Analogs of $\Delta(z)$ for triangular Shimura curves

by

SHUJUAN JI (New York, N.Y.)

We construct analogs of the classical Δ -function for quotients of the upper half plane \mathcal{H} by certain arithmetic triangle groups Γ coming from quaternion division algebras B. We also establish a relative integrality result concerning modular functions of the form $\Delta(\alpha z)/\Delta(z)$ for α in B^+ . We give two explicit examples at the end.

1. Introduction. By a triangular Shimura curve, we mean the canonical model X_{Γ} of $\Gamma \setminus \mathcal{H}$, the quotient of the upper half plane \mathcal{H} by a cocompact arithmetic triangle subgroup Γ of $SL_2(\mathbb{R})$. To be concise, let Fbe a totally real algebraic number field of degree d, and B a quaternion algebra over F, with $B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R}) \oplus \mathbb{H}^{d-1}$, where \mathbb{H} is the Hamilton quaternion algebra. Let O be an order of B, and $\Gamma(O) = \{\gamma \in O :$ $\gamma O = O, N_{B/F}(\gamma)$ is totally positive}. A Fuchsian group Γ of the first kind is called arithmetic if it is commensurable with $\Gamma(O)$ for some B and O. It is triangular if it can be generated by 3 elliptic or parabolic elements γ_1, γ_2 and γ_3 such that $\gamma_1 \gamma_2 \gamma_3 = \pm I$. Its fundamental domain is the union of two copies of hyperbolic triangles. Γ is cocompact unless $F = \mathbb{Q}$ and $B = M_2(F)$, in which case Γ is commensurable with $SL_2(\mathbb{Z})$.

A well-known example is given by $\Gamma(2) := \{ \gamma \in SL_2(\mathbb{Z}) : \gamma \equiv 1 \pmod{2} \}$, whose fundamental domain has all of its vertices at infinity ("cusp"), namely at 0, 1, ∞ . Even the modular group $SL_2(\mathbb{Z})$ belongs to this class, as its fundamental domain has vertices $i, \rho = e^{2\pi i/3}$ and ∞ . The function fields of $\Gamma(2) \setminus \mathcal{H}$ and $SL_2(\mathbb{Z}) \setminus \mathcal{H}$ are generated by the classical elliptic modular functions $\lambda(z)$ and j(z), respectively. Moreover, there is a distinguished modular form $\Delta(z) = q \prod_{n \geq 1} (1 - q^n)^{24}, q = e^{2\pi i z}$ for $SL_2(\mathbb{Z})$, which spans the space of cusp forms of weight 12 for $SL_2(\mathbb{Z})$. By a well-known theorem, one knows that, for any $N \geq 1$, the modular function $\Delta(Nz)/\Delta(z)$ is, when suitably normalized, integral over $\mathbb{Z}[j]$ (see [Lang]). This fact leads to many interesting results in number theory and geometry.

¹⁹⁹¹ Mathematics Subject Classification: Primary 11F03, 11F06, 11F12.

^[97]

In this paper, we find analogs of $\Delta(z)$ and prove such an integrality result for arithmetic triangular groups Γ which are cocompact. We also give two explicit examples in the last section.

A complete (finite) list of cocompact arithmetic triangle groups Γ , given by congruence conditions, is available ([Ta], §3 & §5; [Sh1], p. 82). Furthermore, one knows by Shimura that the algebraic curve $\Gamma \backslash \mathcal{H}$ and the three vertices are defined over an explicit extension M_{Γ} of F. For each such Γ , we first find weights k such that $\mathcal{S}_k(\Gamma)$ is one-dimensional, generated by an F_{Γ} -rational modular function with a unique zero at one of the vertices of Φ ; we call this function $\Delta_{B,\Gamma}$ (or Δ_B for short). We also present some explicit analogs $j_B(z)$ of the classical *j*-function. The fact that they exist is a consequence of Shimura's theory of canonical models ([Sh1]) (see Theorem 3 in §4). We determine an explicit expression of j_B as a quotient with denominator Δ_B in the main cases of interest. We also use the Δ analogs to find algebra generators of appropriate spaces of modular forms. A typical result is as following:

THEOREM A. Let Γ be the group of signature (2,3,7), coming from the quaternion algebra over $\mathbb{Q}(2\pi/7)$ which ramifies only at two infinite places. There are Δ forms Δ_{12} , Δ_{16} and Δ_{30} of weight 12, 16, 30 respectively, which have a simple zero at the three respective vertices. Moreover, they generate the algebra of all modular forms of even integral weight. Finally, $\Delta_{12}^7/\Delta_{42}^3$ is a generator of the function field.

We also have the following theorem concerning the integrality:

THEOREM B. Let (Γ, B, k) be as above. Then $\zeta(\alpha, z)^k \Delta_B(\alpha z) / \Delta_B(z)$ is integral over $M[j_B]$ for all $\alpha \in B^+$, where $\zeta(\alpha, z)$ is an automorphy factor.

