). We determine an explicit expression of $j_{B}$ as a quotient with denominator $\Delta_{B}$ in the main cases of interest. We also use the $\Delta$ analogs to find algebra generators of appropriate spaces of modular forms. A typical result is as following:

Theorem A. Let $\Gamma$ be the group of signature $(2,3,7)$, coming from the quaternion algebra over $\mathbb{Q}(2 \pi / 7)$ which ramifies only at two infinite places. There are $\Delta$ forms $\Delta_{12}, \Delta_{16}$ and $\Delta_{30}$ of weight $12,16,30$ respectively, which have a simple zero at the three respective vertices. Moreover, they generate the algebra of all modular forms of even integral weight. Finally, $\Delta_{12}^{7} / \Delta_{42}^{3}$ is a generator of the function field.

We also have the following theorem concerning the integrality:
Theorem B. Let $(\Gamma, B, k)$ be as above. Then $\zeta(\alpha, z)^{k} \Delta_{B}(\alpha z) / \Delta_{B}(z)$ is integral over $M\left[j_{B}\right]$ for all $\alpha \in B^{+}$, where $\zeta(\alpha, z)$ is an automorphy factor.

By Shimura's theory of canonical models ([Sh1]), we know that the value of any arithmetically defined modular function relative to a congruence subgroup $\Gamma$ at any CM point $z$ lies in a class field of a totally imaginary quadratic extension $K_{z}$ of $F$. This in particular applies to our functions $\zeta(\alpha, z)^{k} \Delta_{B}(\alpha z) / \Delta_{B}(z)$. One may view our result as an integral refinement in a special case. Since for $F=\mathbb{Q}$, it gives abelian extensions of complex quadratic fields, we are mainly interested in the case $F \neq \mathbb{Q}$.

This constitutes a part of the author's Ph.D. thesis at Caltech ([Ji]). The author thanks her advisor, Dinakar Ramakrishnan, for his guidance and inspiration throughout. She is also indebted to Farshid Hajir and David Roberts for many helpful comments and suggestions.

## 2. Notations

- $F$ : totally real number field with $[F: \mathbb{Q}]=d$,
- $B$ : quaternion algebra over $F$ with $B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_{2}(\mathbb{R}) \oplus \mathbb{H}^{d-1}$,
- $\xi$ : the composite map

$$
\alpha \in B \xrightarrow{i} B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_{2}(\mathbb{R}) \oplus \mathbb{H} \oplus \ldots \oplus \mathbb{H} \xrightarrow{\operatorname{Pr}_{1}} M_{2}(\mathbb{R}) \ni \xi(\alpha),
$$

- $B^{+}=\left\{b \in B: N_{B / F}(b)\right.$ is totally positive $\}$,
- $O$ : a maximal order of $B$,
- $\tau$ : a two-sided integral $O$ ideal of $B$,
- $\Gamma=\Gamma(O, \tau)=\left\{\gamma \in B^{+}: \gamma\right.$ is a unit of $O$ and $\left.\gamma-1 \in \tau\right\}$ (we also use $\Gamma$ to denote the image of $\Gamma$ under $\xi$ ),
- $F_{\Gamma}$ : the ray class field of $F$ corresponding to $\left(\tau \cap O_{F}\right) \varpi_{0}$ where $\varpi_{0}$ is the product of all archimedean primes of $F$,
- $\left(X_{\Gamma}, \phi\right)$ : the Shimura canonical model defined over $F_{\Gamma}$,
- $\mathcal{M}(\Gamma)$ : the space of meromorphic modular functions for $\Gamma$,
- $\mathcal{M}(\Gamma)_{0}=\left\{f \in \mathcal{M}(\Gamma): f\right.$ is rational over $\left.F_{\Gamma}\right\}$,
- $\mathcal{S}_{k}(\Gamma)$ : the space of holomorphic cusp forms of weight $k$ for $\Gamma$; since $\Gamma$ has no cusps, all holomorphic forms are cusp forms,
- $\mathcal{S}_{k}(\Gamma)_{0}=\left\{f \in \mathcal{S}_{k}(\Gamma): f\right.$ is rational over $\left.F_{\Gamma}\right\}$.

3. Analogs of $\Delta(z)$. In this section, we determine the class of $(\Gamma, k)$ such that $\mathcal{S}_{k}(\Gamma)$ is one-dimensional and can be generated by a modular form which is nonvanishing outside one elliptic point.

If $\Gamma=\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}\right\rangle$ with $\gamma_{1}^{e_{1}}=\gamma_{2}^{e_{2}}=\gamma_{3}^{e_{3}}=\gamma_{1} \gamma_{2} \gamma_{3}=1$ as an automorphism of $\mathcal{H}$, then $\left(e_{1}, e_{2}, e_{3}\right)$ is called the signature of $\Gamma$. Let $P_{e_{1}}, P_{e_{2}}, P_{e_{3}}$ be fixed points of $\gamma_{1}, \gamma_{2}, \gamma_{3}$ respectively.

