Free groups acting without fixed points on rational spheres

by

KENZI SATÔ (Yokohama)

For every positive rational number q, we find a free group of rotations of rank 2 acting on $(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3$ whose all elements distinct from the identity have no fixed point.

Introduction. The following conjecture raised by Professor J. Mycielski was proved in [Sa1]:

The subgroup $\langle \mu_1, \nu_1 \rangle$ of the rational special orthogonal group $SO_3(\mathbb{Q}) = \{\phi \in \operatorname{Mat}(3,3;\mathbb{Q}) : {}^t\phi \cdot \phi = \operatorname{id}, \det \phi = 1\}$ is a free group of rank 2 whose non-trivial elements have no fixed point on the rational unit sphere $\mathbb{S}^2 \cap \mathbb{Q}^3 = \{\vec{v} \in \mathbb{Q}^3 : |\vec{v}| = 1\}$, where $\langle \mu_1, \nu_1 \rangle$ is the group generated by

$$\mu_1 = \frac{1}{7} \begin{pmatrix} 6 & 2 & 3 \\ 2 & 3 & -6 \\ -3 & 6 & 2 \end{pmatrix} \quad and \quad \nu_1 = \frac{1}{7} \begin{pmatrix} 2 & -6 & 3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}.$$

In this paper, we consider the same problem about the rational sphere $(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3 = \{ \vec{v} \in \mathbb{Q}^3 : |\vec{v}| = \sqrt{q} \}$ for positive $q \in \mathbb{Q}$. Notice that the rational unit sphere $\mathbb{S}^2 \cap \mathbb{Q}^3$ and the rational sphere $(\sqrt{2} \mathbb{S}^2) \cap \mathbb{Q}^3$ are not similar. In particular, $\mathbb{S}^2 \cap \mathbb{Q}^3$ has a trio of pairwise orthogonal vectors

$$\vec{e}_0 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad \vec{e}_1 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad \vec{e}_2 = \begin{pmatrix} 0\\0\\1 \end{pmatrix},$$

but $(\sqrt{2}\mathbb{S}^2) \cap \mathbb{Q}^3$ does not have such a trio, because, for two orthogonal vectors $\vec{v}, \vec{v}' \in (\sqrt{2}\mathbb{S}^2) \cap \mathbb{Q}^3$, the vector $\frac{1}{\sqrt{2}}\vec{v} \times \vec{v}'$ does not belong to \mathbb{Q}^3 . The purpose of this paper is to prove:

¹⁹⁹¹ Mathematics Subject Classification: Primary 20E05, 20H05, 20H20; Secondary 15A18, 51F20, 51F25.

^[135]

For each positive rational q, $SO_3(\mathbb{Q})$ has a free subgroup $\langle \mu_q, \nu_q \rangle$ which acts on $(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3$, the rational sphere with radius \sqrt{q} , and whose nontrivial elements have no fixed point on $(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3$.

This implies a paradox: $(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3$ has a Hausdorff decomposition, i.e., $(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3$ can be partitioned into three subsets A, B, and C such that $A, B, C, A \cup B, B \cup C$, and $C \cup A$ are all congruent by rotations of $\langle \mu_q, \nu_q \rangle$ (see e.g. [Sa0; W, Cor. 4.12]). We only have to prove the assertion for each positive integer q which is square-free, in other words, q does not have a prime whose square divides q, because the rational spheres $(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3$ and $(\sqrt{q'} \mathbb{S}^2) \cap \mathbb{Q}^3$ are similar with similitude ratio $\sqrt{q} : \sqrt{q'}$ if $\sqrt{q}/\sqrt{q'} \in \mathbb{Q}$. Moreover, we can assume $q \neq 1$ from [Sa1].

REMARK. It is possible that rational spheres are empty (e.g., with radius $\sqrt{7}$). For given q, it is easy to check whether the rational sphere with radius \sqrt{q} is empty or not (see [M, Ch. 20]):

$$(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3 \neq \emptyset \quad \text{if } q \equiv 1, 2, 3, 5, \text{ or } 6 \pmod{8}, \\ (\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3 = \emptyset \quad \text{if } q \equiv 7 \pmod{8}.$$

For higher dimensional spheres, Professor J. Mycielski raised the following problems (see [Sa1]):

PROBLEM A. For $n \in \mathbb{N}$, n even, $n \geq 4$, does $SO_n(\mathbb{Q})$ have a free nonabelian subgroup F_2 such that no elements of F_2 different from the identity have eigenvectors in \mathbb{Q}^n ?

