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Length of continued fractions in principal quadratic fields
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Guillaume Grisel (Caen)

Let d ≥ 2 be a square-free integer and for all n ≥ 0, let l(
√
d

2n+1
) be

the length of the continued fraction expansion of
√
d

2n+1
. If Q(

√
d) is a

principal quadratic field, then under a condition on the fundamental unit of
Z[
√
d] we prove that there exist constants C1 and C2 such that C1

√
d

2n+1 ≥
l(
√
d

2n+1
) ≥ C2

√
d

2n+1
for all large n. This is a generalization of a theorem

of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of
a theorem of [6].

1. Introduction and main result. Let α be a real quadratic irra-
tionality and let l(α) be the length of the period of its continued fraction
expansion. In [6], we investigated l(αn), n ≥ 1, and we proved that for a
large class of quadratic irrationalities, we have

l(αn) ≥ Kekn/n,
where K and k are strictly positive and explicit constants depending only
on α (if α2 ∈ Q, then n is an odd integer). In the particular case of α =

√
d,

with d ≥ 2 a square-free integer, the above inequality holds and takes the
form, for all n ≥ 1,

l(
√
d

2n+1
) ≥ log ε0

log 4d
· d

n−r

n
,

where ε0 > 1 is the fundamental unit of the ring Z[
√
d] and r is a positive

integer depending only on d. But this inequality is not the best possible,
and can be improved for well chosen d. In 1931, S. Chowla and S. S. Pillai
showed [2] that there exist constants C and C ′ (C ′ is non-effective) such
that for all n large enough,

C
√

5
2n+1 ≥ l(

√
5

2n+1
) ≥ C ′

√
5

2n+1
.
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The aim of this paper is to generalize these inequalities when Q(
√
d) is a

principal field.

Notation and property. Let a be a positive integer. We denote by ν(a)
the index of the unit group of the ring Z[a

√
d] in the unit group of the

ring Z[
√
d], i.e. ν(a) is the smallest integer m such that εm0 ∈ Z[a

√
d]. Note

that if b is another positive integer such that gcd(a, b) = 1, then ν(ab) =
lcm(ν(a), ν(b)).

Theorem 1. Let d ≥ 2 be a square-free integer such that the following
two conditions are satisfied :

(i) Q(
√
d) is a principal field ;

(ii) ν(d) = d.

Then there exist constants C1 and C2 such that for all large n (the bound
on n is not effective),

C1

√
d

2n+1 ≥ l(
√
d

2n+1
) ≥ C2

√
d

2n+1
.

The upper bound for l(
√
d

2n+1
) does not depend on the conditions (i)

and (ii). We show in Section 2 that it follows from a general result on
quadratic irrationalities, and we give in Theorem 2 an explicit value for the
constant C1.

Section 3 is devoted to establishing a lower bound for l(
√
d

2n+1
). For

all n ≥ 0, let δn be an infinite sequence of distinct positive integers such
that there exists an integer R > 1 with Rad(δn) =

∏
p|δn p = R. We first

find a lower bound for the caliber of the order of conductor δn of the ring
of integers of the field Q(

√
d). Conditions (i) and (ii) suffice to prove that

for all n ≥ 0 either the order Z[
√
d

2n+1
] or Z[(1 +

√
d

2n+1
)/2] is principal.

Hence, the reduced ideals of these orders are in bijection with the complete
quotients of the period of the continued fraction expansion of

√
d

2n+1
or

(1 +
√
d

2n+1
)/2. Then the lower bound found before can be applied with

δn = dn or 2dn. In fact, we prove more than stated in Theorem 1, since we
give in Theorem 3 an explicit lower bound for

lim inf
n

l(
√
d

2n+1
)

√
d

2n+1 .

In Section 4 we discuss explicit computations relating to Theorem 1. We
close the paper with a discussion of the method when Q(

√
d) is not principal.