By Shimura's theory of canonical models ([Sh1]), we know that the value of any arithmetically defined modular function relative to a congruence subgroup Γ at any CM point z lies in a class field of a totally imaginary quadratic extension K_z of F. This in particular applies to our functions $\zeta(\alpha, z)^k \Delta_B(\alpha z) / \Delta_B(z)$. One may view our result as an integral refinement in a special case. Since for $F = \mathbb{Q}$, it gives abelian extensions of complex quadratic fields, we are mainly interested in the case $F \neq \mathbb{Q}$.

This constitutes a part of the author's Ph.D. thesis at Caltech ([Ji]). The author thanks her advisor, Dinakar Ramakrishnan, for his guidance and inspiration throughout. She is also indebted to Farshid Hajir and David Roberts for many helpful comments and suggestions.

2. Notations

- F: totally real number field with $[F:\mathbb{Q}] = d$,
- B: quaternion algebra over F with $B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R}) \oplus \mathbb{H}^{d-1}$,

• ξ : the composite map

$$\alpha \in B \xrightarrow{i} B \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R}) \oplus \mathbb{H} \oplus \ldots \oplus \mathbb{H} \xrightarrow{\operatorname{Pr}_1} M_2(\mathbb{R}) \ni \xi(\alpha)$$

- $B^+ = \{b \in B : N_{B/F}(b) \text{ is totally positive}\},\$
- O: a maximal order of B,
- τ : a two-sided integral O ideal of B,
- $\Gamma = \Gamma(O, \tau) = \{\gamma \in B^+ : \gamma \text{ is a unit of } O \text{ and } \gamma 1 \in \tau\}$ (we also use Γ to denote the image of Γ under ξ),
- F_{Γ} : the ray class field of F corresponding to $(\tau \cap O_F)\varpi_0$ where ϖ_0 is the product of all archimedean primes of F,
- (X_{Γ}, ϕ) : the Shimura canonical model defined over F_{Γ} ,
- $\mathcal{M}(\Gamma)$: the space of meromorphic modular functions for Γ ,
- $\mathcal{M}(\Gamma)_0 = \{ f \in \mathcal{M}(\Gamma) : f \text{ is rational over } F_{\Gamma} \},\$
- $S_k(\Gamma)$: the space of holomorphic cusp forms of weight k for Γ ; since Γ has no cusps, all holomorphic forms are cusp forms,
- $\mathcal{S}_k(\Gamma)_0 = \{ f \in \mathcal{S}_k(\Gamma) : f \text{ is rational over } F_\Gamma \}.$

3. Analogs of $\Delta(z)$. In this section, we determine the class of (Γ, k) such that $S_k(\Gamma)$ is one-dimensional and can be generated by a modular form which is nonvanishing outside one elliptic point.

If $\Gamma = \langle \gamma_1, \gamma_2, \gamma_3 \rangle$ with $\gamma_1^{e_1} = \gamma_2^{e_2} = \gamma_3^{e_3} = \gamma_1 \gamma_2 \gamma_3 = 1$ as an automorphism of \mathcal{H} , then (e_1, e_2, e_3) is called the *signature* of Γ . Let $P_{e_1}, P_{e_2}, P_{e_3}$ be fixed points of $\gamma_1, \gamma_2, \gamma_3$ respectively.

THEOREM 1. For the following Γ and k, $S_k(\Gamma)$ is one-dimensional, generated by an F_{Γ} -rational modular form $\Delta_B = \Delta_B(\Gamma, k)$, which is an eigenform of Hecke operators. Moreover, Δ_B is nonzero everywhere except at a unique elliptic point.

Signature of Γ	k	Divisor of Δ_B
(2, 3, 8)	12, 16, 32	$2P_8, P_3, 2P_3$
(2, 4, 5)	8, 16, 24, 32	$P_5, 2P_5, 3P_5, 4P_5$
(2, 3, 10)	12, 20	$4P_{10}, 2P_3$
(2, 5, 6)	12	$4P_5$
(2, 3, 7)	12, 24, 28, 36, 42,	$P_7, 2P_7, P_3, 3P_7, P_2,$
	48, 56, 60, 72	$4P_7, 2P_3, 5P_7, 6P_7$
(2, 3, 9)	18	P_2
(2, 3, 11)	12, 24	$5P_{11}, 10P_{11}$

Proof. Applying the Riemann–Roch theorem to $\Gamma \setminus \mathcal{H}$, we have the following

Lemma 1.

$$\dim \mathcal{S}_2(\Gamma) = 0;$$

and for even k > 2,

(2)
$$\dim \mathcal{S}_k(\Gamma) = \left[\frac{(e_1 - 1)k}{2e_1}\right] + \left[\frac{(e_2 - 1)k}{2e_2}\right] + \left[\frac{(e_3 - 1)k}{2e_3}\right] - k + 1$$

Furthermore, if k > 2 and $f \in S_k(\Gamma)$, then

(3)
$$\sum_{P \neq P_1, P_2, P_3} O_P(f) + \frac{O_{P_1}(f)}{e_1} + \frac{O_{P_2}(f)}{e_2} + \frac{O_{P_3}(f)}{e_3} = \left(1 - \frac{1}{e_1} - \frac{1}{e_2} - \frac{1}{e_3}\right) \frac{k}{2}$$

where $O_P(f)$ is the order of f at P.