Theorem 1. For the following $\Gamma$ and $k, \mathcal{S}_{k}(\Gamma)$ is one-dimensional, generated by an $F_{\Gamma}$-rational modular form $\Delta_{B}=\Delta_{B}(\Gamma, k)$, which is an eigenform of Hecke operators. Moreover, $\Delta_{B}$ is nonzero everywhere except at a unique elliptic point.

| Signature of $\Gamma$ | $k$ | Divisor of $\Delta_{B}$ |
| :--- | :--- | :--- |
| $(2,3,8)$ | $12,16,32$ | $2 P_{8}, P_{3}, 2 P_{3}$ |
| $(2,4,5)$ | $8,16,24,32$ | $P_{5}, 2 P_{5}, 3 P_{5}, 4 P_{5}$ |
| $(2,3,10)$ | 12,20 | $4 P_{10}, 2 P_{3}$ |
| $(2,5,6)$ | 12 | $4 P_{5}$ |
| $(2,3,7)$ | $12,24,28,36,42$, | $P_{7}, 2 P_{7}, P_{3}, 3 P_{7}, P_{2}$, |
|  | $48,56,60,72$ | $4 P_{7}, 2 P_{3}, 5 P_{7}, 6 P_{7}$ |
| $(2,3,9)$ | 18 | $P_{2}$ |
| $(2,3,11)$ | 12,24 | $5 P_{11}, 10 P_{11}$ |

Proof. Applying the Riemann-Roch theorem to $\Gamma \backslash \mathcal{H}$, we have the following

Lemma 1.

$$
\begin{equation*}
\operatorname{dim} \mathcal{S}_{2}(\Gamma)=0 \tag{1}
\end{equation*}
$$

and for even $k>2$,

$$
\begin{equation*}
\operatorname{dim} \mathcal{S}_{k}(\Gamma)=\left[\frac{\left(e_{1}-1\right) k}{2 e_{1}}\right]+\left[\frac{\left(e_{2}-1\right) k}{2 e_{2}}\right]+\left[\frac{\left(e_{3}-1\right) k}{2 e_{3}}\right]-k+1 \tag{2}
\end{equation*}
$$

Furthermore, if $k>2$ and $f \in \mathcal{S}_{k}(\Gamma)$, then

$$
\begin{equation*}
\sum_{P \neq P_{1}, P_{2}, P_{3}} O_{P}(f)+\frac{O_{P_{1}}(f)}{e_{1}}+\frac{O_{P_{2}}(f)}{e_{2}}+\frac{O_{P_{3}}(f)}{e_{3}}=\left(1-\frac{1}{e_{1}}-\frac{1}{e_{2}}-\frac{1}{e_{3}}\right) \frac{k}{2} \tag{3}
\end{equation*}
$$

where $O_{P}(f)$ is the order of $f$ at $P$.
Proof (of Lemma 1). For the proof of (1) and (2), see ([Sh2], §2.6).
For any $P \in \mathcal{H}$, denote by $\bar{P}$ the image of $P$ under the projection $\mathcal{H} \rightarrow$ $\Gamma \backslash \mathcal{H}$. Let $G_{P}$ be the isotropy group of $P$ and $e(P)$ the order of $G_{P}$; then $e\left(P_{i}\right)=e_{i}$ for $i=1,2,3$ and $e(P)=1$ for other $P$. Choose a local parameter $z_{P}$ such that $G_{P}$ operates on $z_{P}$ by multiplication by $e$ th roots of unity; then $t=\left(z_{P}\right)^{e}$ is a local parameter of $\bar{P}$ in $\Gamma \backslash \mathcal{H}$.

Let $f \in \mathcal{S}_{k}(\Gamma)$. Then $\omega=f(d z)^{k / 2}$ is invariant under $\Gamma$; hence represents a holomorphic differential form of $\Gamma \backslash \mathcal{H}$. Let $O_{\bar{P}}(\omega)$ be the order of $\omega$ at $\bar{P}$ in $\Gamma \backslash \mathcal{H}$. We have

$$
\begin{aligned}
\omega & =f(t)(d t)^{k / 2}=u t{ }^{\left(O_{\bar{P}}(\omega)\right)}(d t)^{k / 2}=u\left(z_{P}\right)^{e\left(O_{\bar{P}}(\omega)\right)}\left(e\left(z_{P}\right)^{e-1} d z_{P}\right)^{k / 2} \\
& =u e^{k / 2}\left(z_{P}\right)^{e\left(O_{\bar{P}}(\omega)\right)+k(e-1) / 2}\left(d z_{P}\right)^{k / 2}
\end{aligned}
$$

where $u$ is locally holomorphic and nonzero around $P$. Therefore

$$
\begin{equation*}
O_{P}(f)=e O_{\bar{P}}(\omega)+k(e-1) / 2 \tag{4}
\end{equation*}
$$

As we know, on an algebraic curve of genus $g$, the sum of the orders of a differential form of degree 1 is equal to $2 g-2$. Here $g=0$. Hence

$$
\begin{equation*}
\sum_{P \neq P_{1}, P_{2}, P_{3}} O_{\bar{P}}(\omega)+O_{\bar{P}_{1}}(\omega)+O_{\bar{P}_{2}}(\omega)+O_{\bar{P}_{3}}(\omega)=-k . \tag{5}
\end{equation*}
$$

(3) results from (4) and (5).