This work was intended as an attempt to develop original techniques
for bounding from below the length of continued fractions. It becomes more
interesting when compared with the results and methods presented in [6]
and [7].
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2. Upper bound for the period. Let α be a real quadratic irrationality
and let αi be the ith complete quotient of the continued fraction of α. It
is well known that the fundamental unit ϕ > 1 of the ring of stabilizers of
Z+ Zα is equal to the product of all the αi contained “in a period” of the
continued fraction of α. Therefore, the smaller the αi, the larger the length
l(α) of the period. But we will show that they cannot all be too small. This
property will provide an upper bound for l(α) in terms of the fundamental
unit ϕ. Then it will remain to explicitly give this fundamental unit in the
particular case α =

√
d

2n+1
.

Theorem 2. Let d = d1 . . . ds be a square-free integer , di prime. For all
i = 1, . . . , s, define r(i) = max{m : ν(dmi ) = ν(di)}. Then, for all n ≥ 0,

l(
√
d

2n+1
) ≤ ν(d) log ε0√

d log
( 1+
√

5
2

)∏s
i=1d

ri
i

√
d

2n+1
.

This theorem follows directly from the next two lemmas.

Lemma 1. Let α be a real quadratic irrationality and let ϕ > 1 be the
fundamental unit of the ring of stabilizers of the module Z+ Zα. Then

l(α) ≤ logϕ

log 1+
√

5
2

.

P r o o f. Let α = [a0, . . . , ai, . . .] be the continued fraction expansion.
For all i ≥ 0, denote by αi the complete quotients of this expansion, i.e.
αi = ai + 1/αi+1. Suppose that there exists i such that αi ≤ (1 +

√
5)/2.

If ai 6= 0, then

αi+1 =
1

αi − ai ≥
1

(1 +
√

5)/2− 1
=

1 +
√

5
2

and

αi+1αi = aiαi+1 + 1 ≥ 1 +
√

5
2

+ 1 =
(

1 +
√

5
2

)2

.

Let i0 be the smallest index i such that αi is reduced (i.e. αi > 1 and its
quadratic conjugate satisfies −1 < αi < 0). Hence ai 6= 0 for all i ≥ i0. It is
well known that

ϕ = αi0 . . . αi0+l(α)−1.

Then, if αi0+l(α)−1 > (1 +
√

5)/2, using the above properties, we have

ϕ = αi0 . . . αi0+l(α)−1 ≥
(

1 +
√

5
2

)l(α)

.

On the other hand, if αi0+l(α)−1 ≤ (1 +
√

5)/2, then αi0+l(α) ≥ (1 +
√

5)/2.
Moreover, αi0+l(α) = αi0 and ϕ = αi0+1 . . . αi0+l(α), which leads us to the
same situation as before.
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For all n ≥ 0, let ϕn > 1 be the fundamental unit of Z[
√
d

2n+1
]. Hence

ϕn = ε
ν(dn)
0 . We apply Lemma 1 with α =

√
d

2n+1
; then the determination

of ν(dn) suffices to prove Theorem 2.

Lemma 2. Let d = d1 . . . ds be a square-free integer , di prime. For all
i = 1, . . . , s, define r(i) = max{m : ν(dmi ) = ν(di)}. Then, for all n ≥ 0,

ν(dn) = ν(d)
s∏

i=1

d
n−r(i)
i .

P r o o f. Fix i = 1, . . . , s. Let γ ≥ 1 and m ≥ 1 be integers such that
ν(dmi ) = γ and ν(dm+1

i ) 6= γ. We claim that ν(dm+1
i ) = diγ. To prove this,

write εk0 = Uk + Vk
√
d, for all k ≥ 1, with Uk, Vk integers. For all u ≥ 1, we

have

Uuγ + Vuγ
√
d = (Uγ + Vγ

√
d)u.

Hence

Vuγ =
[(u−1)/2]∑

j=0

(
u

2j + 1

)
Uu−2j−1
γ V 2j+1

γ dj .

But by the assumption and by the definition of ν(dmi ), dmi divides exactly
Vγ . Hence d2m

i divides all the members of the sum except perhaps
(
u

1

)
Uu−1
γ Vγ = uUu−1

γ Vγ .

Now, it is easily seen that di is the smallest u such that dm+1
i divides

uUu−1
γ Vγ , and the claim follows.
From the claim, by induction we have

ν(dni ) = ν(di)d
n−r(i)
i .