Proof (of Lemma 1). For the proof of (1) and (2), see ([Sh2], §2.6).

For any $P \in \mathcal{H}$, denote by \overline{P} the image of P under the projection $\mathcal{H} \to \Gamma \setminus \mathcal{H}$. Let G_P be the isotropy group of P and e(P) the order of G_P ; then $e(P_i) = e_i$ for i = 1, 2, 3 and e(P) = 1 for other P. Choose a local parameter z_P such that G_P operates on z_P by multiplication by eth roots of unity; then $t = (z_P)^e$ is a local parameter of \overline{P} in $\Gamma \setminus \mathcal{H}$.

Let $f \in \mathcal{S}_k(\Gamma)$. Then $\omega = f(dz)^{k/2}$ is invariant under Γ ; hence represents a holomorphic differential form of $\Gamma \setminus \mathcal{H}$. Let $O_{\overline{P}}(\omega)$ be the order of ω at \overline{P} in $\Gamma \setminus \mathcal{H}$. We have

$$\omega = f(t)(dt)^{k/2} = ut^{(O_{\overline{P}}(\omega))}(dt)^{k/2} = u(z_P)^{e(O_{\overline{P}}(\omega))}(e(z_P)^{e-1}dz_P)^{k/2}$$
$$= ue^{k/2}(z_P)^{e(O_{\overline{P}}(\omega))+k(e-1)/2}(dz_P)^{k/2},$$

where u is locally holomorphic and nonzero around P. Therefore

(4)
$$O_P(f) = eO_{\overline{P}}(\omega) + k(e-1)/2.$$

As we know, on an algebraic curve of genus g, the sum of the orders of a differential form of degree 1 is equal to 2g - 2. Here g = 0. Hence

(5)
$$\sum_{P \neq P_1, P_2, P_3} O_{\overline{P}}(\omega) + O_{\overline{P}_1}(\omega) + O_{\overline{P}_2}(\omega) + O_{\overline{P}_3}(\omega) = -k.$$

(3) results from (4) and (5).

Next we compute dim $S_k(\Gamma)$ and possible divisors for those Γ listed in Shimura's table. Theorem 1 gives a complete list of those Γ 's and k's for which one knows explicitly from the above formula that $\Delta_B(\Gamma, k)$ is zero at only one elliptic point.

Since X_{Γ} is defined over F_{Γ} , and $\mathcal{S}_k(\Gamma) \cong H^0(X_{\Gamma/\mathbb{C}}, \underline{\omega}_k)$ where $\underline{\omega}_k$ is the sheaf of modular forms of weight k which is also rational over F_{Γ} , this cohomology group evidently admits an F_{Γ} structure $\mathcal{S}_k(\Gamma)_0$. We choose Δ_B to come from $\mathcal{S}_k(\Gamma)_0$. It is obviously a Hecke eigenform as dim $\mathcal{S}_k(\Gamma) = 1$.

(1)

In many cases, one can even prove that the modular forms nonvanishing outside the elliptic points generate the graded algebra

$$\mathcal{S}(\Gamma) = \bigcup_{k=0, k \text{ even}}^{\infty} \mathcal{S}_k(\Gamma).$$

Here are two examples.

THEOREM 2. (1) Let Γ be the group with signature (2,3,8). Let Δ_{12} , Δ_{16} be the generators of $S_{12}(\Gamma)$, $S_{16}(\Gamma)$ respectively, from Theorem 1. By (2) and (3) in Lemma 1, $S_{30}(\Gamma)$ is one-dimensional and generated by a modular form Δ_{30} , whose divisor is $P_2 + P_8$. Then $\mathcal{S}(\Gamma) = \mathbb{C}[\Delta_{12}, \Delta_{16}, \Delta_{30}]$.

(2) Let Γ be the group with signature (2,3,7). Let Δ_{12} , Δ_{28} , Δ_{42} be the generators of $S_{12}(\Gamma)$, $S_{28}(\Gamma)$, $S_{42}(\Gamma)$ respectively, from Theorem 1. Then $\mathcal{S}(\Gamma) = \mathbb{C}[\Delta_{12}, \Delta_{28}, \Delta_{42}].$

Proof. We only prove (1). The proof of (2) is similar.