Next we compute $\operatorname{dim} \mathcal{S}_{k}(\Gamma)$ and possible divisors for those $\Gamma$ listed in Shimura's table. Theorem 1 gives a complete list of those $\Gamma$ 's and $k$ 's for which one knows explicitly from the above formula that $\Delta_{B}(\Gamma, k)$ is zero at only one elliptic point.

Since $X_{\Gamma}$ is defined over $F_{\Gamma}$, and $\mathcal{S}_{k}(\Gamma) \cong H^{0}\left(X_{\Gamma / \mathbb{C}}, \underline{\omega}_{k}\right)$ where $\underline{\omega}_{k}$ is the sheaf of modular forms of weight $k$ which is also rational over $F_{\Gamma}$, this cohomology group evidently admits an $F_{\Gamma}$ structure $\mathcal{S}_{k}(\Gamma)_{0}$. We choose $\Delta_{B}$ to come from $\mathcal{S}_{k}(\Gamma)_{0}$. It is obviously a Hecke eigenform as $\operatorname{dim} \mathcal{S}_{k}(\Gamma)=1$.

In many cases, one can even prove that the modular forms nonvanishing outside the elliptic points generate the graded algebra

$$
\mathcal{S}(\Gamma)=\bigcup_{k=0, k \mathrm{even}}^{\infty} \mathcal{S}_{k}(\Gamma)
$$

Here are two examples.
Theorem 2. (1) Let $\Gamma$ be the group with signature (2,3, 8). Let $\Delta_{12}, \Delta_{16}$ be the generators of $\mathcal{S}_{12}(\Gamma), \mathcal{S}_{16}(\Gamma)$ respectively, from Theorem 1. By (2) and (3) in Lemma 1, $\mathcal{S}_{30}(\Gamma)$ is one-dimensional and generated by a modular form $\Delta_{30}$, whose divisor is $P_{2}+P_{8}$. Then $\mathcal{S}(\Gamma)=\mathbb{C}\left[\Delta_{12}, \Delta_{16}, \Delta_{30}\right]$.
(2) Let $\Gamma$ be the group with signature $(2,3,7)$. Let $\Delta_{12}, \Delta_{28}, \Delta_{42}$ be the generators of $\mathcal{S}_{12}(\Gamma), \mathcal{S}_{28}(\Gamma), \mathcal{S}_{42}(\Gamma)$ respectively, from Theorem 1. Then $\mathcal{S}(\Gamma)=\mathbb{C}\left[\Delta_{12}, \Delta_{28}, \Delta_{42}\right]$.

Proof. We only prove (1). The proof of (2) is similar.
We use induction on $k$. For $k \leq 30$, we can construct the following table from (2) and (3) in Lemma 1:

| $k$ | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{dim} \mathcal{S}_{k}(\Gamma)$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| generator |  |  |  |  | $\Delta_{12}$ |  | $\Delta_{16}$ |  |  |  | $\Delta_{12}^{2}$ |  | $\Delta_{12} \Delta_{16}$ | $\Delta_{30}$ |  |

One sees that all $\mathcal{S}_{k}(\Gamma)$ for $k \leq 30$ can be generated by $\Delta_{12}, \Delta_{16}$ and $\Delta_{30}$.

For $k>30$, consider the map $\mathcal{S}_{k-16}(\Gamma) \rightarrow \mathcal{S}_{k}(\Gamma)$ with $f \in \mathcal{S}_{k-16}(\Gamma) \mapsto$ $f \Delta_{16} \in \mathcal{S}_{k}(\Gamma)$. It is an isomorphism if and only if $\operatorname{dim} \mathcal{S}_{k}(\Gamma)=\operatorname{dim} \mathcal{S}_{k-16}(\Gamma)$.

By (2) in Lemma 1,

$$
\begin{aligned}
\operatorname{dim} \mathcal{S}_{k}(\Gamma) & =\left[\frac{k}{4}\right]+\left[\frac{k}{3}\right]+\left[\frac{7 k}{16}\right]-k+1 \\
& =\left[\frac{k-16}{4}\right]+4+\left[\frac{k}{3}\right]+\left[\frac{7(k-16)}{16}\right]+7-(k-16)-16+1 \\
& =\operatorname{dim} \mathcal{S}_{k-16}(\Gamma)+\left[\frac{k}{3}\right]-\left[\frac{k-16}{3}\right]-5 .
\end{aligned}
$$

