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0. Introduction. The content of this paper is part of the author’s Ph.D.
thesis. The two new theorems in this paper provide upper bounds on the con-
centration function of additive functions evaluated on shifted γ-twin prime,
where γ is any positive even integers. Both results are generalizations of
theorems due to I. Z. Ruzsa, N. M. Timofeev, and P. D. T. A. Elliott.
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for his patience and guidance through every stage of this work and Professor
I. Z. Ruzsa for his advice in improving this paper.

1. Notation and history. This section merely includes the notation
necessary to state our main theorems. All other notation is defined where it
first appears.

A real-valued function f is said to be additive if f(mn) = f(m) + f(n)
for all m and n that are coprime. Throughout this paper, f will denote an
additive function, and g the multiplicative function defined by g(n) = eitf(n),
unless otherwise stated. Moreover, p and q will denote prime numbers while
x and y will be real numbers with y greater than 8. The variable w will
denote a sufficiently large power of log x. Throughout the paper, we shall
impose finitely many conditions on w. We choose w to be the largest power
of log x necessary to satisfy all the conditions. Also, for any fixed nonzero
integer a, any positive even integer γ < x, and any real number h, define

Ωγ(x) = {p ≤ x : p and p+ γ are primes},

Ψγ(x) = 2
∏
p>2

(
1− 1

(p− 1)2

) ∏

2<p|γ

(
p− 1
p− 2

)
x

log2 x
,

Qh(x, γ) =
1

Ψγ(x)
|{p ∈ Ωγ(x) : h < f(p+ a) ≤ h+ 1}|.
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The absolute value denotes the cardinality of the enclosed set. Since γ re-
mains fixed for a majority of the paper, we shall generally suppress the
dependence of Qh on x and γ.

The function suphQh is nearly a concentration function of the additive
function f evaluated on shifted γ-twin primes. It would, in fact, be a con-
centration function if the number of γ-twin primes grew asymptotically as
Ψγ(x). The last statement, of course, is unproven.

Concentration functions of additive functions have been the object of
much research in number theory. Ruzsa studied the concentration function
on integers:

sup
h
Q̃h(x) = sup

h

1
x
|{n ≤ x : h < f(n) ≤ h+ 1}|.

Let

W (x) = min
λ∈R

(
λ2 +

∑

p≤x

1
p

min(1, |f(p)− λ log p|)2
)
.

In 1980, Ruzsa [7] showed that suph Q̃h(x), the concentration function on
integers, is � W (x)−1/2. Timofeev [8] conducted the pioneering work on
the concentration function of shifted primes in the early 1990s. He obtained
a result similar to, but weaker than, Ruzsa’s result. Then in 1992, Elliott
[4] improved on Timofeev’s ideas and proved an analog to Ruzsa’s result for
concentration function on shifted primes. The definition of Q̃h is adjusted
in the obvious way in the shifted primes case.

If πγ(x) denotes the cardinality of Ωγ(x), then A. F. Lavrik proved that
the difference between Ψγ(x) and πγ(x) is small in an averaged sense over γ.

Theorem 0 (Lavrik). Let Λ(n) be the von Mangoldt function. Then for
any c > 0,
∑

0<γ≤x

∣∣∣∣
∑

0<m,n≤x
m−n=γ

Λ(m)Λ(n)− 2
∏
p>2

(
1− 1

(p− 1)2

) ∏

p|γ
p>2

(
p− 1
p− 2

)
(x− γ)

∣∣∣∣

� x2(log x)−c.

P r o o f. This is Lemma 17.3 of [6].

Observe that
∑

0<γ≤x

∑

0<m,n≤x+γ
m−n=γ

Λ(m)Λ(n)

log2 x
=

∑

0<γ≤x

∑

p≤x
q=p+γ

log p log q

log2 x
+O(x3/2)

≤ 2
∑

0<γ≤x
πγ(x) +O(x3/2).
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Lavrik’s theorem thus implies that

(1)
∑

0<γ≤x
πγ(x) +O

(
x2

logc x

)
≥ 1

2

∑

0<γ≤x
Ψγ(x).

If γ were an even integer for which πγ(x) ∼ Ψγ(x) as x → ∞, then
Qh(x, γ) would be precisely the concentration function of the shifted γ-twin
primes. Provided such a γ exists, Theorem 1 below shows that the concentra-
tion function Qh is� (1+W (x))−1/2. We remove the proviso in Theorem 2
by showing that the concentration functions are small in an averaged sense
over γ.

2. Statement of results

Theorem 1. Let y be an absolute constant not less than 8, w be a suffi-
ciently large fixed power of log x, and w < z ≤ x1/10. Then for any additive
function f ,

Qh = Qh(x, γ)�
∏

p|a(γ−a)

(
1 +

2
p

)
1√

1 +W (x)
,

and the bound holds uniformly for all h, x, γ, and f.

Furthermore, the functions Qh satisfy a similar bound on average over γ.

Theorem 2. In the notation of Theorem 1, let πγ(x) be the cardinality
of the set Ωγ(x). Then

(∑

γ≤x
πγ(x)

)−1 ∑

γ≤x
Ψγ(x) sup

h
Qh(x, γ)� 1√

1 +W (x)

for some absolute constant c. The implied constant depends at most on a.

3. Preliminary lemmas. Before embarking on the proof of Theorem 1,
we shall require the assistance of the following lemmas.

Lemma 1. Let g(n) be a multiplicative arithmetic function with modulus
not greater than one. Let x and T be real numbers greater than two. Define

m(T ) = m(x, T ) = min
|t|≤T

∑

p≤x
p−1
(

1− Re
(
g(p)
pit

))
.

For any squarefree integer with (D, a(a− γ)) = 1, we have
∑

n≤x
g(n)

∏

p|D, p|n
p-γ

(
p− 1
p− 3

) ∏

p|D, p|n
p|γ

(
p− 1
p− 2

)
� x

(
exp

(
−m(T )

8

)
+T−1/4

)
.

P r o o f. Lemma 1 is essentially Lemma 6.10 in Elliott’s text [2] on prob-
abilistic number theory. Lemma 1 is a generalization of a result of G. Halász.
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The difference in our setting is the presence of the extraneous product terms.
This means the multiplicative function in our summand may no longer be
bounded by one in absolute value.

The proof of Lemma 6.10 of [2] continues to hold even in our setting.
Having an upper bound of one on the summand is not absolutely necessary.
However, it is vital that when n is a prime greater than y,

∏

p|n

(
p− 1
p− 2

)
≤
∏

p|n

(
p− 1
p− 3

)
≤ 2.

To further streamline notation, we shall use Pγ(n) to denote the polyno-
mial (n−a)(n−a+γ), and let %γ(k) be the number of solutions to Pγ(n) ≡ 0
(mod k) in Z/kZ, for any positive integer k. Thus, for any p - γ, %γ(p) = 2,
for p | γ, %γ(p) = 1. Finally, for any squarefree integer k, %γ(k) ≤ 2ω(k),
where ω(k) counts the number of distinct prime divisors of k. Let

Pm,n =
∏

m<p≤n
p-a, p-(a−γ)

p.

Lemma 2 (Selberg). Suppose λd are real numbers with λ1 = 1, w < z,
and P is a product of distinct primes. Define a multiplicative function g by

g(d) =




%γ(d)
d

∏

p|d

(
1− %γ(p)

p

)−1

for µ(d) 6= 0,

0 otherwise.
Also, let

Gk(x) =
∑

d<x
(d,k)=1

µ2(d)g(d).

Then the quadratic form
∑

dj |P
j=1,2

λd1λd2

%γ([d1, d2])
[d1, d2]

with λdj = 0 for dj ≥ z

is minimized by choosing

λd = µ(d)
∏

p|d

(
1− %γ(p)

p

)−1
Gd(z/d)
G1(z)

,

and the minimal value is G−1
1 (z). Furthermore, for any λ > 0,

G−1
1 (z) =

∏

p|P

(
1− %γ(p)

p

)(
1 +O

{
exp

(
− λ log x

log z
+
(

4
λ

+
4

log z
eλ
))})

if z ≤ x.
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The constant P above will often be Pw,z, with z ≤ x1/10, in our appli-
cations of this lemma. In that case,

1
G1(z)

� Π1

(
logw
log z

)2

,

where

Π1 =
∏

p|Pw,z
p|γ

(
p− 1
p− 2

) ∏

w<p≤z
p|a(a−γ)

(
p

p− 2

)
.