PROBLEM B. For $n \in \mathbb{N}$, n odd, $n \geq 5$, does $SO_n(\mathbb{Q})$ have a free nonabelian subgroup F_2 which acts without non-trivial fixed points on $\mathbb{S}^{n-1} \cap \mathbb{Q}^n$ and is such that if $f, g \in F_2$ have a common eigenvector in \mathbb{Q}^n then fg = gf?

[Sa2], which gives a free group $\langle \sigma, \tau \rangle$ of $SO_4(\mathbb{Q})$ acting on \mathbb{S}^3 without non-trivial fixed points, and [Sa1] answer in the affirmative Problem A for $n \equiv 0 \pmod{4}$ and Problem B for $n \equiv -1 \pmod{4}$. This paper and [Sa2] also answer in the affirmative the following problem for $n \equiv -1 \pmod{4}$:

PROBLEM B'. For a positive rational q and an odd integer $n \geq 5$, does $SO_n(\mathbb{Q})$ have a free non-abelian subgroup F_2 which acts without non-trivial fixed points on $(\sqrt{q} \mathbb{S}^{n-1}) \cap \mathbb{Q}^n$ and is such that if $f, g \in F_2$ have a common eigenvector in \mathbb{Q}^n then fg = gf?

For n = 3, similar problems for more general surfaces, which the referee of this paper suggested, can be considered: PROBLEM C. Is there a free subgroup of rank 2 of the group $\{\phi \in Mat(3,3;\mathbb{Q}) : {}^{t}\phi \cdot \Lambda \cdot \phi = \Lambda, \det \phi = 1\}$ acting on the rational surface

$$\left\{ \begin{pmatrix} x\\ y\\ z \end{pmatrix} \in \mathbb{Q}^3 : \alpha x^2 + \beta y^2 + \gamma z^2 = q \right\}$$

without non-trivial fixed points (where $\Lambda = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix}$)?

Preliminaries. Let q be a positive and square-free integer distinct from 1. The following two lemmas enable us to find integers p and b such that p is an odd prime divisor of $1 + b^2$ but not of q, and q is a quadratic non-residue to the modulus p.

LEMMA 0. For such an integer q, there exists an odd prime p such that q is not divisible by p and

$$\left(\frac{-1}{p}\right) = 1$$
 and $\left(\frac{q}{p}\right) = -1$,

where (:) is Legendre's symbol.

Proof. This is a special case of [H, Satz 147]: "Let a_1, a_2, \ldots, a_r be integers such that: a product of powers

$$a_1^{u_1}a_2^{u_2}\dots a_r^{u_r}$$

is the square of an integer (if and) only if all u_i 's are even. Furthermore, let c_1, c_2, \ldots, c_r be arbitrary one of ± 1 . Then there exist infinitely many primes p which satisfy the condition

$$\left(\frac{a_i}{p}\right) = c_i \quad \text{for } i = 1, 2, \dots, r."$$

LEMMA 1. For such a prime p, there exists an integer b such that $1 + b^2 \equiv 0 \pmod{p}$.

Proof. This is obvious from $\left(\frac{-1}{p}\right) = 1$.

Using such an integer b, let

$$\mu_q = \frac{1}{1+b^2} \begin{pmatrix} 1+b^2 & 0 & 0\\ 0 & 1-b^2 & -2b\\ 0 & 2b & 1-b^2 \end{pmatrix}$$

and

$$\nu_q = \frac{1}{1+b^2} \begin{pmatrix} 1-b^2 & -2b & 0\\ 2b & 1-b^2 & 0\\ 0 & 0 & 1+b^2 \end{pmatrix}.$$