Since

$$
\left[\frac{k}{3}\right]= \begin{cases}{\left[\frac{k-16}{3}\right]+6} & \text { if } 3 \mid k \\ {\left[\frac{k-16}{3}\right]+5} & \text { otherwise }\end{cases}
$$

we can reduce $k$ by 16 if $k \not \equiv 0(\bmod 3)$. If $k \equiv 0(\bmod 3)$, then $k \equiv 0$ $(\bmod 6)$. As $k>30, k=12 l$ or $k=30+12(l-2)$ for some $l>2$. So
$\Delta_{12}^{l} \in \mathcal{S}_{k}(\Gamma)$ or $\Delta_{30} \Delta_{12}^{l-2} \in \mathcal{S}_{k}(\Gamma)$. Both are nonzero at $P_{3}$ since $\Delta_{12}$ and $\Delta_{30}$ are. Given any $f \in \mathcal{S}_{k}(\Gamma)$, we can choose suitable $c \in \mathbb{C}$ such that $g=f-c \Delta_{12}^{l}$ or $f-c \Delta_{30} \Delta_{12}^{l-2}$ vanishes at $P_{3}$. Then $g=h \Delta_{16}$ for some $h \in \mathcal{S}_{k-16}(\Gamma)$. Again $k$ is reduced by 16 .
4. Analogs of $j(z)$. Let $P, Q$ and $R$ be the three elliptic points of $\Gamma$. In this section, we modify the Shimura canonical model to get a new parametrization $j_{B}$ with a simple zero at $P$ and a simple pole at $Q$, and such that it is integral at $R$.

For any CM point $z$, let $K_{z}$ be the associated totally imaginary quadratic extension of $F$ which can be $F$-linearly embedded into $B$. By Shimura's Main Theorem 1 (see [Sh1, p. 73]), $F_{\Gamma}(\phi(z))=M_{z}$ is a finite abelian unramified extension of $K_{z}$. If the class number of $K_{z}$ is 1 , then $M_{z}=K_{z}$. Since $P, Q$, $R$ are the fixed points of $\gamma_{1}, \gamma_{2}, \gamma_{3}$, they are CM points (see [Sh1, p. 66]). Let $M_{\Gamma}=M_{P} M_{Q} M_{R}$.

Proposition 1. There exists a modular function $j_{B}=j_{B}(\Gamma, k)$, rational over $M_{\Gamma}$, such that $\mathcal{M}(\Gamma)_{0} \otimes_{F_{\Gamma}} M_{\Gamma}=M_{\Gamma}\left(j_{B}\right), \operatorname{div}\left(j_{B}\right)=P-Q$, and $j_{B}(R)$ is integral (in $M_{\Gamma}$ ).

Proof. As $\left(X_{\Gamma}, \phi\right)$ is the Shimura canonical model, $\phi$ gives a birational isomorphism of $\Gamma \backslash \mathcal{H}$ to $X_{\Gamma}(\mathbb{C})$. Therefore $\phi$ has a simple zero $X$ and a simple pole $Y$ which are both $F_{\Gamma}$-rational. From the above argument, our $j_{B}$ can be obtained, up to a nonzero scalar in $M_{\Gamma}$, from $\phi$ via an automorphism of $\mathbb{P}^{1}$ over $M_{\Gamma}$ which sends $X, Y$ to $P, Q$ respectively. Consequently, $j_{B}$ is rational over $M_{\Gamma}$. For any CM point $z, j_{B}(z)$ will take values in $M_{z} M_{\Gamma}$. In particular, $j_{B}(R) \in M_{\Gamma}$. Now, we normalize $j_{B}$ so that $j_{B}(R)$ is integral.

Remarks. 1. This property of $j_{B}$ is an analog of the classical property of the $j$-function, namely: $j(\infty)=\infty, j(i)=0$ and $j(\varrho)=1728 \in \mathbb{Z}$.
2. Some explicit examples have been developed in the last section, where the class numbers of the relevant CM fields are 1 , so $M_{\Gamma}=K_{P} K_{Q} K_{R}$, the compositum of the fields attached to $P, Q, R$.
3. If the three elliptic elements of $\Gamma$ have distinct orders, then $j_{B}$ is rational over $F_{\Gamma}([\mathrm{Sh} 1],(3.18 .3))$.

Furthermore, we can write out our $j_{B}$ explicitly, up to a scalar, in terms of our $\Delta_{B}$ 's in the following two cases.

Theorem 3. (1) Let $\Gamma$ be the group with signature (2,3,8). Then $\Delta_{12}^{4} / \Delta_{16}^{3}$ is a generator of $\mathcal{M}(\Gamma)$ whose divisor is supported at vertices.
(2) Let $\Gamma$ be the group with signature $(2,3,7)$. Then $\Delta_{12}^{7} / \Delta_{42}^{3}$ is a generator of $\mathcal{M}(\Gamma)$ whose divisor is supported at vertices.

The proof follows by computing the divisors: For (1), $\operatorname{div}\left(\Delta_{12}^{4} / \Delta_{16}^{3}\right)=$ $4\left(2 P_{8} / 8\right)-3\left(P_{3} / 3\right)=P_{8}-P_{3}$. It has only a simple zero and a simple pole at vertices. (2) is similar.

## 5. The relative integrality result

Theorem 4. Fix any $\Gamma$ and $k$ in the table of Theorem 1. Let $\Delta_{B}$ be as in Section 3 with zeros only at $Q$ and $j_{B}$ as in Section 4 . For $\alpha \in B^{+}$, set

$$
\phi_{\alpha}(z)=\left(\frac{\operatorname{det}(\xi(\alpha))}{j(\xi(\alpha), z)^{2}}\right)^{k} \frac{\Delta_{B}(\alpha z)}{\Delta_{B}(z)}
$$

Then $\phi_{\alpha}$ is a modular function for $\Gamma_{\alpha}=\Gamma \cap \alpha^{-1} \Gamma \alpha$. Moreover, $\phi_{\alpha}$ is integral over $M_{\Gamma}\left[j_{B}\right]$.