P r o o f (of Lemma 2). This lemma is a combination of equations (3.1.4),
(3.1.7), and Lemma 4.1 of Halberstam and Richert [5]. In fact, Halberstam
and Richert prove a much more general result than the one stated here. Note
that for γ < x and w > log x,

Π1 � log log x.

Lemma 3. Let B ≥ 0. There is a constant c so that if 2 ≤ Q ≤M , then
those pairs (χ, τ) of Dirichlet characters to moduli not exceeding Q, and of
reals τ, |τ | ≤ QB , for which

(2)
∑

Q<p≤M

1
p

(1− Re(g(p)χ(p)piτ )) <
1
4

log
(

logM
logQ

)
− c

have the property that the characters are all induced by the same primitive
character. For the purposes of this statement all principal characters are
regarded as induced by the function which is identically one on all positive
integers.

P r o o f. See the proofs of Lemmas 3 and 4 of [3].

Lemma 4. Let 0 < β < 1, 0 < ε < 1/8, and 2 ≤ logM ≤ Q ≤M . Then

∑

n≤x
n≡r (modD)

g(n) =
1

φ(D)

∑

n≤x
(n,D)=1

g(n) +O

(
x

φ(D)

(
logQ
log x

)1/8−ε)

uniformly for Mβ ≤ x ≤M , all r prime to D, and all moduli D not exceeding
Q save possibly for the multiples of a single modulus D0 > 1.

P r o o f. This is part of Lemma 10 of [4].

Lemma 5. In the notation of Lemma 3, let 0 < β < 1, 0 < ε < 1/8,
∆ |Py,w, and 2 ≤ Q ≤ min(M,x1/4). Moreover , let g be any multiplicative
function with modulus bounded by one. Then
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∑

n≤x
n≡r (modD)

g(n)
∏

p|∆
p|n, p-γ

(
p− 1
p− 3

) ∏

p|∆
p|n, p|γ

(
p− 1
p− 2

)

− 1
φ(D)

∑

n≤x
(n,D)=1

g(n)
∏

p|∆
p|n, p-γ

(
p− 1
p− 3

) ∏

p|∆
p|n, p|γ

(
p− 1
p− 2

)

� x

φ(D)

(
logQ
log x

)1/8−ε

uniformly for Mβ ≤ x ≤M , all r prime to D, and all moduli D not exceeding
Q save possibly for the multiples of a single modulus D0 > 1.

The modulus D0 in Lemma 5 is the modulus to which the primitive
character in Lemma 3 is defined.

To facilitate notation, for any positive integers m,n, l, let

Gl(m, γ, n) =
∏

p|m, p-γ
p|n, p-l

(
p− 1
p− 3

) ∏

p|m, p|γ
p|n, p-l

(
p− 1
p− 2

)
.

The dependence on γ will be suppressed in the situations where there is no
possible confusion. Further, when l = 1, we shall write G(m,n) instead of
G1(m,n).

P r o o f (of Lemma 5). For any fixed positive integer l, define a multi-
plicative function v by the Dirichlet convolution

(3) Gl(∆,n) =
∑

d|n
v(d) and v(p) = 0 for p -∆ or p | l.

For p |∆ and p - l,

v(pk) =





2
p− 3

if k = 1 and p - γ,

1
p− 2

if k = 1 and p | γ,
0 if k > 1.

For any prime p, we have 2/(p− 3) > 1/(p− 2); thus, for any α > 0,

(4)
∞∑

d=1

v(d)
dα
≤
∏
p

(
1 +

2
pα(p− 3)

)
� 1.

To prove Lemma 5, first suppose that g is completely multiplicative.
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Then

(5)
∑

n≤x
n≡r (D)

g(n)Gl(∆,n)− 1
φ(D)

∑

n≤x
(n,D)=1

g(n)Gl(∆,n)

=
∑

d≤x
(d,D)=1

v(d)g(d)
( ∑

m≤x/d
m≡rd−1 (D)

g(m)− 1
φ(D)

∑

m≤x/d
(m,D)=1

g(m)
)
,

since (r,D) = 1. Divide the outer sum into two, one with d ≤ √x and the
other with

√
x < d ≤ x. For d ≤ √x, Lemma 4 gives an upper bound of

�
∑

d≤√x
(d,D)=1

v(d)x
dφ(D)

(
logQ

log(x/d)

)1/8−ε
� x

φ(D)

(
logQ
log x

)1/8−ε
.

For
√
x < d ≤ x, we estimate directly. According to inequality (4), this

portion of (5) contributes

�
∑

√
x<d≤x

(d,D)=1

v(d)
(
x

dD
+ 1 +

x

dφ(D)

)
� x3/4

φ(D)
.

Consequently, (5) is bounded by

x

φ(D)

(
logQ
log x

)1/8−ε
.

Clearly, this bound holds uniformly in l. By selecting l = 1, the lemma
is proved in the case when g is completely multiplicative.

To remove the requirement of complete multiplicativity, express g as a
convolution of g1 and g2, where g1 is completely multiplicative and is defined
by g1(pk) = g(p)k. Then g2(p) = 0, and one verifies by induction on k that

g2(pk) = g(pk)− g(p)g(pk−1),

for k ≥ 2. Hence, |g2(pk)| ≤ 2 for k ≥ 2. It follows immediately that, for any
α > 0 and l = 1,

(6)
∑

n≤x

|g2(n)|
nα

G(∆,n)�
∑

d≤x

v(d)
dα

∏

p≤x/d

(
1 +

2
p2α +

2
p3α + . . .

)
.

So, the sum is � 1 for α = 1 and is � log2 x for α = 1/2.
With these definitions for g1 and g2, we see that for (r,D) = 1,
∑

n≤x
n≡r (D)

g(n)G(∆,n) =
∑

d≤x
(d,D)=1

g2(d)G(∆, d)
∑

m≤x/d
m≡rd−1 (D)

g1(m)Gd(∆,m).
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Similarly,
∑

n≤x
(n,D)=1

g(n)G(∆,n) =
∑

d≤x
(d,D)=1

g2(d)G(∆, d)
∑

m≤x/d
(m,D)=1

g1(m)Gd(∆,m).

In view of these two remarks, the difference we wish to estimate in the
lemma is

(7)
∑

d≤x
(d,D)=1

g2(d)G(∆, d)F (x, d,D),

where

F (x, d,D) =
∑

m≤x/d
m≡rd−1 (D)

g1(m)Gd(∆,m)− 1
φ(D)

∑

m≤x/d
(m,D)=1

g1(m)Gd(∆,m).

Since g1 is completely multiplicative, F (x, d,D) is identical to the left-hand
side of (5) with l = d. We employ a similar tactic as before by dividing the
outer sum in two: d ≤ x3/4 and x3/4 < d ≤ x.

For d ≤ x3/4, the result already obtained for completely multiplicative
functions shows that this portion of (7) is

�
(

logQ
log x

)1/8−ε
x

φ(D)

∑

d≤x3/4

(d,D)=1

|g2(d)|
d

G(∆, d).

From the remarks following inequality (6), this bound is no greater than

x

φ(D)

(
logQ
log x

)1/8−ε
.

As for x3/4 < d ≤ x, note that
∏

p|∆

(
(p− 1)2

(p− 3)(p− 2)

)
� log3 w

because ∆ |Py,w implies ∆ � ew. Therefore, this portion of (7) is domi-
nated by

x log3 wx−3/8
∑

x3/4<d≤x

|g2(d)|√
d

G(∆, d).