As all the di are prime and by the properties of ν, this leads to

ν(dn) = lcm(ν(dni )) = lcm(ν(di))
s∏

i=1

d
n−r(i)
i = ν(d)

s∏

i=1

d
n−r(i)
i .

The following corollary will be useful in Section 3.

Corollary. Let d = d1 . . . ds be a square-free integer , di prime. If
ν(d) = d then ν(dn) = dn.

P r o o f. As ν(d) = lcm(ν(di)) = d, by Lemma 2 it suffices to show that
r(i) = 1 for all i = 1, . . . , s. Each di is prime, and we know that ν(di) = 1 or
di (see [3], Théorème 5.3). Thus ν(d) = d implies ν(di) = di. We just have
to prove that ν(d2

i ) 6= ν(di). Write again

εdi0 = Udi + Vdi
√
d = (U1 + V1

√
d)di .
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Then

Vdi =
[(di−1)/2]∑

j=0

(
di

2j + 1

)
Udi−2j−1

1 V 2j+1
1 dj .

Let p be a prime number and vp(·) the p-adic valuation. From ν(di) = di,
it follows that vdi(V1) = 0. As U2

1 − V 2
1 d = ±1, we have vdi(U1) = 0. Hence

vdi(diU
di−1
1 V1) = 1.

Thus, d2
i divides all the members of the sum except the first one and

perhaps the second one
(
di
3

)
Udi−3

1 V 3
1 d.

But
( 3

3

)
= 1 and if di > 3, we have vdi

((
di
3

))
= 1. Hence

vdi

((
di
3

)
Udi−3

1 V 3
1 d

)
= 2.

Finally, we have

vdi

(
diU

di−1
1 V1 +

(
di
3

)
Udi−3

1 V 3
1 d

)
= 1,

and d2
i does not divide Vdi , which implies r(i) = 1 and by Lemma 2,

ν(dn) = ν(d)
s∏

i=1

d
n−r(i)
i = dn.

3. Lower bound for the period. For all n ≥ 0, let δn be a sequence
of distinct positive integers such that there exists an integer R > 1 with

Rad(δn) =
∏

p|δn
p = R.

Then we are able to give, for n large enough, a lower bound for the caliber
of the order of conductor δn of the ring of integers of the field Q(

√
d). For

that, Ikehara’s theorem is used.
Let ε > 1 be the fundamental unit of Q(

√
d). We prove that if ν(d) = d

then the orders Z[
√
d

2n+1
] if d 6≡ 5 (mod 8) or if d ≡ 5 (mod 8) and ε3 = ε0,

and the orders Z[(1 +
√
d

2n+1
)/2] if d ≡ 5 (mod 8) and ε = ε0, have the

same class number as the field Q(
√
d). It is then easy to deduce the theorem:

Theorem 3. Let d ≥ 2 be a square-free integer and D the discriminant
of the field Q(

√
d). Let ε > 1 and ε0 > 1 be the fundamental unit of the field

Q(
√
d) and of the ring Z[

√
d] respectively. Denote by χ the character of the

field Q(
√
d) and by L(1, χ) the value of the Dirichlet L-function at s = 1.

Suppose that d satisfies the following two conditions:

(i) Q(
√
d) is a principal field ;

(ii) ν(d) = d.
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Then

lim inf
n

l(
√
d

2n+1
)

√
d

2n+1 ≥ fL(1, χ)
π2
∏
p|D(1 + 1/p)

,

with π = 3.14159 . . . , and where

f =





6 if d 6≡ 1 (mod 4) or d ≡ 5 (mod 8) and ε0 = ε3,
2 if d ≡ 1 (mod 8),
1 if d ≡ 5 (mod 8) and ε0 = ε.

