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Discrepancy of weighted matrix nets

by

W. W. L. Chen (Sydney, N.S.W.) and V. F. Lev (Athens, GA)

1. Introduction. Suppose that s ∈ N is fixed. For any invertible real
s× s matrix A, consider the lattice

Λ = {Am : m ∈ Zs},
and write

X = Λ ∩ Us,
where Zs = {(m1, . . . ,ms) : m1, . . . ,ms ∈ Z} is the s-dimensional integer
lattice, and

Us = {(x1, . . . , xs) : 0 ≤ x1, . . . , xs < 1}
is the s-dimensional unit cube. In other words, X is the set of all the points
of the lattice Λ that fall into the unit cube Us.

By a matrix net generated by A, we mean a pair of the form (X, %),
where the set X is defined as above and % : X → R is a weight function on
the points of the set X.

Remark. We emphasize here that the set X arises from a lattice Λ. If X
is an arbitrary set of N points in Us, not generated by a matrix as indicated
above, then the “natural” choice of weight function %(x) = 1/N may result
in a very poorly distributed net. To see this, consider the one-dimensional
case with

X =
{

0,
1

4K
,

2
4K

, . . . ,
2K − 2

4K
,

2K − 1
4K

,

2K + 1
4K

,
2K + 3

4K
, . . . ,

4K − 3
4K

,
4K − 1

4K

}
,

where K is a positive integer and N = 3K. If %(x) = 1/N for every x ∈ X,

1991 Mathematics Subject Classification: Primary 11K38; Secondary 11J71, 11L03,
11C99.

[141]



142 W. W. L. Chen and V. F. Lev

then the discrepancy satisfies

sup
I⊆[0,1)

∣∣∣
∑

x∈I
%(x)− µ(I)

∣∣∣ ≥
∣∣∣∣
∑

x∈[0,1/2)

%(x)− 1
2

∣∣∣∣ =
∣∣∣∣
2
3
− 1

2

∣∣∣∣ =
1
6
.

Here the supremum is taken over all intervals I ⊆ [0, 1) and µ(I) denotes
the length of the interval I. On the other hand, if

%(x) =
{

1/(4K) if x < 1/2,
1/(2K) if x > 1/2,

then it is easily seen that there exists a positive constant c such that

sup
I⊆[0,1)

∣∣∣
∑

x∈I
%(x)− µ(I)

∣∣∣ ≤ c/N.

The purpose of this paper is to show that the phenomenon discussed in
the remark above cannot possibly happen for matrix nets. We shall show
that in the approximation of certain integrals and in certain discrepancy
problems, matrix nets with equal weights are essentially best possible. Here,
we say that the matrix net (X, %) has equal weights if there exists some fixed
number %0 ∈ R such that %(x) = %0 for every x ∈ X.

We shall consider classes Φ of functions f : Rs → R which satisfy the
following conditions:

(Φ1) Integrability : Every f ∈ Φ is Riemann integrable on Us.
(Φ2) Periodicity : Every f ∈ Φ is periodic with period 1 in each variable.
(Φ3) Translation invariance: For every f ∈ Φ and every z ∈ Rs, we have

fz ∈ Φ, where fz(x) = f(x + z) for all x ∈ Rs.
Examples of such classes Φ are given by the class of characteristic func-
tions of aligned rectangular boxes modulo Us and the class of functions
with restrictions on the absolute values of Fourier coefficients which provide
sufficient smoothness.

For every function f ∈ Φ and for every matrix net (X, %), write

R(f ;X, %) =
∑

x∈X
%(x)f(x)−

\
Us

f(t) dt,

and let

R(Φ;X, %) = sup
f∈Φ
|R(f ;X, %)|,

where the supremum is taken over all functions f ∈ Φ. Furthermore, for
every %0 ∈ R, write

R(f ;X, %0) =
∑

x∈X
%0f(x)−

\
Us

f(t) dt,



Discrepancy of weighted matrix nets 143

and let

R(Φ;X, %0) = sup
f∈Φ
|R(f ;X, %0)|,

where the supremum is again taken over all functions f ∈ Φ. Here we have
used the same letter R to denote four related, but distinct, quantities. How-
ever, this should not lead to confusion in the subsequent argument.

The following theorem shows that if the inverse of A has integer entries,
then one can always choose equal weights to minimize the error term in
approximate integration.

Theorem 1. Suppose that A is an inverse of an integer-valued matrix.
Then for every class Φ satisfying conditions (Φ1)–(Φ3), we have

inf
%
R(Φ;X, %) = inf

%0
R(Φ;X, %0),

where the infima are taken over all functions % : X → R and over all
numbers %0 ∈ R respectively.