Estimate (6) shows that the last expression is

� x5/8(log log x)7 log2 x� x3/4 � x

φ(D)

(
logQ
log x

)1/8−ε
,

as φ(D) ≤ Q ≤ x1/4. This concludes the proof of Lemma 5.
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For any positive integer m, define

H(m, γ) =
∏

p|m
p-γ

(
p− 3
p− 1

) ∏

p|m
p|γ

(
p− 2
p− 1

)
.

As before, the dependence on γ will be suppressed when there is no possible
confusion.

Lemma 6. Let 2 ≤ r ≤ x. Then the number of integers not exceeding x
and made up entirely of primes not exceeding r is

� x exp
(
−12

log x
log r

)
+ x14/15.

P r o o f. This is Lemma 13 of [3].

Lemma 7. Let y > e, and w be a fixed power of log x. Also, let
G(Py,w, γ, n), D0, and Q be as defined in Lemma 5. As before, for 1 ≤ j ≤
%γ(D0), bj will denote the solutions of the congruence Pγ(n) ≡ 0 (mod D0).
Then either

∑

n≤x
(Pγ(n),Py,w)=1

g(n) = H(Py,w)
∑

n≤x
g(n)G(Py,w, n) +O(x(log x)−1/20),

or
∑

n≤x
(Pγ(n),Py,w)=1

g(n) = H(Py,w)
∑

n≤x
g(n)G(Py,w, n)

+H(Py,w)cγ(D0)

×
%γ(D0)∑

j=1

χ(bj)
∑

n≤x
χ(n)g(n)G

(
Py,w
D0

, n

)

+O(x(log x)−21/20),

where

cγ(D0) =
µ(D0)
D0

∏

p|D0
p-γ

(
p

p− 3

) ∏

p|D0
p|γ

(
p

p− 2

)

and χ is a primitive Dirichlet character modulo D0. Moreover , D0 divides
Py,w, D0 ≤ Q, and ω(D0) ≤ 1

25 log log x.

P r o o f. Set M = x and Q = exp((log log x)3) in Lemma 5. First, suppose
there are no exceptional moduli relative to g. As a consequence of Brun’s
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pure sieve, for any positive integers n and r,
∑

d|n
µ(d) =

∑

d|n
ω(d)≤r−1

µ(d) + α
∑

d|n
ω(d)=r

µ(d),

where 0 ≤ α ≤ 1. This is Corollary 2.24 of [5].
The relatively prime condition (Pγ(n), Py,w) = 1 may be replaced by

using the Möbius function. Then the sum we wish to estimate equals

(8)
∑

d|Py,w
d≤Q

ω(d)≤r−1

µ(d)
∑

n≤x
Pγ(n)≡0 (d)

g(n) +
∑

d|Py,w
d≤Q
ω(d)=r

µ(d)
∑

n≤x
Pγ(n)≡0 (d)

αg(n)

+
∑

d|Py,w
Q<d≤Pγ(x)
ω(d)≤r−1

µ(d)
∑

n≤x
Pγ(n)≡0 (d)

g(n) +
∑

d|Py,w
Q<d≤Pγ(x)
ω(d)=r

µ(d)
∑

n≤x
Pγ(n)≡0 (d)

αg(n).

The value of α may depend upon y, w, n, γ, and the polynomial Pγ(n). How-
ever, since α is bounded between 0 and 1, it causes no difficulties upon taking
its absolute value.

Set r = (log log x)3. With this choice of r, d ≤ Q and d |Py,w imply
ω(d) < r. Consequently, in the first term of (8), the restriction on ω(d) may
be omitted. Moreover, if d |Py,w, and ω(d) = r, then d > Q; and so, the
second term is void. As for the last two terms, in the range of d, an upper
bound of

√
x may be used in place of Pγ(x). Then the last two terms of (8)

are

� x
∑

d|Py,w
Q<d≤√x

µ2(d)%γ(d)
d

+
∑

d|Py,w
Q<d≤√x

µ2(d)%γ(d)

� x

( ∑

d|Py,w

4ω(d)

d

)1/2( ∑

d|Py,w
Q<d≤√x

1
d

)1/2

.

It is easy to see that the first product is� log2 w. In the second product,
divide the interval (Q,

√
x ] into disjoint intervals of the form (2kU, 2k+1U ],

where U = Q and k = 0, 1, 2, . . . Lemma 6 provides a bound on the number
of integers not exceeding x which consist only of primes up to w. Applying
this lemma on each subinterval, we get

∑

d|Py,w
2kU<d≤2k+1U

1
d
≤ 1

2kU

∑

d|Py,w
2kU<d≤2k+1U

1� exp
(
− logU

logw

)
+ U−1/15.
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As it requires � log x of such subintervals to cover (Q,
√
x ],

( ∑

d|Py,w
Q<d≤√x

1
d

)1/2

�
(

log x exp
(
− logQ

logw

))1/2

� exp(−(log log x)3/2).

Hence, the last two terms of (8) are less than the error term of Lemma 7.
The main contribution arises from the first double sum of (8).

Since there are no exceptional moduli by assumption, the first term of
(8) may be estimated by %γ(d) applications of Lemma 4. It equals

(9)
∑

d|Py,w
d≤Q

µ(d)%γ(d)
φ(d)

∑

n≤x
(n,d)=1

g(n) +O

( ∑

d|Py,w
d≤Q

xµ2(d)%γ(d)
φ(d)

(
logQ
log x

)1/8−ε)
.

By our choice of Q, the quantity in the error term is

� x

(
(log log x)3

log x

)1/8−ε ∏

y<p≤w

(
1 +

2
p− 1

)
� x

(log x)1/10
.

Removing the condition d ≤ Q from the main term in (9) introduces an
error that is

� x exp(−(log log x)3/2).

This estimate may be obtained by appealing to Lemma 6 as before.
Therefore, the main term of (9) equals

∑

n≤x
g(n)

∑

d|Py,w
(d,n)=1

µ(d)%γ(d)
φ(d)

+O(x exp(−(log log x)3/2)).

Since
∑

d|Py,w
(d,n)=1

µ(d)%γ(d)
φ(d)

= G(Py,w, n)H(Py,w),

Lemma 7 is proved in the case where there are no exceptional moduli.
Now suppose there are exceptional moduli. According to Lemma 5, all

exceptional moduli are multiples of a single modulus, 1 < D0 ≤ Q. The only
place where the above argument may fail is in estimating the first term of
(8) with Lemma 4. The bound used may not be valid for the exceptional
moduli.

If D0 does not divide Py,w, then there would be no difficulties because
d |Py,w and thus d is not a multiple of D0. Moreover, if D0 > Q, then no
d ≤ Q can be a multiple of D0. Hence, if D0 -Py,w or if D0 > Q, the first
estimate of Lemma 7 is again valid. Finally, if ω(D0) > 1

25 log log x and
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D0 |Py,w, then

%γ(D0)
D0

≤
(

2
11

)ω(D0)

≤ (log x)−1/19.

Therefore, the middle term in the second estimate of Lemma 7 is

� x(log log log x)5

(log x)1/19
� x(log x)−1/20.

Once again, the first estimate of Lemma 7 holds in this setting. Without
loss of generality, suppose 1 < D0 ≤ Q, D0 |Py,w, and ω(D0) ≤ 1

25 log log x
for the remainder of the proof.

For any d |Py,w, define d1 = (d,D0) and d2 = d/d1. Since d is squarefree,
we have (d1, d2) = 1 and (d2, D0) = 1. Furthermore, any Dirichlet character
with squarefree modulus d may be factorized into a product of characters,
χ1χ2, where χ1 has modulus d1 and χ2 has modulus d2. This simple observa-
tion will permit us to divide any character into two parts, with the modulus
of one dividing D0 and the modulus of the other being coprime to D0.

Proceeding as in the case where there were no exceptional moduli, we get
∑

n≤x
(Pγ(n),Py,w)=1

g(n) =
∑

d|Py,w
d≤Q

µ(d)
∑

n≤x
Pγ(n)≡0 (d)

g(n)

+O(x exp(−(log log x)3/2)).

As a consequence of the Chinese Remainder Theorem, the main term on the
right-hand side equals

(10)
∑

d|Py,w
d≤Q

µ(d)
∑

n≤x
Pγ(n)≡0 (d1)
Pγ(n)≡0 (d2)

g(n).