The theory of ideals in an arbitrary order of a quadratic field is a little
more complicated than that for the maximal order. In particular, a fractional
ideal is not usually invertible. The invertible ideals I of an order O are
exactly those which satisfy {β ∈ K : βI ⊂ I} = O. Hence, they form a
group I(O), which can be divided by the subgroup P (O) of principal ideals
to give a finite group C(O), the class group of the order O. Its cardinality,
denoted by h(O), is the class number of the order O. If O is the order of
conductor δ of the ring of integers OK of a field K, we have the formula (see
[4], Theorem 7.24, p. 146)

(1) h(O) = hK
δ

[O∗K : O∗]

∏

p|δ

(
1− χ(p)

p

)
,

where hK is the class number of K, [O∗K : O∗] the index of the unit group
of O in the unit group of OK , and χ the character of K.

As in the case of the maximal order, each ideal can be factorized into
a product of prime ideals. But O is not integrally closed and thus is not a
Dedekind ring. Hence, this factorization is usually not unique.

The quadratic field K is of the form Q(
√
d) for a square-free integer

d ≥ 2. Let ω =
√
d if d 6≡ 1 (mod 4) and ω = (1 +

√
d)/2 if d ≡ 1 (mod 4).

Then a primitive ideal of O is a Z-module I = cZ+ (a+ δω)Z, with a and c
integers, c > 1, a determined modulo c and c |N(a+ δω), where N(a+ δω)
is the norm of the real number a + δω. Hence, we can associate with each
primitive ideal a family of real numbers xa(I) = (a+ δω)/c. The ideal I is
then called reduced if there exists an integer a modulo c such that xa(I) is
reduced, i.e. xa(I) > 1 and its quadratic conjugate satisfies 0 > xa(I) > −1.
There exist only a finite number of reduced ideals in O. This number is the
caliber of O, denoted by Cal(O). Note that there is at least one reduced
ideal in each class of C(O).

Proposition 1. Let d be a square-free integer and D the discriminant of
the field Q(

√
d). Let also (δn)n≥0 be a sequence of distinct positive integers

such that there exists an integer R > 1 with Rad(δn) =
∏
p|δnp = R for all

n ≥ 0. For all n ≥ 0, denote by On the order of conductor δn of the ring of
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integers of the field Q(
√
d). Then

lim inf
n

Cal(On)
1
2δn
√
D
≥ 6L(1, χ)
π2k(1)

∏
p|D(1 + 1/p)

,

where

k(1) =
∏

p|R
χ(p)=1

1 + 1/p
1− 1/p

.

P r o o f. Fix n ≥ 0. For all 1 < m < 1
2δn
√
D, we set

f(m) =
{

1 if gcd(m, δn) = 1 and all prime factors of m split in Q(
√
d),

0 otherwise.

Note that because Rad(δn) = R for all n ≥ 0, the map m→ f(m) does
not depend on n.

Consider m such that f(m) = 1, and let m =
∏im
i=1 p

ei
i , pi ≥ 2 prime and

distinct, ei ≥ 1, be its decomposition into primes. As each pi splits, we have
(pi) = IiIi, where Ii is an ideal of the ring of integers OQ(

√
d) of Q(

√
D) and

Ii 6= Ii. Moreover, the norm satisfies N(Ii) = pi.
It is well known that the set of ideals of On with norm prime to δn is

in bijection with the set of ideals of OQ(
√
d) with norm prime to δn (see

[4], Proposition 7.20, p. 144), i.e. there exists an ideal Ii,n of On such that
Ii ∩On = Ii,n. Again, Ii,n 6= Ii,n and N(Ii,n) = pi.

Consider the set of ideals

Hm =
{ im∏

i=1

Jeii,n : Ji,n = Ii,n or Ii,n
}
.

Every ideal inHm is primitive with normm, and card(Hm) = 2im . Moreover,
they are all distinct.

Lemma 3. Let I be a primitive ideal of the order O of conductor δ of the
quadratic field of discriminant D. If N(I) ≤ δ

√
D/2, then I is a reduced

ideal of O.

P r o o f. Let xa(I) = (a+ δω)/c be a real number attached to I. As a is
determined modulo c, it is possible to choose a such that −c−δω < a < −δω,
i.e. −1 < xa(I) < 0. But, by the assumption, we have 2N(I) ≤ δ

√
D =

δ(ω − ω), which leads to c− δω ≤ −c− δω. Hence, from the left hand side
of the previous inequality, we obtain a > c − δω, which is xa(I) > 1, and
xa(I) is reduced.