We use induction on k. For $k \leq 30$, we can construct the following table from (2) and (3) in Lemma 1:

\overline{k}	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
$\dim \mathcal{S}_k(\Gamma)$	0	0	0	0	0	1	0	1	0	0	0	1	0	1	1
generator						Δ_{12}		Δ_{16}				Δ_{12}^2		$\Delta_{12}\Delta_{16}$	Δ_{30}

One sees that all $\mathcal{S}_k(\Gamma)$ for $k \leq 30$ can be generated by Δ_{12} , Δ_{16} and Δ_{30} .

For k > 30, consider the map $\mathcal{S}_{k-16}(\Gamma) \to \mathcal{S}_k(\Gamma)$ with $f \in \mathcal{S}_{k-16}(\Gamma) \mapsto$ $f \Delta_{16} \in \mathcal{S}_k(\Gamma)$. It is an isomorphism if and only if dim $\mathcal{S}_k(\Gamma) = \dim \mathcal{S}_{k-16}(\Gamma)$. By (2) in Lemma 1,

[1] $[l_{h}]$

$$\dim \mathcal{S}_k(\Gamma) = \left[\frac{k}{4}\right] + \left[\frac{k}{3}\right] + \left[\frac{7k}{16}\right] - k + 1$$
$$= \left[\frac{k - 16}{4}\right] + 4 + \left[\frac{k}{3}\right] + \left[\frac{7(k - 16)}{16}\right] + 7 - (k - 16) - 16 + 1$$
$$= \dim \mathcal{S}_{k-16}(\Gamma) + \left[\frac{k}{3}\right] - \left[\frac{k - 16}{3}\right] - 5.$$

Since

$$\left[\frac{k}{3}\right] = \begin{cases} \left\lfloor\frac{k-16}{3}\right\rfloor + 6 & \text{if } 3 \mid k, \\ \left\lfloor\frac{k-16}{3}\right\rfloor + 5 & \text{otherwise,} \end{cases}$$

we can reduce k by 16 if $k \not\equiv 0 \pmod{3}$. If $k \equiv 0 \pmod{3}$, then $k \equiv 0$ (mod 6). As k > 30, k = 12l or k = 30 + 12(l - 2) for some l > 2. So $\Delta_{12}^l \in \mathcal{S}_k(\Gamma)$ or $\Delta_{30}\Delta_{12}^{l-2} \in \mathcal{S}_k(\Gamma)$. Both are nonzero at P_3 since Δ_{12} and Δ_{30} are. Given any $f \in \mathcal{S}_k(\Gamma)$, we can choose suitable $c \in \mathbb{C}$ such that $g = f - c\Delta_{12}^l$ or $f - c\Delta_{30}\Delta_{12}^{l-2}$ vanishes at P_3 . Then $g = h\Delta_{16}$ for some $h \in \mathcal{S}_{k-16}(\Gamma)$. Again k is reduced by 16.

4. Analogs of j(z). Let P, Q and R be the three elliptic points of Γ . In this section, we modify the Shimura canonical model to get a new parametrization j_B with a simple zero at P and a simple pole at Q, and such that it is integral at R.

For any CM point z, let K_z be the associated totally imaginary quadratic extension of F which can be F-linearly embedded into B. By Shimura's Main Theorem 1 (see [Sh1, p. 73]), $F_{\Gamma}(\phi(z)) = M_z$ is a finite abelian unramified extension of K_z . If the class number of K_z is 1, then $M_z = K_z$. Since P, Q, R are the fixed points of γ_1 , γ_2 , γ_3 , they are CM points (see [Sh1, p. 66]). Let $M_{\Gamma} = M_P M_Q M_R$.

PROPOSITION 1. There exists a modular function $j_B = j_B(\Gamma, k)$, rational over M_{Γ} , such that $\mathcal{M}(\Gamma)_0 \otimes_{F_{\Gamma}} M_{\Gamma} = M_{\Gamma}(j_B)$, div $(j_B) = P - Q$, and $j_B(R)$ is integral (in M_{Γ}).

Proof. As (X_{Γ}, ϕ) is the Shimura canonical model, ϕ gives a birational isomorphism of $\Gamma \setminus \mathcal{H}$ to $X_{\Gamma}(\mathbb{C})$. Therefore ϕ has a simple zero X and a simple pole Y which are both F_{Γ} -rational. From the above argument, our j_B can be obtained, up to a nonzero scalar in M_{Γ} , from ϕ via an automorphism of \mathbb{P}^1 over M_{Γ} which sends X, Y to P, Q respectively. Consequently, j_B is rational over M_{Γ} . For any CM point $z, j_B(z)$ will take values in $M_z M_{\Gamma}$. In particular, $j_B(R) \in M_{\Gamma}$. Now, we normalize j_B so that $j_B(R)$ is integral.

REMARKS. 1. This property of j_B is an analog of the classical property of the *j*-function, namely: $j(\infty) = \infty$, j(i) = 0 and $j(\varrho) = 1728 \in \mathbb{Z}$.