For m = 1 or 2, let cml, 1 ≤ l ≤ %γ(dm), be the solutions to Pγ(n) ≡ 0
(mod dm). Then, with the aid of the orthogonality properties of characters,
(10) may be rewritten as

(11)
∑

d|Py,w
d≤Q

µ(d)
φ(d1)

%γ(d1)∑

j=1

∑
χ1

χ1(c1j)
∑

n≤x
Pγ(n)≡0 (d2)

g(n)χ1(n).

In view of Lemma 3, inequality (2) only holds for characters induced
by a common primitive character χ (mod D0). Suppose ψ is a character
modulo d2. If χ1 is not a character induced by χ, then for ψ being principal,
χ1ψ would not be induced by χ either. On the other hand, if χ1 and χ1ψ
are both characters induced by χ, then for any integer n with (n, d1d2) = 1
and n ≡ 1 (mod D0),
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1 = χ1ψ(n) = χ1(n)ψ(n) = ψ(n).

The above identity implies ψ must be a principal character because D0 - d2.
Hence, if χ1 is induced by χ, then for any nonprincipal ψ, χ1ψ cannot be
induced by the character χ.

In either case, for any χ1, there exists a ψ (mod d2) such that gχ1ψ
cannot satisfy inequality (2) of Lemma 3. We are, therefore, free to apply
Lemma 4 to estimate the sum over gχ1 in (11). Thus the sum of the g(n)’s
that we wish to estimate in Lemma 7 equals

(12)
∑

d|Py,w
d≤Q

µ(d)
φ(d1)

%γ(d1)∑

j=1

∑
χ1

χ1(c1j)
%γ(d2)
φ(d2)

∑

n≤x
(n,d2)=1

g(n)χ1(n)

+O

(∣∣∣∣
∑

d|Py,w
d≤Q

µ(d)
φ(d1)

%γ(d1)∑

j=1

∑
χ1

|χ1(c1j)|x%γ(d2)
φ(d2)

(
logQ
log x

)1/8−ε∣∣∣∣
)
.

The error term in (12) is

� x

(log x)1/20
.

As for the main terms in (12), switching the order of summation and
using, again, the orthogonality of characters gives

%γ(d1)∑

j=1

∑

n≤x
(n,d2)=1
n≡c1j (d1)

g(n) =
∑

n≤x
(n,d2)=1

Pγ(n)≡0 (d1)

g(n).

As in the setting where there were no exceptional moduli, we remove the
condition that d does not exceed Q. This introduces an error which is

� x(log log log x)2 exp(−(log log x)3/2).

Thus the error from eliminating the restriction on the magnitude of d may
be absorbed by the error term in Lemma 7.

It is convenient to write P0 for Py,w/D0. Consequently, it follows from
(12) that

∑

n≤x
(Pγ(n),Py,w)=1

g(n) =
∑

n≤x
g(n)

∑

d1|D0
d1|Pγ(n)

µ(d1)
∑

d2|P0
(d2,n)=1

µ(d2)%γ(d2)
φ(d2)

+O

(
x

(log x)1/20

)
.
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Converting the sum over d2 into its product form, the main term becomes

(13) H(P0)
∑

m|D0

µ(m)
∑

n≤x
Pγ(n)≡0 (m)

g(n)G(P0, n).

Let bmj , 1 ≤ j ≤ %γ(m), be the solutions to Pγ(n) ≡ 0 (mod m). Since

∑

n≤x
Pγ(n)≡0 (m)

g(n)G(P0, n) =
%γ(m)∑

j=1

∑

n≤x
n≡bmj (m)

g(n)G(P0, n),

we may apply Lemma 5 to the inner sum over n when m < D0. Expression
(13) has a representation

H(P0)
∑

m|D0
m<D0

µ(m)
φ(m)

%γ(m)∑

j=1

∑

n≤x
(n,m)=1

g(n)G(P0, n)(14)

+H(P0)µ(D0)
%γ(D0)∑

j=1

∑

n≤x
n≡bD0,j (D0)

g(n)G(P0, n)

+O

(
H(P0)

x

(log x)1/10

)
.

Add the term

(15)
µ(D0)%γ(D0)

φ(D0)

∑

n≤x
(n,D0)=1

g(n)G(P0, n)

to the first term of (14) and subtract the same from the second. The first
term of (14) plus (15) equals

(16) H(P0)
∑

n≤x
g(n)G(P0, n)

∑

m|D0
(m,n)=1

µ(m)%γ(m)
φ(m)

.

The inner sum over m equals G(D0, n)H(D0). Since P0 = Py,w/D0, we get

G(P0, n)G(D0, n) = G(Py,w, n) and H(P0)H(D0) = H(Py,w).

So (16) yields the first term in the second estimate of Lemma 7.
The second term in (14) may be expressed as

H(P0)
µ(D0)
φ(D0)

%γ(D0)∑

j=1

∑

χ0 (modD0)

χ0(bD0,j)
∑

n≤x
g(n)χ0(n)G(P0, n).
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The last expression is the same as (15) when χ0 is the principal charac-
ter modulo D0. Thus the difference between the second term of (14) and
expression (15) is

(17) H(P0)
µ(D0)
φ(D0)

%γ(D0)∑

j=1

∑
χ0

χ0(bj)
∑

n≤x
(n,D0)=1

g(n)χ0(n)G(P0, n),

where the middle sum is over all characters modulo D0 which are nonprin-
cipal. To obtain the statement of the lemma, use the identity

H(P0)
µ(D0)
φ(D0)

= H(Py,w)cγ(D0).

When χ0 is the exceptional primitive character, χ, (17) is precisely the
middle term of Lemma 7’s second estimate. When χ0 6= χ, the inequality in
(2) points in the opposite direction because then these characters cannot be
induced by χ. Lemma 1 thus yields∑

n≤x
χ0(n)g(n)G(P0, n)� x(log x)−1/9,

provided y > 8. Consequently, for χ0 6= χ and χ0 being nonprincipal, (17) is

� x

(log x)1/9
H(P0)

|µ(D0)%γ(D0)|
φ(D0)

∑

χ0 6=χ
nonprincipal

1.

Because ω(D0) ≤ 1
25 log log x, the last expression is � x(log x)−1/20. Lem-

ma 7 is established.

4. Proof of Theorem 1. Armed with the above lemmas, we proceed
to prove Theorem 1. For any real u,

(18)
1\
−1

(1− |t|)eitu dt = 2
1\
0

(1− t) cos(tu) dt =
(

sin(u/2)
u/2

)2

.

Hence, the integral is nonnegative for all real u. Moreover,
(

sin(u/2)
u/2

)2

≥ 1
2

for |u| ≤ 1.

Thus when |f(n+ a)− h| ≤ 1 and g = eitf ,

2
1\
−1

(1− |t|)e−ithg(n+ a) dt ≥ 1.

Since 8 ≤ y ≤ z < x, the set of primes p in (z, x] such that p - a(a − γ),
p + γ is also prime, and h < f(p + a) ≤ h + 1 is a subset of the set of the
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integers n with (n(n + γ), Py,z) = 1 which satisfy h < f(n + a) ≤ h + 1.
Thus,

Qh ≤ 2
Ψγ(x)

∑

n≤x
(n(n+γ),Py,z)=1

1\
−1

(1− |t|)e−ithg(n+ a) dt+
z

Ψγ(x)
+ o(1).

We introduce real numbers λd, |λd| ≤ 1, 1 ≤ d ≤ z, with λ1 = 1, reminis-
cent of Selberg’s sieve method. Because the integral in (18) is nonnegative,
for y ≤ w ≤ z, Qh is not more than a constant multiple of

(19)
1\
−1

(1− |t|)e−ith
Ψγ(x)

∑

dj≤z
dj |Pw,z
j=1,2

λd1λd2

∑

n≤x
(n(n+γ),Py,w)=1
n(n+γ)≡0 ([d1,d2])

g(n+a) dt+
z

Ψγ(x)
.