Hence, by Lemma 3, all the ideals of Hm are reduced. In this way, for
each integer 1 < m < δn

√
D/2 such that f(m) = 1, we are able to give 2im
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distincts reduced ideals of On. Thus, setting f(1) = 0, we have the lower
bound

(2) Cal(On) ≥
[δn
√
D/2]∑

m=1

2imf(m).

To express this lower bound in an explicit way, we apply a deep result
on Dirichlet series. The following lemma will allow us to verify that the
assumptions of this result are all satisfied.

Lemma 4. Let s be a complex number , |s| > 1. Set

k(s) =
∏

p|R
χ(p)=1

1 + 1/ps

1− 1/ps
.

Then
∞∑
m=1

2imf(m)
ms

=
ζ(s)L(s, χ)

k(s)ζ(2s)
∏
p|D(1 + 1/ps)

,

where ζ(s) and L(s, χ) are the zeta-function and the Dirichlet L-function
respectively.

P r o o f. The result is obtained by writing each side of the equality as a
product. 2imf(m) is a multiplicative function (i.e. if n and m are coprime,
then 2inmf(nm) = 2inf(n)2imf(m)). As |s| > 1, it is well known that

∞∑
m=1

2imf(m)
ms

=
∏∗

(
1 +

2
ps

+
2
p2s + . . .

)
,

where the product
∏∗ is taken over all the primes p which satisfy χ(p) = 1

and gcd(p, δn) = 1, i.e. gcd(p,R) = 1. We can write
∞∑
m=1

2imf(m)
ms

=
∏∗

(
2
(

1 +
1
ps

+
1
p2s + . . .

)
− 1
)

=
∏∗

(
2
(

1
1− 1/ps

)
− 1
)

=
∏∗ 1 + 1/ps

1− 1/ps
.

On the other hand, for |s| > 1 we have

ζ(s) =
∞∏
p=1

1
1− 1/ps

and L(s, χ) =
∞∏
p=1

1
1− χ(p)/ps

,

and therefore
ζ(s)L(s, χ)
ζ(2s)

=
∞∏
p=1

1 + 1/ps

1− χ(p)/ps
=
∏

p|D

(
1 +

1
ps

) ∞∏
p=1

χ(p)=1

1 + 1/ps

1− 1/ps

= k(s)
∏

p|D

(
1 +

1
ps

)∏∗ 1 + 1/ps

1− 1/ps
.
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We are now able to finish the proof of Proposition 1. For all complex s,
set

F (s) =
∞∑
m=1

2imf(m)
ms

and G(s) =
ζ(s)L(s, χ)

k(s)(1 + 1/ds)ζ(2s)
.

According to Lemma 4, the functions F and G coincide on the half plane
defined by Re(s) > 1. Moreover, G is a meromorphic function, whose poles,
in this half plane, are the poles of ζ(s). The function ζ(s) admits for s = 1 a
simple pole with residue 1. Then we apply Ikehara’s theorem ([5], Théorème
8.7.1, p. 258) which states that if F (s) =

∑
an/n

s is a Dirichlet series which
satisfies:

• an ≥ 0 for all n;
• F (s) converges in the half plane defined by Re(s) ≥ 1;
• F (s) coincides in the half plane Re(s) > 1 with a function G mero-

morphic in an open set Ω which contains the half plane Re(s) ≥ 1,
and which has a unique pole in Ω, simple, localized at s = 1 and with
residue %;

then

lim
x→∞

∑x
n=1 an
x

= %.

Hence, we obtain

lim
n→∞

∑δn
√
D/2

m=1 2imf(m)

δn
√
D/2

=
6L(1, χ)

π2k(1)
∏
p|D(1 + 1/p)

.

Then Proposition 1 follows from inequality (2).

Proof of Theorem 3. Theorem 3 is in fact a corollary to Proposition 1.
It follows from the remark that the orders Z[

√
d

2n+1
] if d 6≡ 5 (mod 8) or

if d ≡ 5 (mod 8) and ε0 = ε3, and the orders Z[(1 +
√
d

2n+1
)/2] if d ≡ 5

(mod 8) and ε0 = ε, have, for all n ≥ 1, class number equal to the class
number of the field Q(

√
d).