2. Some explicit examples have been developed in the last section, where the class numbers of the relevant CM fields are 1, so $M_{\Gamma} = K_P K_Q K_R$, the compositum of the fields attached to P, Q, R.

3. If the three elliptic elements of Γ have distinct orders, then j_B is rational over F_{Γ} ([Sh1], (3.18.3)).

Furthermore, we can write out our j_B explicitly, up to a scalar, in terms of our Δ_B 's in the following two cases.

THEOREM 3. (1) Let Γ be the group with signature (2,3,8). Then $\Delta_{12}^4/\Delta_{16}^3$ is a generator of $\mathcal{M}(\Gamma)$ whose divisor is supported at vertices.

(2) Let Γ be the group with signature (2,3,7). Then $\Delta_{12}^7/\Delta_{42}^3$ is a generator of $\mathcal{M}(\Gamma)$ whose divisor is supported at vertices.

The proof follows by computing the divisors: For (1), $\operatorname{div}(\Delta_{12}^4/\Delta_{16}^3) = 4(2P_8/8) - 3(P_3/3) = P_8 - P_3$. It has only a simple zero and a simple pole at vertices. (2) is similar.

5. The relative integrality result

THEOREM 4. Fix any Γ and k in the table of Theorem 1. Let Δ_B be as in Section 3 with zeros only at Q and j_B as in Section 4. For $\alpha \in B^+$, set

$$\phi_{\alpha}(z) = \left(\frac{\det(\xi(\alpha))}{j(\xi(\alpha), z)^2}\right)^k \frac{\Delta_B(\alpha z)}{\Delta_B(z)}$$

Then ϕ_{α} is a modular function for $\Gamma_{\alpha} = \Gamma \cap \alpha^{-1} \Gamma \alpha$. Moreover, ϕ_{α} is integral over $M_{\Gamma}[j_B]$.

Proof. Let

$$\Delta_B|_{\alpha} = \left(\frac{\det(\xi(\alpha))}{j(\xi(\alpha), z)^2}\right)^k \Delta_B(\alpha z).$$

Straightforward computation gives

$$(\Delta_B|_{\alpha})|_{\alpha^{-1}\gamma\alpha}(z) = \Delta_B|_{\alpha}(z).$$

Therefore $\phi_{\alpha} = \Delta_B|_{\alpha}/\Delta_B$ is invariant under Γ_{α} . Also it is easy to verify that $\phi_{\gamma\alpha}(z) = \phi_{\alpha}(z)$ and $\phi_{\alpha\gamma}(z) = \phi_{\alpha}(\gamma z) = \phi_{\alpha}|_{\gamma}(z)$.

Now, let $\Gamma \alpha \Gamma = \bigcup_{i=1}^{r} \Gamma \alpha_i$ be a disjoint union of right cosets, and ψ be any elementary symmetric function of $\{\phi_{\alpha_i} : i = 1, \ldots, r\}$. Then ϕ_{α_i} depends only on the right coset where α_i lies and $\{\phi_{\alpha_i}|_{\gamma} : i = 1, \ldots, r\}$ is just a permutation of $\{\phi_{\alpha_i} : i = 1, \ldots, r\}$ for any $\gamma \in \Gamma$. So $\psi|_{\gamma} = \psi$. Consequently, $\psi \in \mathbb{C}(j_B)$.

Assume $\psi = f(j_B)/g(j_B)$ where f, g are relatively prime polynomials; then ψ has a pole at any point z such that $j_B(z)$ is a root of g. Since ϕ_{α_i} (hence ψ) has poles only at points Γ -equivalent to Q and $j_B(Q) = \infty, g$ must be a constant, i.e. $\psi \in \mathbb{C}[j_B]$.

Since Δ_B is F_{Γ} rational, the map $\widetilde{\alpha} : S_k(\Gamma)_0 \to S_k(\alpha^{-1}\Gamma\alpha)_0$ with $\Delta_B \mapsto \Delta_B|_{\alpha}$ is defined over F_{Γ} from the theory of canonical models. Therefore $\psi \in M_{\Gamma}[j_B]$. Hence ϕ_{α} is a root of the monic polynomial $\prod_{i=1}^r (x - \phi_{\alpha_i}) \in M_{\Gamma}[j_B][x]$.

COROLLARY. For each α as above, there exists a nonzero $\beta_{\alpha} \in O_{M_{\Gamma}}$ such that for any CM point z, $\beta_{\alpha}\phi_{\alpha}(z)$ is an algebraic integer whenever $j_B(z)$ is. In particular, $\beta_{\alpha}\phi_{\alpha}(z)$ is integral in $M_{\Gamma}K(z)^{ab}$.