In the sum involving the λ’s in (19), when it is clear that j varies from
1 to 2, the condition j = 1, 2 will be omitted.

Following the ideas in Elliott’s paper [4], define the following functions:

g1(p) = g(p), g1(pk) =
g(p)k

k!
, g1(pq) = g1(p)g1(q),

g(n) = h ∗ g1(n),

β1(n) =
∑

ump=n
u≤logB x
p≤b

h(u)
g1(m)g(p) log p

logmp
,

β2(n) =
∑
urp=n
u≤logB x
r≤b

h(u)
g1(r)g(p) log p

log rp
,

β(n) = g(n)− β1(n)− β2(n).

The constants A and B will be chosen later; we pick b to be (log x)6A+15.
It follows from Lemma 5 of Elliott [4] that βj(n) � (log x)(B+1)/2, uni-

formly in n, j. Moreover, for ε > 0, and n > xε,

(20)

β1(n)� 1
log x

∑
ump=n
u≤logB x
p≤b

|h(u)| log p� 1
log x

∑
ump=n
u≤logB x
p≤b

h0(u) log p,

β2(n)� 1
log x

∑
urp=n
u≤logB x
r≤b

h0(u) log p.

Here h0(u) is the multiplicative function defined by h0(p) = 0, h0(p2) = 3/2,
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h0(pk) = e, if k ≥ 3. Denote the above bounds for β1 and β2 by Θ1 and Θ2,
respectively.

To realize the inequalities in (20), one examines the Euler product of
h ∗ g1. It may be shown that for all positive integers k,

h(pk) =
∑

u+v=k

(−g(p))u

u!
g(pv).

The inequalities in (20) follow from this identity.
Let z ≤ x1/10. Then (19) leads to

Qh � 1
Ψγ(x)

1\
−1

(1− |t|)e−ith
∑

dj≤z
dj |Pw,z

λd1λd2

∑

n≤x
(n,Py,w)=1

n(n+γ)≡0 ([d1,d2])

β(n+ a) dt(21)

+
2∑

m=1

1
Ψγ(x)

1\
−1

(1− |t|)e−ith
∑

dj≤z
dj |Pw,z

λd1λd2

×
∑

n≤x
(n,Py,w)=1

n(n+γ)≡0 ([d1,d2])

βm(n+ a) dt+O

(
x1/10

Ψγ(x)

)
.

Denote the three sums above by I0, I1, I2, respectively. We will show that
I0 is the only term making significant contribution. Define:

E(t) =
∑

dj≤z
dj |Pw,z

λd1λd2

∑

n≤x
(n(n+γ),Py,w)=1
n(n+γ)≡0 ([d1,d2])

β(n+ a)

−
∑

dj≤z
dj |Pw,z

λd1λd2

%γ([d1, d2])
φ([d1, d2])

∑

n≤x
(n(n+γ),Py,w)=1
(n+a,[d1,d2])=1

β(n+ a).

Then

(22) I0 =
1\
−1

(1− |t|)e−ith
Ψγ(x)

∑

dj≤z
dj |Pw,z

λd1λd2

%γ([d1, d2])
φ([d1, d2])

×
∑

n≤x
(n(n+γ),Py,w)=1
(n+a,[d1,d2])=1

β(n+ a) dt+
1\
−1

(1− |t|)e−ith
Ψγ(x)

E(t) dt.

LetD be a typical value of [d1, d2] with dj ≤ z, dj |Pw,z, j = 1, 2. For each



210 S. Wong

fixed D, the number of distinct choices of d1 and d2 such that [d1, d2] = D
is 3ω(D).

Since |λdj | ≤ 1 and β(n)� (log x)B+1/2 uniformly in n, it follows that

E(t)�
∑

D≤z2

p|D⇒p>w
(D,a|a−γ|)=1

3ω(D)(23)

×
∣∣∣∣

∑

n≤x
(Pγ(n),Py,w)=1
Pγ(n)≡0 (D)

β(n)− %γ(D)
φ(D)

∑

n≤x
(Pγ(n),Py,w)=1

(n,D)=1

β(n)
∣∣∣∣+O(

√
x),

for z ≤ x1/10.
An application of Hölder’s inequality shows that the main term of E(t)

is not more than

(24) (log x)81/2
( ∑

D≤z2

p|D⇒p>w
(D,a|a−γ|)=1

(
φ(D)
%γ(D)

)1/3

|F (t,D, x)|4/3
)3/4

,

where

F (t,D, x) =
∑

n≤x
(Pγ(n),Py,w)=1
Pγ(n)≡0 (D)

β(n)− %γ(D)
φ(D)

∑

n≤x
(Pγ(n),Py,w)=1

(n,D)=1

β(n).

In the second product of (24), the term
(
φ(D)
%γ(D)

)1/3∣∣∣∣
∑

n≤x
(Pγ(n),Py,w)=1
Pγ(n)≡0 (D)

β(n)− %γ(D)
φ(D)

∑

n≤x
(Pγ(n),Py,w)=1

(n,D)=1

β(n)
∣∣∣∣
1/3

is � x1/3(log x)(B+1)/6. Thus the second product in (24) may be bounded
by the product of x1/4(log x)(B+1)/8 and the double sum
( ∑

D≤z2

p|D⇒p>w
(D,a|a−γ|)=1

∣∣∣∣
∑

n≤x
(Pγ(n),Py,w)=1
Pγ(n)≡0 (D)

β(n)− %γ(D)
φ(D)

∑

n≤x
(Pγ(n),Py,w)=1

(n,D)=1

β(n)
∣∣∣∣
)3/4

.

To estimate the last double sum, we shall employ the next two lemmas.

Lemma 8. Let B ≥ 0, A ≥ 0, b = (log x)6A+15, and 0 < δ < 1/2. For any
multiplicative function g satisfying |g(n)| ≤ 1 for all n, define the function
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β as before. Then

∑

D1D2≤xδ
max

(r,D1D2)=1

∣∣∣∣
∑

n≤x
n≡r (D1D2)

β(n)− 1
φ(D2)

∑

n≤x
(n,D2)=1
n≡r (D1)

β(n)
∣∣∣∣

� x(log x)−A(log log x)2 + xw−1(log log x)2

+ xw−1/2(log x)5/2(log log x) + x(log x)5/2−B/2,

where D1 is confined to those integers whose prime factors do not exceed
w , and D2 to integers whose prime factors exceed w. The implied constant
depends at most upon A and B.

P r o o f. This is Lemma 6 of [4].

Lemma 9. Let B , A, b, g , δ and β be the same as in Lemma 8. Then

∑

D1D2≤xδ

∣∣∣∣
∑

n≤x
Pγ(n)≡0 (D1D2)

β(n)− %γ(D2)
φ(D2)

∑

n≤x
(n,D2)=1

Pγ(n)≡0 (D1)

β(n)
∣∣∣∣

� x(log x)(4−A)/2 log log x+
x√
w

(log x)A+6 log log x

+
x

4
√
w

(log x)13/4(log log x)1/2 + x(log x)(13−B)/4.

Here D1 divides P1,w, and D2 is a squarefree integer such that if p |D2, then
p > x and p - a(a− γ).

P r o o f. Let bj denote the solutions to Pγ(n) ≡ 0 (mod D1D2), where
1 ≤ j ≤ %γ(D1D2). Also, for i = 1, 2, let cik, 1 ≤ k ≤ %γ(Di), be the
solutions to Pγ(n) ≡ 0 (mod Di). To prove Lemma 9, we essentially apply
Lemma 8 %γ(D1D2) times. Therefore we shall only provide a sketch of the
proof.

According to the Chinese Remainder Theorem, for each j in the interval
[1, %γ(D1D2)], there exist k ∈ [1, %γ(D1)] and l ∈ [1, %γ(D2)] such that

bj = αc1k + βc2l,

where α and β are integers with

α ≡
{

1 (mod D1),
0 (mod D2),

and β ≡
{

0 (mod D1),
1 (mod D2).