Lemma 5. For all n ≥ 0, set

On = Z[
√
d

2n+1
] and Õn = Z

[
1 +
√
d

2n+1

2

]
.

Suppose that ν(d) = d. Then, for all n ≥ 0,

hQ(
√
d) =

{
h(On) if d 6≡ 5 (mod 8) or if d ≡ 5 (mod 8) and ε0 = ε3,

h(Õn) if d ≡ 5 (mod 8) and ε0 = ε.
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P r o o f. As before, for all n ≥ 0, let ϕn > 1 be the fundamental unit of
Z[
√
d

2n+1
]. Then ϕn = ε

ν(dn)
0 for all n ≥ 0. Hence

(3) [O∗Q(
√
d) : O∗n] =




ν(dn) if d 6≡ 5 (mod 8),
3ν(dn) if d ≡ 5 (mod 8) and ε0 = ε3,
ν(dn) if d ≡ 5 (mod 8) and ε0 = ε.

Since ν(d) = d, we have ν(dn) = dn by the corollary to Lemma 2.
Moreover, the conductor of the order On is equal to

(4) δn =
{

2dn if d ≡ 1 (mod 4),
dn if d 6≡ 1 (mod 4).

Suppose first that d 6≡ 5 (mod 8) or d ≡ 5 (mod 8) and ε0 = ε3. Then
using equalities (1), (3) and (4) we can write, for all n ≥ 0,

h(On) =





hQ(
√
d)

∏

p|dn

(
1− χ(p)

p

)
if d 6≡ 1 (mod 4),

2hQ(
√
d)

∏

p|2dn

(
1− χ(p)

p

)
if d ≡ 1 (mod 8),

2
3hQ(

√
d)

∏

p|2dn

(
1− χ(p)

p

)
if d ≡ 5 (mod 8).

As χ(p) = 0 if and only if p divides D, χ(2) = 1 if and only if d ≡ 1 (mod 8),
and χ(2) = −1 if and only if d ≡ 5 (mod 8), the above equalities become

h(On) = hQ(
√
d).

Suppose now that d ≡ 5 (mod 8) and ε0 = ε. Let Õ∗n be the unit group of
Õn. As ε0 = ε, we have Õ∗n = O∗n. Hence, from (3) and because ν(dn) = dn,
we obtain

[O∗Q(
√
d) : Õ∗n] = [O∗Q(

√
d) : O∗n] = dn.

Moreover, Õn is the order of conductor δ̃n = dn of the ring Z[(1 +
√
d)/2].

Then we deduce from (1) that for all n ≥ 0,

h(Õn) = hQ(
√
d)

∏

p|dn

(
1− χ(p)

p

)
= hQ(

√
d).

It is well known that if α is a real quadratic irrationality of discriminant
δ2D, then the complete quotients of the period of its continued fraction
expansion (i.e. using the notations of Lemma 1, the αi with i0 + kl(α) ≤
i ≤ i0 + (k + 1)l(α) − 1, k ≥ 0) are in bijection with the reduced ideals of
a class of ideals of the order O of conductor δ of the real quadratic field of
discriminant D. It follows that if O has class number 1, then l(α) = Cal(O).
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Hence, as Q(
√
d) is principal and ν(d) = d, we have by Lemma 5, for all

n ≥ 0,

l(
√
d

2n+1
) = Cal(On) if d 6≡ 5 (mod 8) or d ≡ 5 (mod 8) and ε0 = ε3,

l

(
1 +
√
d

2n+1

2

)
= Cal(Õn) if d ≡ 5 (mod 8) and ε0 = ε.

Thus, Proposition 1 leads us to:

• If d 6≡ 5 (mod 8) or d ≡ 5 (mod 8) and ε0 = ε3 then

lim inf
n

l(
√
d

2n+1
)

√
d

2n+1 ≥ fL(1, χ)
π2
∏
p|D(1 + 1/p)

,

with f = 2 if d ≡ 1 (mod 8) and f = 6 otherwise.
• If d ≡ 5 (mod 8) and ε0 = ε then

lim inf
n

l((1 +
√
d

2n+1
)/2)

1
2

√
d

2n+1 ≥ 6L(1, χ)
π2
∏
p|D(1 + 1/p)

.