Proof. Let

$$
\left.\Delta_{B}\right|_{\alpha}=\left(\frac{\operatorname{det}(\xi(\alpha))}{j(\xi(\alpha), z)^{2}}\right)^{k} \Delta_{B}(\alpha z)
$$

Straightforward computation gives

$$
\left.\left(\left.\Delta_{B}\right|_{\alpha}\right)\right|_{\alpha^{-1} \gamma \alpha}(z)=\left.\Delta_{B}\right|_{\alpha}(z) .
$$

Therefore $\phi_{\alpha}=\left.\Delta_{B}\right|_{\alpha} / \Delta_{B}$ is invariant under $\Gamma_{\alpha}$. Also it is easy to verify that $\phi_{\gamma \alpha}(z)=\phi_{\alpha}(z)$ and $\phi_{\alpha \gamma}(z)=\phi_{\alpha}(\gamma z)=\left.\phi_{\alpha}\right|_{\gamma}(z)$.

Now, let $\Gamma \alpha \Gamma=\bigcup_{i=1}^{r} \Gamma \alpha_{i}$ be a disjoint union of right cosets, and $\psi$ be any elementary symmetric function of $\left\{\phi_{\alpha_{i}}: i=1, \ldots, r\right\}$. Then $\phi_{\alpha_{i}}$ depends only on the right coset where $\alpha_{i}$ lies and $\left\{\left.\phi_{\alpha_{i}}\right|_{\gamma}: i=1, \ldots, r\right\}$ is just a permutation of $\left\{\phi_{\alpha_{i}}: i=1, \ldots, r\right\}$ for any $\gamma \in \Gamma$. So $\left.\psi\right|_{\gamma}=\psi$. Consequently, $\psi \in \mathbb{C}\left(j_{B}\right)$.

Assume $\psi=f\left(j_{B}\right) / g\left(j_{B}\right)$ where $f, g$ are relatively prime polynomials; then $\psi$ has a pole at any point $z$ such that $j_{B}(z)$ is a root of $g$. Since $\phi_{\alpha_{i}}$ (hence $\psi$ ) has poles only at points $\Gamma$-equivalent to $Q$ and $j_{B}(Q)=\infty, g$ must be a constant, i.e. $\psi \in \mathbb{C}\left[j_{B}\right]$.

Since $\Delta_{B}$ is $F_{\Gamma}$ rational, the map $\widetilde{\alpha}: \mathcal{S}_{k}(\Gamma)_{0} \rightarrow \mathcal{S}_{k}\left(\alpha^{-1} \Gamma \alpha\right)_{0}$ with $\Delta_{B} \mapsto$ $\left.\Delta_{B}\right|_{\alpha}$ is defined over $F_{\Gamma}$ from the theory of canonical models. Therefore $\psi \in M_{\Gamma}\left[j_{B}\right]$. Hence $\phi_{\alpha}$ is a root of the monic polynomial $\prod_{i=1}^{r}\left(x-\phi_{\alpha_{i}}\right) \in$ $M_{\Gamma}\left[j_{B}\right][x]$.

Corollary. For each $\alpha$ as above, there exists a nonzero $\beta_{\alpha} \in O_{M_{\Gamma}}$ such that for any CM point $z, \beta_{\alpha} \phi_{\alpha}(z)$ is an algebraic integer whenever $j_{B}(z)$ is. In particular, $\beta_{\alpha} \phi_{\alpha}(z)$ is integral in $M_{\Gamma} K(z)^{\mathrm{ab}}$.

Proof. Assume $\phi_{\alpha}$ is a root of the polynomial

$$
\beta_{\alpha} x^{n}+a_{n-1}\left(j_{B}\right) x^{n-1}+\ldots+a_{i}\left(j_{B}\right) x^{i}+\ldots+a_{0}\left(j_{B}\right)
$$

with $0 \neq \beta_{\alpha} \in O_{M_{\Gamma}}, a_{i}\left(j_{B}\right) \in O_{M_{\Gamma}}\left[j_{B}\right]$ for $i=0, \ldots, n-1$; then one can check that $\beta_{\alpha} \phi_{\alpha}$ is a root of the polynomial

$$
x^{n}+a_{n-1}\left(j_{B}\right) x^{n-1}+\ldots+\beta_{\alpha}^{n-1-i} a_{i}\left(j_{B}\right) x^{i}+\ldots+\beta_{\alpha}^{n-1} a_{0}\left(j_{B}\right) .
$$

Evaluate the polynomial at a CM point $z$. If $j_{B}(z)$ is an algebraic integer, then it is a monic polynomial with integral coefficients. Therefore $\beta_{\alpha} \phi_{\alpha}(z)$ is an algebraic integer.
6. Examples. In this section, we will give two examples of arithmetic triangular groups and find the relationship between the standard parametrizations.