It follows that
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%γ(D2)
φ(D2)

∑

n≤x
(n,D2)=1

Pγ(n)≡0 (D1)

β(n) =
1

φ(D2)

%γ(D1)∑

k=1

%γ(D2)∑

i=1

∑

n≤x
(n,D2)=1
n≡c1k (D1)

β(n)

=
1

φ(D2)

%γ(D1D2)∑

j=1

∑

n≤x
(n,D2)=1
n≡bj (D1)

β(n).

The restrictions on D1 and D2 force (bj , D1D2) = 1 for each j. Oth-
erwise, there is some prime dividing (a,D1D2) or (|a − γ|, D1D2), both of
which are impossible. Therefore the sum to be estimated in Lemma 9 may
be bounded by

∑

D1D2≤xδ
%γ(D1D2) max

(b,D1D2)=1

∣∣∣∣
∑

n≤x
n≡b (D1D2)

β(n)− 1
φ(D2)

∑

n≤x
(n,D2)=1
n≡b (D1)

β(n)
∣∣∣∣.

The Cauchy–Schwarz inequality shows that the previous term is not greater
than the product of O(log4 x) and the square root of

∑

D1D2≤xδ
φ(D1D2) max

(b,D1D2)=1

∣∣∣∣
∑

n≤x
n≡b (D1D2)

β(n)− 1
φ(D2)

∑

n≤x
(n,D2)=1
n≡b (D1)

β(n)
∣∣∣∣
2

.

Since

φ(D1D2)
∣∣∣∣

∑

n≤x
n≡b (D1D2)

β(n)− 1
φ(D2)

∑

n≤x
(n,D2)=1
n≡b (D1)

β(n)
∣∣∣∣� x,

the product is

� (x log4 x)
∑

D1D2≤xδ
max

(b,D1D2)=1

∣∣∣∣
∑

n≤x
n≡b (D1D2)

β(n)− 1
φ(D2)

∑

n≤x
(n,D2)=1
n≡b (D1)

β(n)
∣∣∣∣.

Take square root and utilize Lemma 8 to estimate the remaining double
sum. Lemma 9 now follows easily.

Proof of Theorem 1 (continued). Select B = 2A+5 and w > (log x)2A+14.
Then Lemma 9 asserts that the second product of (24) is

� x1/4(log x)(B+1)/8(x(log x)3−A/2)3/4 � x(log x)3−A/8.
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Therefore, inequalities (23) and (24) give the bounds

(25)

|E(t)| � x(log x)87/2−A/8 +
√
x,

1
Ψγ(x)

1\
−1

(1− |t|)e−ithE(t) dt� x

Ψγ(x)
(log x)87/2−A/8.

Having successfully dealt with the congruence condition in the innermost
sum of I0, we now switch back from β to g. We used β because Lemmas 8
and 9 are stated in terms of β, not g. From (22) and (25),

I0 =
1\
−1

(1− |t|)e−ith
Ψγ(x)

(26)

×
∑

dj≤z
dj |Pw,z

λd1λd2

%γ([d1, d2])
φ([d1, d2])

∑

n≤x
(n(n+γ),Py,w)=1
(n+a,[d1,d2])=1

g(n+ a) dt

−K1 −K2 +O

(
x

Ψγ(x)
(log x)87/2−A/8

)
,

where for m = 1, 2, Km is defined to be
1\
−1

(1− |t|)e−ith
Ψγ(x)

∑

dj≤z
dj |Pw,z

λd1λd2

%γ([d1, d2])
φ([d1, d2])

∑

n≤x
(n(n+γ),Py,w)=1
(n+a,[d1,d2])=1

βm(n+ a) dt.

We next show that the two Km terms are also small. Hence, the main
contribution to an upper bound for Qh will come from the first term in (26).

It follows easily from the definition that

(27) K1�max
|t|≤1

∑

n≤x
(n(n+γ),Py,w)=1

|β1(n+ a)|
Ψγ(x)

∣∣∣∣
∑

dj≤z
dj |Pw,z

(dj ,n+a)=1

λd1λd2

%γ([d1, d2])
φ([d1, d2])

∣∣∣∣.

In the innermost sum above, we wish to replace φ([d1, d2]) with [d1, d2].
Also, we would like to sever the relationship between the dj ’s and n. Once
both of these tasks are accomplished, the λ’s may be chosen independent of
n to minimize the quadratic form. We will then be able to utilize the sieve
results stated in Lemma 2.

Since
1

φ(D)
− 1
D
≤ 1
φ(D)

∑

p|D
p>w

1
p

and
∑
u

|h(u)|
u
� 1,
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the error introduced in replacing φ([d1, d2]) with [d1, d2] is

� x

wΨγ(x)

(
log x

log log x

)6

.

The error term arising from the removal of the condition (dj , n+ a) = 1 is

� 1
w

log7 x.

Having severed the connection between the dj ’s and n, we may apply
Lemma 2 to bound the sum over the dj ’s. Together, inequalities (20) and
(27) show that

K1 � 1
Ψγ(x)

∑

xε<n≤x
Θ1(n+ a)

(
Π1

(
log log x

log x

)2

+
log7 x

w

)
(28)

+
1

Ψγ(x)

∑

n≤xε
(n(n+γ),Py,w)=1

(log x)(B+1)/2

×
(
Π1

(
log log x

log x

)2

+
log7 x

w

)

+
x

wΨγ(x)

(
log x

log log x

)6

,

where Π1 is defined in Lemma 2. Recall that Π1 � log log x if γ < x and
w > log x.

Choose w to be greater than log9 x. Then one easily verifies that the
second sum in (28) is

� xε

Ψγ(x)
(log log x)3(log x)(B−3)/2.

As for the first sum in (28), it is

� 1
Ψγ(x)

· (log log x)3

log3 x

∑

u≤logB x
p≤(log x)6A+15

|h0(u)| log p
∑

m≤(x−a)/(up)

1

� x

Ψγ(x)
· (log log x)4

log3 x
.

Together, the bounds for the first and the second term of (28) yield

K1 � x(log log x)4

Ψγ(x) log3 x
+

xε(log log x)3

Ψγ(x)(log x)(3−B)/2
+

x

wΨγ(x)

(
log x

log log x

)6

(29)

� x(log log x)4

Ψγ(x) log3 x
.
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The K2 term may be bounded similarly. The only difference is that we
must use Θ2, as defined in (20), as an upper bound for β2. Since β2(n) �
Θ2(n) for n > xε, K2 satisfies an estimate identical to (28) with Θ1 replaced
by Θ2. The term analogous to the sum involving Θ1 is

1
Ψγ(x)

∑

n≤x

1
log x

∑

u≤logB x
r≤(log x)6A+15

urp=n−a

|h0(u)| log p
(

(log log x)3

log2 x
+

log7 x

w

)
.

This double sum, in turn, is

� 1
Ψγ(x)

· (log log x)3

log3 x

∑

u≤logB x
r≤(log x)6A+15

h0(u)
∑

p≤(x−a)/(ur)

log p

� x

Ψγ(x)
· (log log x)4

log3 x
.

Hence

K2 � x(log log x)4

Ψγ(x) log3 x
+

xε(log log x)3

Ψγ(x)(log x)(3−B)/2
+

x

wΨγ(x)

(
log x

log log x

)6

(30)

� x

Ψγ(x)
· (log log x)4

log3 x
.

This completes the study of I0 for the moment. We now turn our atten-
tion to I1 and I2. The I1 term may be estimated in manner similar to that
used for the K1 term. In fact, we have

(31) I1 � 1
Ψγ(x)

· (log log x)4

log3 x
.

Bounding the I2 term requires a combination of the techniques employed
in estimating the E(t) term and the K2 term. From its definition stated in
(21), I2 may be estimated by

(32)
1

Ψγ(x)

∑

xε<n≤x
Θ2(n+ a)

( ∑

d≤z
d|(Pw,z,n(n+γ))

λd

)2

+
1

Ψγ(x)

∑

n≤xε
(n(n+γ),Py,w)=1

(log x)(B+1)/2
( ∑

d≤z
d|(Pw,z,n(n+γ))

λd

)2
.

We have encountered the second term of (32) earlier in bounding the K1

term. It is dominated by O(
√
x/Ψγ(x)).