Proof. Assume ϕ_{α} is a root of the polynomial

$$\beta_{\alpha}x^{n} + a_{n-1}(j_{B})x^{n-1} + \ldots + a_{i}(j_{B})x^{i} + \ldots + a_{0}(j_{B})$$

S. J. Ji

with $0 \neq \beta_{\alpha} \in O_{M_{\Gamma}}, a_i(j_B) \in O_{M_{\Gamma}}[j_B]$ for $i = 0, \ldots, n-1$; then one can check that $\beta_{\alpha}\phi_{\alpha}$ is a root of the polynomial

$$x^{n} + a_{n-1}(j_B)x^{n-1} + \ldots + \beta_{\alpha}^{n-1-i}a_i(j_B)x^i + \ldots + \beta_{\alpha}^{n-1}a_0(j_B)$$

Evaluate the polynomial at a CM point z. If $j_B(z)$ is an algebraic integer, then it is a monic polynomial with integral coefficients. Therefore $\beta_{\alpha}\phi_{\alpha}(z)$ is an algebraic integer.

6. Examples. In this section, we will give two examples of arithmetic triangular groups and find the relationship between the standard parametrizations.

PROPOSITION 2. Let $F = \mathbb{Q}(\sqrt{2})$ and B = F + Fi + Fj + Fk where $i^2 = -3$, $j^2 = \sqrt{2}$ and k = ij = -ji. Let

$$x = \frac{1+i}{2}, \quad y = \frac{\sqrt{2}-1}{2} + \frac{(\sqrt{2}-1)i}{6} + \frac{j}{2} + \frac{k}{2}, \quad z = \frac{j}{2} + \frac{k}{2}$$
$$O = \mathbb{Z}[\sqrt{2}][1, x, y, z].$$

Then O is a maximal order of B.

Proof. We first prove that every element in O is an integer by showing the integrality of its reduced trace and reduced norm ([Ji], Chap. 5). The fact that O is a ring follows from the

	1	x	y	z
1	1	x	y	z
x	x	x-1	$(\sqrt{2}-1)x - y + z$	$(\sqrt{2}-1) + (\sqrt{2}-1)x - 3y + 2z$
y	y	$-(\sqrt{2}-1)+2y-z$	$(\sqrt{2}-1)y + (\sqrt{2}-1)$	$\begin{array}{c} 1-(\sqrt{2}-1)x-(\sqrt{2}-1)y\\ +(\sqrt{2}-1)z \end{array}$
z	z	$-(\sqrt{2}-1) - (\sqrt{2}-1)x + 3y - z$	$\begin{array}{c} (\sqrt{2}-1) + (\sqrt{2}-1)x \\ + (\sqrt{2}-1)y \end{array}$	2

Multiplication table

Finally, the maximality of O can be verified by showing that the reduced discriminant of O, disc(O), is $\sqrt{2}$, the only finite prime of F which ramifies in B ([Vi], Corollary 5.3, p. 94).

We consider the two groups $\Gamma^* = \{\gamma \in B^+ : \gamma O = O\gamma\}$ and $\Gamma = \{\gamma \in B^+ : N_{B/F}(\gamma) = 1\}$. We first give them an explicit description.

Let $K = \mathbb{Q}(\sqrt[4]{2})$, a real quadratic extension of F. Fix an embedding

$$B \hookrightarrow M_2(K) \hookrightarrow M_2(\mathbb{R})$$

104

with

$$i \mapsto \begin{pmatrix} 0 & 1 \\ -3 & 0 \end{pmatrix}, \quad j \mapsto \begin{pmatrix} \sqrt[4]{2} & 0 \\ 0 & -\sqrt[4]{2} \end{pmatrix}, \quad k \mapsto \begin{pmatrix} 0 & -\sqrt[4]{2} \\ -3\sqrt[4]{2} & 0 \end{pmatrix}.$$

Then

$$\begin{split} x \mapsto \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}, \quad y \mapsto \begin{pmatrix} \frac{\sqrt{2}-1+\frac{4}{\sqrt{2}}}{2} & \frac{\sqrt{2}-1-\frac{4}{\sqrt{2}}}{6} \\ -\frac{\sqrt{2}-1+\frac{4}{\sqrt{2}}}{2} & \frac{\sqrt{2}-1-\frac{4}{\sqrt{2}}}{2} \end{pmatrix}, \\ z \mapsto \begin{pmatrix} \frac{\frac{4}{\sqrt{2}}}{2} & -\frac{\frac{4}{\sqrt{2}}}{2} \\ -\frac{3\frac{4}{\sqrt{2}}}{2} & -\frac{\frac{4}{\sqrt{2}}}{2} \end{pmatrix}. \end{split}$$