Proposition 2. Let $F=\mathbb{Q}(\sqrt{2})$ and $B=F+F i+F j+F k$ where $i^{2}=-3, j^{2}=\sqrt{2}$ and $k=i j=-j i$. Let

$$
\begin{gathered}
x=\frac{1+i}{2}, \quad y=\frac{\sqrt{2}-1}{2}+\frac{(\sqrt{2}-1) i}{6}+\frac{j}{2}+\frac{k}{2}, \quad z=\frac{j}{2}+\frac{k}{2}, \\
O=\mathbb{Z}[\sqrt{2}][1, x, y, z] .
\end{gathered}
$$

Then $O$ is a maximal order of $B$.
Proof. We first prove that every element in $O$ is an integer by showing the integrality of its reduced trace and reduced norm ([Ji], Chap. 5). The fact that $O$ is a ring follows from the

## Multiplication table

\(\left.\begin{array}{|c|c|c|c|c|}\hline \& 1 \& x \& y \& z <br>
\hline 1 \& 1 \& x \& y \& z <br>
\hline x \& x \& x-1 \& (\sqrt{2}-1) x-y+z \& (\sqrt{2}-1)+(\sqrt{2}-1) x <br>

-3 y+2 z\end{array}\right]\)|  |
| :---: |
| $y$ |

Finally, the maximality of $O$ can be verified by showing that the reduced discriminant of $O, \operatorname{disc}(O)$, is $\sqrt{2}$, the only finite prime of $F$ which ramifies in $B$ ([Vi], Corollary 5.3, p. 94).

We consider the two groups $\Gamma^{*}=\left\{\gamma \in B^{+}: \gamma O=O \gamma\right\}$ and $\Gamma=\{\gamma \in$ $\left.B^{+}: N_{B / F}(\gamma)=1\right\}$. We first give them an explicit description.

Let $K=\mathbb{Q}(\sqrt[4]{2})$, a real quadratic extension of $F$. Fix an embedding

$$
B \hookrightarrow M_{2}(K) \hookrightarrow M_{2}(\mathbb{R})
$$

with

$$
i \mapsto\left(\begin{array}{cc}
0 & 1 \\
-3 & 0
\end{array}\right), \quad j \mapsto\left(\begin{array}{cc}
\sqrt[4]{2} & 0 \\
0 & -\sqrt[4]{2}
\end{array}\right), \quad k \mapsto\left(\begin{array}{cc}
0 & -\sqrt[4]{2} \\
-3 \sqrt[4]{2} & 0
\end{array}\right)
$$

Then

$$
\begin{gathered}
x \mapsto\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right), \quad y \mapsto\left(\begin{array}{cc}
\frac{\sqrt{2}-1+\sqrt[4]{2}}{2} & \frac{\sqrt{2}-1-\sqrt[4]{2}}{6} \\
-\frac{\sqrt{2}-1+\sqrt[4]{2}}{2} & \frac{\sqrt{2}-1-\sqrt[4]{2}}{2}
\end{array}\right), \\
z \mapsto\left(\begin{array}{cc}
\frac{\sqrt[4]{2}}{2} & -\frac{\sqrt[4]{2}}{2} \\
-\frac{3 \sqrt[4]{2}}{2} & -\frac{\sqrt[4]{2}}{2}
\end{array}\right) .
\end{gathered}
$$

Identifying $B$ with its image in $M_{2}(K)$, let

$$
\begin{gathered}
\eta_{1}=x=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right), \quad \eta_{2}=1+x+y=\left(\begin{array}{cc}
\frac{2+\sqrt{2}+\sqrt[4]{2}}{2} & \frac{2+\sqrt{2}-\sqrt[4]{2}}{6} \\
-\frac{2+\sqrt{2}+\sqrt[4]{2}}{2} & \frac{2+\sqrt{2}-\sqrt[4]{2}}{2}
\end{array}\right), \\
\eta_{3}=\eta_{1} \eta_{2}=\left(\begin{array}{cc}
0 & \frac{2+\sqrt{2}-\sqrt[4]{2}}{3} \\
-(2+\sqrt{2}+\sqrt[4]{2}) & 0
\end{array}\right) \\
\gamma_{1}=\eta_{1}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right), \quad \gamma_{2}=\frac{1}{2+\sqrt{2}} \eta_{2}^{2}=\left(\begin{array}{cc}
\frac{\sqrt{2}+\sqrt[4]{2}}{2} & \frac{2+\sqrt{2}-\sqrt[4]{2}}{6} \\
-\frac{2+\sqrt{2}+\sqrt[4]{2}}{2} & \frac{\sqrt{2}-\sqrt[4]{2}}{2}
\end{array}\right), \\
\gamma_{3}=\gamma_{1} \gamma_{2}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{2 \sqrt{2}+1-2 \sqrt[4]{2}}{6} \\
-\frac{2 \sqrt{2}+1+2 \sqrt[4]{2}}{2} & -\frac{1}{2}
\end{array}\right) .
\end{gathered}
$$