Recall the definition of Θ2(n). The first double sum in (32) has the
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representation

(33)
1

Ψγ(x) log x

∑

u≤logB x
r≤(log x)6A+15

h0(u)
∑

dj≤z
dj |Pw,z

λd1λd2

x%γ([d1, d2])
urφ([d1, d2])

+
1

Ψγ(x) log x

∑

u≤logB x
r≤(log x)6A+15

h0(u)F (x, t),

where

F (x, t) =
∑

dj≤z
dj |Pw,z

λd1λd2

( ∑

p≤x/(ur)
Pγ(pur)≡0 ([d1,d2])

log p− x%γ([d1, d2])
urφ([d1, d2])

)
.

In bounding the first term of (33), we proceed as with the K1 and K2

terms. First, replacing φ([d1, d2]) with [d1, d2] creates an error which is

(34) � x

wΨγ(x)

(
log x

log log x

)6

.

After the replacement, Lemma 2 yields an upper bound of

� x

Ψγ(x)
· (log log x)4

log3 x

for the first double sum in (33).
The function F (x, t) may be bounded in a fashion similar to that applied

to the E(t) term. Let D denote a typical value of [d1, d2]. Then, by selecting
w such that w > (log x)6A+15 > logB x, we have (D,ur) = 1 for each D. It
follows that

|F (x, t)| ≤
∑

D≤z2

q|D⇒q>w
(D,a|a−γ|)=1

3ω(D)%γ(D) max
b

∣∣∣∣
∑

p≤x/(ur)
p≡b (D)

log p− x%γ(D)
urφ(D)

∣∣∣∣,

where b runs through the %γ(D) solutions to Pγ(nur) ≡ 0 (mod D) with
(n,D) = 1.

The Cauchy–Schwarz inequality shows that

|F (x, t)|2 �
(

log x
log log x

)36

×
( ∑

D≤z2

q|D⇒q>w
(D,a|a−γ|)=1

φ(D) max
b

∣∣∣∣
∑

p≤x/(ur)
p≡b (D)

log p− x

urφ(D)

∣∣∣∣
2)
.
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For each D and b with 0 ≤ b < D,

φ(D)
∣∣∣∣

∑

p≤x/(ur)
p≡b (D)

log p− x

urφ(D)

∣∣∣∣ ≤
x log x
ur

+D log x+
x

ur
.

Since D ≤ x1/3, the last expression is dominated by (x log x)/(ur).
It now follows from Bombieri and Vinogradov’s celebrated result, Theo-

rem 17 of [1], that

|F (x, t)|2 �
(

log x
log log x

)36(
x log x
ur

)

×
( ∑

D≤z2

q|D⇒q>w
(D,a|a−γ|)=1

max
b

∣∣∣∣
∑

p≤x/(ur)
p≡b (D)

log p− x

urφ(D)

∣∣∣∣
)

�
(
x

ur

)2 (log x)37−c

(log log x)36 .

Thus the second sum of (33) is

(35) � x(log x)(35−c)/2

Ψγ(x)(log log x)17 .

According to Bombieri and Vinogradov’s Theorem, c may be chosen
arbitrarily large. Also, if w > log9 x, inequalities (32) through (35) yield the
following bound:

(36) I2 � x

Ψγ(x)
· (log log x)4

log3 x
.

Having obtain estimates for the three sums, I0, I1, I2, we now return to
the study of Qh. According to inequalities (21), (22), (25) and (26),

Qh �
1\
−1

(1− |t|)e−ith
Ψγ(x)

×
∑

dj≤z
dj |Pw,z

λd1λd2

%γ([d1, d2])
φ([d1, d2])

∑

n≤x
(n(n+γ),Py,w)=1
(n+a,[d1,d2])=1

g(n+ a) dt

+K1 +K2 +
x

Ψγ(x)
(log x)87/2−A/8 + I1 + I2.

Inequalities (29), (30), (31), and (35) give bounds for K1, K2, I1, I2, respec-
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tively. Therefore,

Qh �
1\
−1

(1− |t|)e−ith
Ψγ(x)

(37)

×
∑

dj≤z
dj |Pw,z

λd1λd2

%γ([d1, d2])
φ([d1, d2])

∑

n≤x
(n(n+γ),Py,w)=1
(n+a,[d1,d2])=1

g(n+ a) dt

+O

(
x(log log x)4

Ψγ(x) log3 x

)
,

provided A is chosen to be a constant greater than 372.
In the main term of (37), we once again replace φ([d1, d2]) with [d1, d2]

and remove the condition of relative primality ([d1, d2], n + a) = 1. Two
error terms are introduced:

1\
−1

(1− |t|)e−ith
Ψγ(x)

∑

dj≤z
dj |Pw,z

λd1λd2

(
%γ([d1, d2])
φ([d1, d2])

− %γ([d1, d2])
[d1, d2]

)

×
∑

n≤x
(n+a,[d1,d2])=1

(n(n+γ),Py,w)=1

g(n+ a) dt,

and
1\
−1

(1− |t|)e−ith
Ψγ(x)

∑

dj≤z
dj |Pw,z

λd1λd2

%γ([d1, d2])
[d1, d2]

∑

n≤x
(n+a,[d1,d2])>1

(n(n+γ),Py,w)=1

g(n+ a) dt.

Denote these two error terms by E1 and E2, respectively.
A direct argument shows that

E1 � x

wΨγ(x)
log6 x.

As for the second error,

E2 � 1
Ψγ(x)

∑

q|Pw,z2

∑

D≤z2

p|D⇒p>w
D≡0 (q)

6ω(D)

D

∑

n≤x
n≡0 (q)

1,

where q is prime. Express D as qm. Then the Cauchy–Schwarz inequality
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shows

E2 �
(

x

Ψγ(x)
+

z2

Ψγ(x)

) ∑

q|Pw,z2

(
1
q

(log36 x)1/2
( ∑

m≤z2/q

1
mq

)1/2)
.

The last quantity is

� x log20 x√
wΨγ(x)

.

Both terms, E1 and E2, are smaller than the error term in the bound for
Qh stated in (37), provided w > log40 x. Furthermore, because the integral
in the main term of (37) is nonnegative, the sum over dj ’s may be bounded
using Lemma 2. Consequently, it follows from (37) that

Qh � Π1

Ψγ(x)

(
log log x

log x

)2

(38)

×
1\
−1

(1− |t|)e−ith
∑

n≤x
(n(n+γ),Py,w)=1

g(n+ a) dt

+O

(
x(log log x)4

Ψγ(x) log3 x

)
.

Apply the results of Lemma 7 to the inequality (38). There are two cases
to consider, according to whether there are exceptional moduli or not. Let
us consider the former situation, which is the more difficult of the two. In
view of the second estimate of Lemma 7,

Qh � Π1

Ψγ(x)

(
log log x

log x

)2

(39)

×
∣∣∣

1\
−1

(1− |t|)e−ithH(Py,w)
∑

n≤x
g(n)G(Py,w, n) dt

∣∣∣

+
Π1

Ψγ(x)

(
log log x

log x

)2∣∣∣∣
1\
−1

(1− |t|)e−ithH(Py,w)
µ(D0)
D0

×
∏

p|D0
p|γ

(
p

p− 2

) ∏

p|D0
p-γ

(
p

p− 3

) %γ(D0)∑

j=1

χ(bj)

×
∑

n≤x
χ(n)g(n)G

(
Py,w
D0

, n

)
dt

∣∣∣∣
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+
1

Ψγ(x)
· (log log x)3

log2 x

×
∣∣∣∣

1\
−1

(1− |t|)e−ith x

(log x)1/20
dt

∣∣∣∣+
x(log log x)4

Ψγ(x) log3 x
.

The quantities D0, χ, %γ(D0), bj , G, and H are as defined in Lemma 7.
Let

U(x, λ) =
∑

p≤x

1
p

min(1, (f(p)− λ log p)2).