The theorem is then proved for d 6≡ 5 (mod 8), and for d ≡ 5 (mod 8)
and ε0 = ε3. In the remaining case, it suffices to give a lower bound for
l(
√
d

2n+1
) in terms of l((1 +

√
d

2n+1
)/2).

For that, let πn (resp. π̃n) and P
(n)
s /Q

(n)
s (resp. P̃ (n)

s /Q̃
(n)
s ) be respec-

tively the length of the period and the sth convergent of the continued
fraction expansion of

√
d

2n+1
(resp. (1 +

√
d

2n+1
)/2). As by the assumption

ε0 = ε, and using a well known fact of the theory of continued fractions, we
have

ϕn = P̃
(n)
π̃n−1 + Q̃

(n)
π̃n−1

(−1 +
√
d

2n+1

2

)
= P

(n)
πn−1 +Q

(n)
πn−1

√
d

2n+1
,

which implies

P̃
(n)
π̃n−1

Q̃
(n)
π̃n−1

=
1
2
· P

(n)
πn−1

Q
(n)
πn−1

+ 1.

For β rational denote by d(β) the number of partial quotients of its continued
fraction expansion of even length. Hence

d

(
P

(n)
πn−1

Q
(n)
πn−1

)
= l(
√
d

2n+1
) + γ

and

d

(
P̃

(n)
π̃n−1

Q̃
(n)
π̃n−1

)
= l

(
1 +
√
d

2n+1

2

)
+ γ′,



46 G. Grisel

with γ and γ′ equal to −1, 0 or 1. Then using a theorem of M. Mendès
France [9] which gives a lower bound for the length of the continued fraction
expansion of a homographic transformation of a rational number, we obtain

l(
√
d

2n+1
) ≥ 1

3
l

(
1 +
√
d

2n+1

2

)
− 10.

4. Fields to which Theorem 1 applies. In Table 1 we give the set of
all square-free numbers 250 ≥ d ≥ 2 for which the field Q(

√
d) is principal

and we specify if d satisfies condition (ii) of Theorem 1 or not. 81 integers
occur in this set, and for 59 of them, Theorem 1 can be applied.

Table 1

d ν(d) = d d ν(d) = d d ν(d) = d d ν(d) = d d ν(d) = d

2 yes 38 no 89 yes 141 yes 201 yes
3 yes 41 yes 93 no 149 yes 206 no
5 yes 43 yes 94 no 151 yes 209 yes
6 no 46 no 97 yes 157 yes 211 yes
7 yes 47 yes 101 yes 158 no 213 no
11 yes 53 yes 103 yes 161 yes 214 no
13 no 57 yes 107 yes 163 yes 217 yes
14 no 59 yes 109 yes 166 no 227 yes
17 yes 61 yes 113 yes 167 yes 233 yes
19 yes 62 no 118 no 173 yes 237 no
21 no 67 yes 127 yes 177 no 239 yes
22 no 69 no 129 yes 179 yes 241 yes
23 yes 71 yes 131 yes 181 yes 249 no
29 yes 73 yes 133 yes 191 yes
31 yes 77 yes 134 no 193 yes
33 yes 83 yes 137 yes 197 yes
37 yes 86 no 139 yes 199 yes

The principal difficulty in the applications of Theorem 1 comes from
(ii). In fact, this condition can be rewritten in the following form: let ε0 =
u+ v

√
d, u, v integers, be as before the fundamental unit of the ring Z[

√
d].

Then condition (ii) is satisfied if and only if gcd(v, d) = 1. Furthermore,
if d is prime this condition is particularly simple, since ν(d) = 1 or d ([3],
Théorème 5.3). Moreover, it seems that in this case we always have ν(d) = d.

Conjecture. If d is a prime number , then d does not divide v (i.e.
ν(d) = d).