Then as an element of the group Aut $\mathcal{H}$ of all analytic automorphisms on $\mathcal{H}, \eta_{1}^{3}=\eta_{2}^{8}=\eta_{3}^{2}=\eta_{1} \eta_{2} \eta_{3}=1$ and $\gamma_{1}^{3}=\gamma_{2}^{4}=\gamma_{3}^{3}=\gamma_{1} \gamma_{2} \gamma_{3}=1$. It is easy to check that $\Gamma^{*}=\left\langle\eta_{1}, \eta_{2}, \eta_{3}\right\rangle, \Gamma=\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}\right\rangle$, and $\left[\Gamma^{*}: \Gamma\right]=2$ with $\Gamma^{*}=\Gamma \cup \Gamma \eta_{2}=\Gamma \cup \Gamma \eta_{3}$. Fundamental domains of $\Gamma^{*}$ and $\Gamma$ are shown in Figure 1, where $Q_{1}, Q_{2}, Q_{3}$ and $P_{1}, P_{2}, P_{3}$ denote the fixed points of $\eta_{1}, \eta_{2}, \eta_{3}$ and $\gamma_{1}, \gamma_{2}, \gamma_{3}$ respectively.


Fig. 1

From Section 4 there are parametrizations for $\Gamma^{*}$ and $\Gamma$ with only a simple zero at one elliptic point and a simple pole at another one. We normalize them as follows:

- $j_{B}$ : the modular function of $\Gamma^{*}$ with

$$
\operatorname{div}\left(j_{B}\right)=\left(Q_{1}\right)-\left(Q_{2}\right) \quad \text { and } \quad j_{B}\left(Q_{3}\right)=1 .
$$

- $\lambda_{B}$ : the modular function of $\Gamma$ with

$$
\operatorname{div}\left(\lambda_{B}\right)=\left(P_{1}\right)-\left(P_{3}\right) \quad \text { and } \quad \lambda_{B}\left(P_{2}\right)=1 .
$$

Proposition 3. Let $F, j_{B}$ and $\lambda_{B}$ be as above. Then $j_{B}$ is rational over $F$ and $\lambda$ is rational over $M_{\Gamma}=\mathbb{Q}(\sqrt{2}, \sqrt{3}, i)$.

Proof. Since the generators $\eta_{1}, \eta_{2}$ and $\eta_{3}$ have different orders and the class number of $F$ is 1 , it follows from Remark 3 in Section 4 that $j_{B}$ is rational over $F$.

To find $M_{\Gamma}$, notice that the characteristic polynomials for $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are

$$
P_{\gamma_{1}}(x)=x^{2}-x+1, \quad P_{\gamma_{2}}(x)=x^{2}-\sqrt{2} x+1, \quad P_{\gamma_{3}}(x)=x^{2}=x+1 .
$$

Therefore
$K_{P_{1}}=F(\sqrt{3} i)=\mathbb{Q}(\sqrt{2}, \sqrt{3} i), \quad K_{P_{2}}=F(\sqrt{2} i)=\mathbb{Q}(\sqrt{2}, i), \quad K_{P_{3}}=K_{P_{1}}$.
Using the software tool "Pari", one knows the class numbers of $K_{P_{1}}, K_{P_{2}}$ are both 1. By Remark 2 in Section 4, we have $M_{\Gamma}=K_{P_{1}} K_{P_{2}}=F(\sqrt{3} i)=$ $\mathbb{Q}(\sqrt{2}, \sqrt{3}, i)$.

In the classical case, for the canonical level 2 modular function

$$
\lambda: \Gamma(2) \backslash \mathcal{H}^{*} \rightarrow \mathbb{P}^{1}(\mathbb{C}),
$$

the map from the $\lambda$-line to the $j$-line is given by

$$
j(\lambda)=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}} .
$$

We also have this kind of result for $\Gamma^{*}$ and $\Gamma$.
Theorem 5. Let $j_{B}, \lambda_{B}$ be as above. Then $j_{B}=-4 \lambda_{B} /\left(1-\lambda_{B}\right)^{2}$.
Proof. It is easy to check

$$
\begin{aligned}
& Q_{1}=P_{1}=\eta_{3} P_{3}=\frac{\sqrt{3}}{3} i, \quad Q_{2}=P_{2}=\frac{-\sqrt[4]{2}+\sqrt{2} i}{2+\sqrt{2}+\sqrt[4]{2}}, \\
& Q_{3}=\frac{\sqrt{2+\sqrt{2}} i}{2+\sqrt{2}+\sqrt[4]{2}}, \quad P_{3}=\eta_{3} P_{1}=\frac{\sqrt{3} i}{2 \sqrt{2}+1+2 \sqrt[4]{2}} .
\end{aligned}
$$

Denote by $[A]^{*}([A])$ the $\Gamma^{*}$-equivalent ( $\Gamma$-equivalent) class represented by $A$. Let $P_{r}$ be the natural projection

$$
\Gamma \backslash \mathcal{H} \xrightarrow{P_{r}} \Gamma^{*} \backslash \mathcal{H} .
$$

One sees $P_{r}^{-1}\left\{\left[Q_{1}\right]^{*}\right\}=\left\{\left[P_{1}\right],\left[P_{3}\right]\right\}, P_{r}^{-1}\left\{\left[Q_{2}\right]^{*}\right\}=\left\{\left[Q_{2}\right]\right\}, P_{r}^{-1}\left\{\left[Q_{3}\right]^{*}\right\}=$ $\left\{\left[Q_{3}\right]\right\}$.