Identifying B with its image in $M_2(K)$, let

$$\eta_{1} = x = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}, \quad \eta_{2} = 1 + x + y = \begin{pmatrix} \frac{2+\sqrt{2}+\sqrt{2}}{2} & \frac{2+\sqrt{2}-\sqrt{2}}{6} \\ -\frac{2+\sqrt{2}+\sqrt{2}}{2} & \frac{2+\sqrt{2}-\sqrt{2}}{2} \end{pmatrix},$$
$$\eta_{3} = \eta_{1}\eta_{2} = \begin{pmatrix} 0 & \frac{2+\sqrt{2}-\sqrt{2}}{3} \\ -(2+\sqrt{2}+\sqrt{2}) & 0 \end{pmatrix},$$
$$\gamma_{1} = \eta_{1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix}, \quad \gamma_{2} = \frac{1}{2+\sqrt{2}}\eta_{2}^{2} = \begin{pmatrix} \frac{\sqrt{2}+\sqrt{2}}{2} & \frac{2+\sqrt{2}-\sqrt{2}}{6} \\ -\frac{2+\sqrt{2}+\sqrt{2}}{2} & \frac{\sqrt{2}-\sqrt{2}}{2} \end{pmatrix},$$
$$\gamma_{3} = \gamma_{1}\gamma_{2} = \begin{pmatrix} -\frac{1}{2} & \frac{2\sqrt{2}+1-2\sqrt{2}}{6} \\ -\frac{2\sqrt{2}+1+2\sqrt{2}}{2} & -\frac{1}{2} \end{pmatrix}.$$

Then as an element of the group Aut \mathcal{H} of all analytic automorphisms on \mathcal{H} , $\eta_1^3 = \eta_2^8 = \eta_3^2 = \eta_1 \eta_2 \eta_3 = 1$ and $\gamma_1^3 = \gamma_2^4 = \gamma_3^3 = \gamma_1 \gamma_2 \gamma_3 = 1$. It is easy to check that $\Gamma^* = \langle \eta_1, \eta_2, \eta_3 \rangle$, $\Gamma = \langle \gamma_1, \gamma_2, \gamma_3 \rangle$, and $[\Gamma^* : \Gamma] = 2$ with $\Gamma^* = \Gamma \cup \Gamma \eta_2 = \Gamma \cup \Gamma \eta_3$. Fundamental domains of Γ^* and Γ are shown in Figure 1, where Q_1, Q_2, Q_3 and P_1, P_2, P_3 denote the fixed points of η_1, η_2, η_3 and $\gamma_1, \gamma_2, \gamma_3$ respectively.

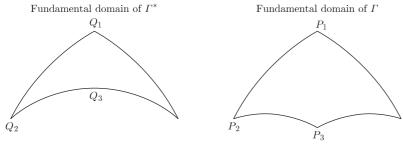


Fig. 1

From Section 4 there are parametrizations for Γ^* and Γ with only a simple zero at one elliptic point and a simple pole at another one. We normalize them as follows:

• j_B : the modular function of Γ^* with

 $\operatorname{div}(j_B) = (Q_1) - (Q_2)$ and $j_B(Q_3) = 1$.

• λ_B : the modular function of Γ with

$$\operatorname{div}(\lambda_B) = (P_1) - (P_3)$$
 and $\lambda_B(P_2) = 1$.

PROPOSITION 3. Let F, j_B and λ_B be as above. Then j_B is rational over F and λ is rational over $M_{\Gamma} = \mathbb{Q}(\sqrt{2}, \sqrt{3}, i)$.

Proof. Since the generators η_1 , η_2 and η_3 have different orders and the class number of F is 1, it follows from Remark 3 in Section 4 that j_B is rational over F.

To find M_{Γ} , notice that the characteristic polynomials for $\gamma_1, \gamma_2, \gamma_3$ are $P_{\gamma_1}(x) = x^2 - x + 1$, $P_{\gamma_2}(x) = x^2 - \sqrt{2}x + 1$, $P_{\gamma_3}(x) = x^2 = x + 1$.

Therefore

$$K_{P_1} = F(\sqrt{3}i) = \mathbb{Q}(\sqrt{2}, \sqrt{3}i), \quad K_{P_2} = F(\sqrt{2}i) = \mathbb{Q}(\sqrt{2}, i), \quad K_{P_3} = K_{P_1}.$$

Using the software tool "Pari", one knows the class numbers of K_{P_1}, K_{P_2} are both 1. By Remark 2 in Section 4, we have $M_{\Gamma} = K_{P_1}K_{P_2} = F(\sqrt{3}i) = \mathbb{Q}(\sqrt{2}, \sqrt{3}, i)$.

In the classical case, for the canonical level 2 modular function

$$\lambda: \Gamma(2) \setminus \mathcal{H}^* \to \mathbb{P}^1(\mathbb{C}),$$

the map from the λ -line to the *j*-line is given by

$$j(\lambda) = 2^8 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2 (\lambda - 1)^2}.$$

We also have this kind of result for Γ^* and Γ .

THEOREM 5. Let j_B , λ_B be as above. Then $j_B = -4\lambda_B/(1-\lambda_B)^2$.