There are group isomorphisms

$$S(\mathbb{H})/\{\pm 1\} \xrightarrow{\sigma} SO(\mathbb{H}_0) \xrightarrow{\mathfrak{m}} SO_3(\mathbb{R}),$$

where $S(\mathbb{H})$ is the group of quaternions h whose norm |h| is equal to 1 in the Hamilton quaternion field \mathbb{H} and $SO(\mathbb{H}_0)$ is the group of all linear isometries with determinant 1 of all pure quaternions \mathbb{H}_0 onto itself. The left isomorphism σ sends $\pm h$ to the isometry $\mathbb{H}_0 \ni h' \mapsto hh'h^{-1} \in \mathbb{H}_0$. On the other hand, the linear map $\iota : \mathbb{H}_0 \to \mathbb{R}^3$, which takes the basis I, J, and K of \mathbb{H}_0 (with IJ = K, JK = I, KI = J, and $I^2 = J^2 = K^2 = -1$) to the standard basis \vec{e}_0, \vec{e}_1 , and \vec{e}_2 of \mathbb{R}^3 respectively, gives the right isomorphism $\mathfrak{m} : \kappa \mapsto \iota \circ \kappa \circ \iota^{-1}$. So we have $S(\mathbb{H})/\{\pm 1\} \xrightarrow{\mathfrak{m} \circ \sigma}{\cong} SO_3(\mathbb{R})$. See [C, Th. 3.1 of Ch. 10; L, Th. 3.1 of Ch. 3; Sa0; Sa1]. Two matrices above and their inverses are represented by

$$\mu_q^{\varepsilon} = \mathfrak{m} \circ \sigma \bigg(\pm \frac{1 + \varepsilon bI}{\sqrt{1 + b^2}} \bigg) \quad \text{and} \quad \nu_q^{\delta} = \mathfrak{m} \circ \sigma \bigg(\pm \frac{1 + \delta bK}{\sqrt{1 + b^2}} \bigg),$$

where ε and δ are either -1 or 1. For each reduced word w of $\{\mu_q^{-1}, \mu_q, \nu_q^{-1}, \nu_q\}$, we define

$$\pm H_w = \sqrt{1+b^2}^{\sharp w} \sigma^{-1} \circ \mathfrak{m}^{-1}(w) \in Z(\mathbb{H})/\{\pm 1\},$$

where $\sharp w$ is the number of occurrences of μ_q^{-1} , μ_q , ν_q^{-1} , and ν_q in w and $Z(\mathbb{H})$ is the set of quaternions whose components are all integers. The relation $H \simeq H'$ means that H and H' in $Z(\mathbb{H})$ are proportional mod p, i.e., there exists an integer $t \in \{1, \ldots, p-1\}$ such that each component of H - tH'is divisible by p. We consider whether $H \simeq H'$ or not. We can choose H_w from $\sqrt{1+b^2}^{\#w}\sigma^{-1} \circ \mathfrak{m}^{-1}(w)$ whichever you like because $H \simeq -H$.

Main result. The following two lemmas imply the main theorem of this paper which gives a free subgroup of rank 2 of $SO_3(\mathbb{Q})$ whose non-identical elements have no fixed point on the rational sphere with radius \sqrt{q} .

LEMMA 2. Let w be a non-empty reduced word of $\{\mu_q^{-1}, \mu_q, \nu_q^{-1}, \nu_q\}$. If $w = \mu_q^{\varepsilon k}$ then

$$H_w \approx 1 + \varepsilon bI;$$

if $w = \nu_q^{\delta l}$ then

$$H_w \simeq 1 + \delta b K$$

if w has the form $\mu_q^{\varepsilon} \dots \nu_q^{\delta}$ (i.e., w starts with μ_q^{ε} and ends with ν_q^{δ}) then

$$H_w \asymp 1 + \varepsilon bI + \varepsilon \delta J + \delta bK,$$

where ε and δ are either -1 or 1, and k and l are positive integers.

Proof. The following four equations and $1 + b^2 \equiv 0 \pmod{p}$ imply this lemma:

$$(1 + \varepsilon bI)(1 + \varepsilon bI) = 2(1 + \varepsilon bI) - (1 + b^{2});$$

$$(1 + \delta bK)(1 + \delta bK) = 2(1 + \delta bK) - (1 + b^{2});$$

$$(1 + \varepsilon bI)(1 + \delta bK) = (1 + \varepsilon bI + \varepsilon \delta J + \delta bK) - (1 + b^{2})\varepsilon \delta J;$$

$$(1 + \varepsilon' bI + \varepsilon' \delta' J + \delta' bK)(1 + \varepsilon bI + \varepsilon \delta J + \delta bK)$$

$$= (1 + \varepsilon' \varepsilon + \delta' \delta - \varepsilon' \delta' \varepsilon \delta)(1 + \varepsilon' bI + \varepsilon' \delta J + \delta bK)$$

$$- (1 + b^{2})(\varepsilon' \varepsilon + \delta' \delta + (\varepsilon' \delta - \delta' \varepsilon)J);$$

where ε , δ , ε' , and δ' are either -1 or 1.