This conjecture was proposed in 1952 by N. C. Ankeny, E. Artin and
S. Chowla [1] for d ≡ 1 (mod 4). It was proved by L. J. Mordell [10] for
d ≡ 1 (mod 4) regular prime, i.e. if the number of classes of ideals in the
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cyclotomic field Q(e2iπ/d) is not divisible by d. In the same paper he has
extended the conjecture to all primes d 6≡ 1 (mod 4).

In [8], p. 71, Gerry Myerson reports that this conjecture has been con-
firmed for d ≡ 1 (mod 4), d < 6270713 and for d ≡ 3 (mod 4), d < 7679299.

5. Some remarks on non-principal fields. It is natural to try to
generalize Theorem 3 to non-principal fields. Indeed, Proposition 1 gives
a lower bound for the number of reduced ideals in an order, and Lemma
1 an upper bound for the number of reduced ideal in each class of that
order. Then we can hope to deduce a lower bound for this last number.
Unfortunately, as shown below, this method is not successful. The reason is
that the upper bound of Lemma 1 is too large. And it cannot be improved
because of the possible irregular distribution of the reduced ideals in each
class. In fact, this upper bound is the best possible.

For all n ≥ 0, set ωn =
√
d

2n+1
if d 6≡ 5 (mod 8) or d ≡ 5 (mod 8) and

ε0 = ε3, and ωn = (1 +
√
d

2n+1
)/2 if d ≡ 5 (mod 8) and ε0 = ε. Then put

Ωn = Z[ωn].
Set also

A =
γL(1, χ)

π2
∏
p|D(1 + 1/p)

where

γ =

{
3 if d ≡ 5 (mod 8) and ε0 = ε,
2 if d ≡ 1 (mod 8),
6 in the other cases.

It is well known that L(1, χ) = 2hk
log ε√
D

. Hence the constant A can be written
as

A =
2γ log ε

π2
√
D
∏
p|D(1 + 1/p)

.

Then Proposition 1 gives

lim inf
n

(
Cal(Ωn)
√
d

2n+1

)
≥ A.

Thus, for any η > 0 there exists n0 such that for all n ≥ n0,

(5) Cal(Ωn) ≥ (A− η)
√
d

2n+1
.

Suppose that ν(d) = d. Hence, Lemma 5 leads to h(Ωn) = hK for all
n ≥ 0. Next, choose hK−1 quadratic irrationals β(n)

2 , . . . , β
(n)
hK

of discriminant

δ2
nD such that ωn, β(n)

2 , . . . , β
(n)
hK

is a system of representatives of each ideal
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class of Ωn. Hence, for all n ≥ 0,

(6) l(ωn) +
hK∑

i=2

l(β(n)
i ) = Cal(Ωn).

But by Lemma 1, we have for all i = 2, . . . , hK ,

(7) l(β(n)
i ) ≤ logϕn

log 1+
√

5
2

,

where ϕn > 1 is the fundamental unit of Ωn. Thus by Lemma 2,

(8) logϕn =

{
dn log ε0 if ωn =

√
d

2n+1
,

3dn log ε if ωn = (1 +
√
d

2n+1
)/2.

Therefore by (5)–(8), we obtain l(ωn) ≥ H
√
d

2n+1
, where

H =





log ε0√
d

(
6hK

π2
∏
p|D(1 + 1/p)

− η
√
d

log ε0
− hK − 1

log 1+
√

5
2

)

if d 6≡ 1 (mod 4) or d ≡ 5 (mod 8) and ε0 = ε,

log ε0√
d

(
4hK

π2
∏
p|D(1 + 1/p)

− η
√
d

log ε0
− hK − 1

log 1+
√

5
2

)

if d ≡ 1 (mod 8),

log ε√
d

(
12hK

π2
∏
p|D(1 + 1/p)

− η
√
d

log ε
− 3(hK − 1)

log 1+
√

5
2

)

if d ≡ 5 (mod 8) and ε0 = ε3.

The lower bound given for l(ωn) is not trivial only if H > 0. But it is
easy to see that H > 0 if and only if hK = 1. Curiously, the determination
of a lower bound for l(

√
d

2n+1
) requires finding a more explicit upper bound

for l(β(n)
i ).
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Département de Mathématiques
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