Proof. It is easy to check

$$Q_1 = P_1 = \eta_3 P_3 = \frac{\sqrt{3}}{3}i, \qquad Q_2 = P_2 = \frac{-\sqrt[4]{2} + \sqrt{2}i}{2 + \sqrt{2} + \sqrt[4]{2}}$$
$$Q_3 = \frac{\sqrt{2 + \sqrt{2}}i}{2 + \sqrt{2} + \sqrt[4]{2}}, \qquad P_3 = \eta_3 P_1 = \frac{\sqrt{3}i}{2\sqrt{2} + 1 + 2\sqrt[4]{2}}$$

Denote by $[A]^*$ ([A]) the Γ^* -equivalent (Γ -equivalent) class represented by A. Let P_r be the natural projection

$$\Gamma \backslash \mathcal{H} \xrightarrow{P_r} \Gamma^* \backslash \mathcal{H}.$$

One sees $P_r^{-1}\{[Q_1]^*\} = \{[P_1], [P_3]\}, P_r^{-1}\{[Q_2]^*\} = \{[Q_2]\}, P_r^{-1}\{[Q_3]^*\} = \{[Q_3]\}.$

Noticing that $\lambda_B|_{\eta_3} \in \mathcal{M}(\Gamma)$ and

$$\begin{split} \lambda_B|_{\eta_3}(P_1) &= \lambda_B(\eta_3 P_1) = \lambda_B(P_3) = \infty, \\ \lambda_B|_{\eta_3}(P_3) &= \lambda_B(\eta_3 P_3) = \lambda_B(P_1) = 0, \\ \lambda_B|_{\eta_3}(P_2) &= \lambda_B|_{\eta_2}(P_2) = \lambda_B(\eta_2 P_2) = \lambda_B(P_2) = 1, \end{split}$$

we have $\lambda_B|_{\eta_3} = 1/\lambda_B$.

Now look at $1/(1 - \lambda_B) \in \mathcal{M}(\Gamma)$. We have

$$\frac{1}{1-\lambda_B}(P_1) = 1, \quad \frac{1}{1-\lambda_B}(P_3) = 0, \quad \frac{1}{1-\lambda_B}(P_2) = \infty,$$

$$\left(\frac{1}{1-\lambda_B}\right)\Big|_{\eta_3}(P_1) = \frac{1}{1-\lambda_B}(\eta_3 P_1) = \frac{1}{1-\lambda_B}(P_3) = 0,$$

$$\left(\frac{1}{1-\lambda_B}\right)\Big|_{\eta_3}(P_2) = \left(\frac{1}{1-\lambda_B}\right)\Big|_{\eta_2}(P_2) = \frac{1}{1-\lambda_B}(\eta_2 P_2) = \frac{1}{1-\lambda_B}(P_2) = \infty.$$

Hence as a modular function of \varGamma

div
$$\left(\frac{1}{1-\lambda_B}\left(\frac{1}{1-\lambda_B}\right)\Big|_{\eta_3}\right) = ([P_1]) + ([P_3]) - 2([P_2]).$$

Viewing it as a modular function of Γ^* ,

$$\operatorname{div}\left(\frac{1}{1-\lambda_B}\left(\frac{1}{1-\lambda_B}\right)\Big|_{\eta_3}\right) = ([Q_1]^*) - ([Q_2]^*) = \operatorname{div}(j_B),$$

therefore up to a scalar multiplication, it can be identified with j_B as a modular function of Γ^* .

Since

$$\left(\frac{1}{1-\lambda_B}\right)\Big|_{\eta_3} = \frac{1}{1-\lambda_B}\Big|_{\eta_3} = \frac{1}{1-1/\lambda_B} = \frac{\lambda_B}{\lambda_B-1},$$

we have

$$-\frac{\lambda_B}{(1-\lambda_B)^2} = Cj_B$$

for some nonzero constant C.

Observe that $\lambda_B^2(Q_3) = \lambda_B(Q_3)\lambda_B(\eta_3Q_3) = \lambda_B(Q_3)\lambda_B|_{\eta_3}(Q_3) = 1$, so $\lambda_B(Q_3) = \pm 1$.

Since $\lambda_B(P_2) = 1$, P_2 and Q_3 are not Γ -equivalent, $\lambda_B(Q_3) = -1$. Combining this with the fact that $j_B(Q_3) = 1$, we conclude C = 1/4. So $-\lambda_B/(1-\lambda_B)^2 = j_B/4$, i.e. $j_B = -4\lambda_B/(1-\lambda_B)^2$.

S. J. Ji

References

- [Ji] S. Ji, Arithmetic and geometry on triangular Shimura curves, Caltech Ph.D. thesis, 1995.
- [Lang] S. Lang, *Elliptic Functions*, Springer, 1987.
- [Sh1] G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 85 (1967), 58–159.
- [Sh2] —, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
- [Ta] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan 29 (1977), 91– 106.
- [Vi] M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Springer, 1980.

Department of Mathematics Columbia University New York, New York 10027 U.S.A. E-mail: shujuan@math.columbia.edu

Received on 1.10.1996

(3052)