Ruzsa breaks his argument into two main cases. Suppose

U(x, λ) ≥ 1
100

log log x

for all real λ’s with |λ| ≤ log2 x, in the first case. Although this was not
explicitly stated, Ruzsa actually placed such a restriction on the λ’s (see
page 221 of [7]). Moreover, changing the constant from 1/10 to 1/100 will
only increase the implied constant in the final upper bound. In view of
Lemma 1,

(40)
∑

n≤x
χ(n)g(n)G(P0, n)

� x exp
(
−1

8
min
|u|≤log x

∑

p≤x

1
p

(
1− Re

(
g(p)χ(p)
piu

)))
,

where χ is any Dirichlet character. In particular, (40) holds when χ is the
exceptional primitive character modulo D0 defined in Lemma 7 and when
χ is the principal character modulo one.

For reals u and t and a Dirichlet character ψ (mod D), let

m(u, ψ, t) =
∑

p≤x
(p,D)=1

1
p

(
1− Re

(
g(p)ψ(p)
piu

))

and

M(t) = min
|u|≤log x

ψ

m(u, ψ, t),

where the minimum is taken over all |u| ≤ log x and characters ψ with
moduli not exceeding Q = exp(log log x)3. Thus, whether χ is the principal
character modulo one or χ is the exceptional character modulo D0 with
D0 ≤ Q, we have

−1
8

∑

p≤x

1
p

(
1− Re

(
g(p)χ(p)
piu

))
≤ −1

8
M(t).
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Moreover, observe that for any D0 |Py,w,
∣∣∣∣
%γ(D0)
D0

∣∣∣∣
∏

p|D0
p-γ

(
p

p− 3

) ∏

p|D0
p|γ

(
p

p− 2

)
=
∏

p|D0
p-γ

(
2

p− 3

) ∏

p|D0
p|γ

(
1

p− 2

)
.

The last products are not greater than one.
Lastly, recall the definitions of H(Py,w) stated just before Lemma 6.

A direct argument shows that

H(Py,w)� 1
(log log x)2

∏

y<p≤w
p|a(a−γ)

(
p− 1
p− 3

) ∏

p|Py,w
p|γ

(
p− 2
p− 3

)
.

Then inequality (40) in conjunction with the three remarks above allows
us to rewrite inequality (39) as

Qh � xΠ1

Ψγ(x)

(
log log x

log x

)2

H(Py,w)
1\
−1

exp
(−M(t)

8

)
dt

+
x(log log x)3

Ψγ(x)(log x)41/20
+
x(log log x)4

Ψγ(x) log3 x

� x

Ψγ(x)
· Π1

log2 x

∏

y<p≤w
p|a(a−γ)

(
p− 1
p− 3

) ∏

p|Py,w
p|γ

(
p− 2
p− 3

) 1\
−1

exp
(−M(t)

8

)
dt

+
x(log log x)3

Ψγ(x)(log x)41/20
.

A similar argument shows that the above inequality continues to hold when
there are no exceptional moduli.

Recall the definitions of Ψγ(x) stated at the beginning of the paper.
Then, whether or not there are exceptional moduli,

Qh � Π2

1\
−1

exp
(
−1

8
M(t)

)
dt,

where Π2 is the following product:

∏
p>2

(
1− 1

(p− 1)2

)−1 ∏

p|γ
p>2

(
p− 2
p− 1

) ∏

p|Py,w
p|γ

(
p− 2
p− 3

) ∏

p|Pw,z
p|γ

(
p− 1
p− 2

)

×
∏

y<p≤w
p|a(a−γ)

(
p− 1
p− 3

) ∏

w<p≤z
p|a(a−γ)

(
p

p− 2

)
.
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The last bound on Qh is slightly weaker than inequality (15) of Elliott
[4]. The only difference lies in the definition of M(t). In Elliott’s paper, the
quantity M(t) is the minimum value of m(u, ψ, t) taken over all characters ψ
with moduli not exceeding log x rather than Q as in our case. Nevertheless,
we may follow Elliott’s argument, which leads to the conclusion

Qh � Π2(1 +W (x))−1/2

in our situation as well. For w ≥ log x and γ ≤ x, Π2 may be replaced with
the simpler expression stated in the theorem. Theorem 1 is thus established
in the first case.

In the second case, suppose there exists |λ0| ≤ log2 x such that U(x, λ0)
≤ 1

100 log log x. For |t| ≤ 1 and g = eitf ,
∣∣∣∣1−

g(p)
piλt

∣∣∣∣ ≤ min(2, |f(p)− λ log p|).

It is not difficult to verify that
1
p

min(2, |f(p)− λ log p|)2 ≤ 4
p

min(1, |f(p)− λ log p|2).

Hence the Cauchy–Schwarz inequality gives
∑

p≤x

1
p

(
1− Re

(
g(p)
piλ0t

))
≤
∑

p≤x

1
p

min(2, |f(p)− λ0 log p|)

≤
(

4U(x, λ0)
∑

p≤x

1
p

)1/2

.

Since U(x, λ0) ≤ 1
100 log log x, this last quantity is

≤
(

1
5

+ o(1)
)

log log x.

Because Q = exp((log log x)3) and 1− Re(g(p)p−iλ0t) ≥ 0,
∑

Q<p≤x

1
p

(
1− Re

(
g(p)
piλ0t

))
≤
(

1
5

+ o(1)
)

log log x <
1
4

log
(

log x
logQ

)
− c,

where c is the constant appearing in Lemma 3.
Therefore, if there exists λ0 such that U(x, λ0) ≤ 1

100 log log x, then the
characters for which inequality (2) in Lemma 3 holds are all principal. It
follows that the first estimate in Lemma 7 is valid without exception.

Without any exceptional moduli, the analogous form of inequality (39) is

Qh � Π2

x

1\
−1

(1− |t|)e−ith
∑

n≤x
eitf(n)G(Py,w, n) dt+ c

(log log x)2

(log x)1/20
,

for some absolute constant c.
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The last integral is similar to the one studied by Ruzsa (see §3, pp. 218–
219, of [7]). The extraneous product factor of G(Py,w, n) may be carried
through Ruzsa’s entire argument with no difficulty. As in Ruzsa’s paper, we
therefore reach

Qh �
∏

p|a(γ−a)

(
1 +

2
p

)
1√
W (x)

.

The proof of Theorem 1 is thus completed.

5. Proof of Theorem 2. Theorem 2 is now a simple consequence of
Theorem 1 and inequality (1). Employ a convolution argument similar to
the one used in Lemma 4. Define multiplicative functions v and u by

∑

d|γ
v(d) =

∏

p|Py,w
p|γ

(
p− 2
p− 3

)2 ∏

p|Pw,z
p|γ

(
p− 1
p− 2

)2

and v(p) = 0 for p - γ, p < y, or p > z, and

∑

k|(a−γ)

u(k) =
∏

y<p≤w
p|(a−γ)
p-γ

(
p− 1
p− 3

)2 ∏

w<p≤z
p|(a−γ)
p-γ

(
p

p− 2

)2

and u(p) = 0 for p - (a− γ), p < y, or p > z. Then, for any integer k,

|v(pk)| ≤
{

1 if k = 1,
0 if k > 1,

and |u(pk)| ≤
{

1 if k = 1,
0 if k > 1.

Since Theorem 1 holds uniformly in h and γ, the average we wish to
estimate is

(41) �
(∑

γ≤x
πγ(x)

)−1
(

1√
1 +W (x)

∑

γ≤x
Ψγ(x)Π2

)
.

According to inequality (1), the first product may be estimated by
(

2x

log2 x

∑

γ≤x

∏

p|γ
p>2

(
p− 1
p− 2

)
+O

(
x2

logc x

))−1

� log2 x

x2 .

A direct calculation shows that

∑

γ≤x
Ψγ(x)Π2 �a

x

log2 x

(
x
∑

k≤|x−a|

u(k)
k

)1/2(
x
∑

d≤x

v(d)
d

)1/2

.

Since
∑
d≤x v(d)/d� 1 and

∑
k≤x u(k)/k � 1, the above is not greater
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than (x/ log x)2. As a result, we see that (41) is

�a
1√

1 +W (x)
.
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