LEMMA 3. Let w be a word which appeared in Lemma 2, i.e., $w = \mu_q^{\varepsilon k}$, $w = \nu_q^{\delta l}$, or $w = \mu_q^{\varepsilon} \dots \nu_q^{\delta}$. Then $\sqrt{q} |\text{Im} H_w|$ is irrational, where $\text{Im} H_w$ is the imaginary part of H_w , i.e., Im(C + XI + YJ + ZK) = XI + YJ + ZK.

Proof. It is enough to show that $q|\text{Im }H_w|^2$ is a quadratic non-residue to p, which is a consequence of Lemma 2, the equality $\left(\frac{q}{p}\right) = -1$, and the following three formulae:

$$q((\varepsilon tb)^2 + 0^2 + 0^2) = qt^2b^2,$$

$$q(0^2 + 0^2 + (\delta tb)^2) = qt^2b^2,$$

$$q((\varepsilon tb)^2 + (\varepsilon \delta t)^2 + (\delta tb)^2) = qt^2(1 + 2b^2) \equiv qt^2b^2 \pmod{p},$$

where t = 1, ..., p - 1.

We attain our objective from the previous lemma:

THEOREM. The rotations μ_q and ν_q generate a free group whose nontrivial elements have no fixed point on $(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3$.

Proof. We only have to prove that $\operatorname{Im} H_w$ is non-zero and that $\sqrt{q} \cdot \iota(\operatorname{Im} H_w)/|\operatorname{Im} H_w|$ does not belong to $(\sqrt{q} \mathbb{S}^2) \cap \mathbb{Q}^3$ for each reduced word, w, of the form $\mu_q^{\varepsilon} \dots \nu_q^{\delta}$ (i.e., w starts with μ_q^{-1} or μ_q and ends with ν_q^{-1} or ν_q) or simply a power of μ_q or of ν_q , because

w has a fixed point $\Leftrightarrow w'ww'^{-1}$ has a fixed point,

for an arbitrary word w' of $\{\mu_q^{-1}, \mu_q, \nu_q^{-1}, \nu_q\}$. For such a non-empty reduced word w, Im H_w is obviously non-zero and Lemma 3 implies

$$\sqrt{q} \, \frac{\iota(\operatorname{Im} H_w)}{|\operatorname{Im} H_w|} \not\in \mathbb{Q}^3. \quad \bullet$$

References

[C] J. W. S. Cassels, Rational Quadratic Forms, Academic Press, New York, 1978.

K. Satô

- [H] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Akademische Verlagsgesellschaft, Leipzig, 1923.
- [L] T. Y. Lam, Algebraic Theory of Quadratic Forms, W. A. Benjamin Inc., Massachusetts, 1973.
- [M] L. J. Mordell, Diophantine Equations, Academic Press, New York, 1969.
- [Sa0] K. Satô, A Hausdorff decomposition on a countable subset of \mathbb{S}^2 without the Axiom of Choice, Math. Japon. 44 (1996), 307–312.
- [Sa1] K. Satô, A free group acting without fixed points on the rational unit sphere, Fund. Math. 148 (1995), 63–69.
- [Sa2] —, A free group of rotations with rational entries on the 3-dimensional unit sphere, Nihonkai Math. J. 8 (1997), 91–94.
- [W] S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, Cambridge, 1985.

Department of Mathematics	Current address:
Faculty of Engineering	Department of Mathematics
Yokohama National University	Faculty of Engineering
Hodogaya, Yokohama 240, Japan	Tamagawa University
E-mail: kenzi@math.sci.ynu.ac.jp	6-1-1, Tamagawa-Gakuen, Machida
	Tokyo 194-8610, Japan
	E-mail: kenzi@eng.tamagawa.ac.jp

Received on 21.1.1997 and in revised form on 29.1.1998 (3121)

140