Noticing that $\left.\lambda_{B}\right|_{\eta_{3}} \in \mathcal{M}(\Gamma)$ and

$$
\begin{aligned}
& \left.\lambda_{B}\right|_{\eta_{3}}\left(P_{1}\right)=\lambda_{B}\left(\eta_{3} P_{1}\right)=\lambda_{B}\left(P_{3}\right)=\infty, \\
& \left.\lambda_{B}\right|_{\eta_{3}}\left(P_{3}\right)=\lambda_{B}\left(\eta_{3} P_{3}\right)=\lambda_{B}\left(P_{1}\right)=0, \\
& \left.\lambda_{B}\right|_{\eta_{3}}\left(P_{2}\right)=\left.\lambda_{B}\right|_{\eta_{2}}\left(P_{2}\right)=\lambda_{B}\left(\eta_{2} P_{2}\right)=\lambda_{B}\left(P_{2}\right)=1,
\end{aligned}
$$

we have $\left.\lambda_{B}\right|_{\eta_{3}}=1 / \lambda_{B}$.
Now look at $1 /\left(1-\lambda_{B}\right) \in \mathcal{M}(\Gamma)$. We have

$$
\begin{aligned}
& \frac{1}{1-\lambda_{B}}\left(P_{1}\right)=1, \quad \frac{1}{1-\lambda_{B}}\left(P_{3}\right)=0, \quad \frac{1}{1-\lambda_{B}}\left(P_{2}\right)=\infty \\
& \left.\left(\frac{1}{1-\lambda_{B}}\right)\right|_{\eta_{3}}\left(P_{1}\right)=\frac{1}{1-\lambda_{B}}\left(\eta_{3} P_{1}\right)=\frac{1}{1-\lambda_{B}}\left(P_{3}\right)=0 \\
& \left.\left(\frac{1}{1-\lambda_{B}}\right)\right|_{\eta_{3}}\left(P_{2}\right)=\left.\left(\frac{1}{1-\lambda_{B}}\right)\right|_{\eta_{2}}\left(P_{2}\right)=\frac{1}{1-\lambda_{B}}\left(\eta_{2} P_{2}\right)=\frac{1}{1-\lambda_{B}}\left(P_{2}\right)=\infty .
\end{aligned}
$$

Hence as a modular function of $\Gamma$

$$
\operatorname{div}\left(\left.\frac{1}{1-\lambda_{B}}\left(\frac{1}{1-\lambda_{B}}\right)\right|_{\eta_{3}}\right)=\left(\left[P_{1}\right]\right)+\left(\left[P_{3}\right]\right)-2\left(\left[P_{2}\right]\right)
$$

Viewing it as a modular function of $\Gamma^{*}$,

$$
\operatorname{div}\left(\left.\frac{1}{1-\lambda_{B}}\left(\frac{1}{1-\lambda_{B}}\right)\right|_{\eta_{3}}\right)=\left(\left[Q_{1}\right]^{*}\right)-\left(\left[Q_{2}\right]^{*}\right)=\operatorname{div}\left(j_{B}\right)
$$

therefore up to a scalar multiplication, it can be identified with $j_{B}$ as a modular function of $\Gamma^{*}$.

Since

$$
\left.\left(\frac{1}{1-\lambda_{B}}\right)\right|_{\eta_{3}}=\frac{1}{1-\left.\lambda_{B}\right|_{\eta_{3}}}=\frac{1}{1-1 / \lambda_{B}}=\frac{\lambda_{B}}{\lambda_{B}-1}
$$

we have

$$
-\frac{\lambda_{B}}{\left(1-\lambda_{B}\right)^{2}}=C j_{B}
$$

for some nonzero constant $C$.
Observe that $\lambda_{B}^{2}\left(Q_{3}\right)=\lambda_{B}\left(Q_{3}\right) \lambda_{B}\left(\eta_{3} Q_{3}\right)=\left.\lambda_{B}\left(Q_{3}\right) \lambda_{B}\right|_{\eta_{3}}\left(Q_{3}\right)=1$, so $\lambda_{B}\left(Q_{3}\right)= \pm 1$.

Since $\lambda_{B}\left(P_{2}\right)=1, P_{2}$ and $Q_{3}$ are not $\Gamma$-equivalent, $\lambda_{B}\left(Q_{3}\right)=-1$. Combining this with the fact that $j_{B}\left(Q_{3}\right)=1$, we conclude $C=1 / 4$. So $-\lambda_{B} /\left(1-\lambda_{B}\right)^{2}=j_{B} / 4$, i.e. $j_{B}=-4 \lambda_{B} /\left(1-\lambda_{B}\right)^{2}$.

## References

[Ji] S. Ji, Arithmetic and geometry on triangular Shimura curves, Caltech Ph.D. thesis, 1995.
[Lang] S. Lang, Elliptic Functions, Springer, 1987.
[Sh1] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 85 (1967), 58-159.
[Sh2] -, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
[Ta] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), 91106.
[Vi] M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Springer, 1980.
Department of Mathematics
Columbia University
New York, New York 10027
U.S.A.

E-mail: shujuan@math.columbia.edu


[^0]:    1991 Mathematics Subject Classification: Primary 11F03, 11F06, 11F12.