Theorem 1 shows that for any matrix A, the inverse A−1 of which has
integer entries, the weights may be chosen to be equal. This raises the ques-
tion of whether the natural choice %0 = 1/N , where N = |X| denotes the
cardinality of the set X, is always the best. Our next theorem shows that
this is necessarily the case for any “reasonable” point set X arising from a
lattice.

Theorem 2. Suppose that A is an inverse of an integer-valued matrix ,
and that the class Φ satisfies conditions (Φ1)–(Φ3). Let

(1) M(Φ) = sup
f∈Φ

∣∣∣
\
Us

f(t) dt
∣∣∣.

Suppose further that for some fixed real number ε ∈ (0, 1), at least one of
the following two conditions holds:

(a) R(Φ;X, 1/N) ≤ ε−1M(Φ).
(b) inf%0 R(Φ;X, %0) ≤ (1− ε)M(Φ) and M(Φ) > 0.

Then

R(Φ;X, 1/N) ≤ 3
ε

inf
%
R(Φ;X, %),

where the infimum is taken over all functions % : X → R.

Observe that if condition (b) does not hold, then in view of Theorem 1,
matrix nets with the point set X are not suitable for approximate integration
of functions in Φ for any choice of weights. Condition (a) may be easier to
verify.
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Let us now concentrate on the special case of Theorem 2 when Φ is the
class of characteristic functions of all aligned rectangular boxes

B = [a1, b1)× . . .× [as, bs),

where we assume that 0 ≤ bi − ai ≤ 1 for every i = 1, . . . , s. We denote
by B the collection of all boxes of this type. For every x ∈ Rs and every
B ∈ B, we write x ∈ B (mod Us) to denote that there exists n ∈ Zs such
that x− n ∈ B. We define

χB(x) =
{

1 if x ∈ B (mod Us),
0 otherwise.

For every matrix net (X, %), consider the discrepancy function

(2) DB(X, %) =
∑

x∈X :χB(x)=1

%(x)− µ(B),

where µ(B) denotes the s-dimensional volume of B, and let

(3) D(X, %) = sup
B∈B

|DB(X, %)|,

where the supremum is taken over all aligned rectangular boxes in B. In
the case of constant weight function %(x) = %0, we shall use the notation
DB(X, %0) and D(X, %0) respectively, so that in particular

(4) DB(X, 1/N) =
1
N

∑

x∈X :χB(x)=1

1− µ(B).

It is easily seen that the class Φ of all the functions χB satisfies the
conditions (Φ1)–(Φ3), and that for this class, M(Φ) = 1 and R(Φ;X, %) =
D(X, %), the latter identity in view of

R(χB ;X, %) =
∑

x∈X
%(x)χB(x)−

\
Us

χB(t) dt

=
∑

x∈X :χB(x)=1

%(x)− µ(B) = DB(X, %)

for every B ∈ B. Also, it is clear from (3) and (4) that D(X, 1/N) ≤ 1, and
so condition (a) of Theorem 2 is satisfied for any constant ε < 1. Therefore,
as very special cases of Theorems 1 and 2, we immediately have the following
two corollaries.

Corollary 1. Suppose that A is an inverse of an integer-valued matrix.
Then

inf
%
D(X, %) = inf

%0
D(X, %0),

where the infima are taken over all functions % : X → R and over all
numbers %0 ∈ R respectively.
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Corollary 2. Suppose that A is an inverse of an integer-valued matrix.
Then

D(X, 1/N) ≤ 3 inf
%
D(X, %),

where the infimum is taken over all functions % : X → R.

The situation becomes more complicated if the inverse matrix A−1 has
some non-integer entries. Indeed, the method for proving Theorem 1 does
not extend directly to this more general case. Consequently, we are only able
to prove a result analogous to Corollary 2 above.

More precisely, our aim is to show that there is some positive constant
c = c(s), depending only on the dimension s, such that D(X, 1/N) ≤
c(s)D(X, %) for every matrix net (X, %).

Theorem 3. Suppose that A is an arbitrary invertible real matrix. Then

D(X, 1/N) ≤ (2s)2s inf
%
D(X, %),

where the infimum is taken over all functions % : X → R.

In fact, the multiplicative constant on the right hand side can be slightly
improved. However, we make no serious attempt here to optimize this con-
stant.

We prove Theorem 1 in §2, Theorem 2 in §3 and Theorem 3 in §§4–5.
The use of lattices in discrepancy problems is motivated by the study

of the sequence {nα} of the fractional parts of nα, and dates back to the
work of Hardy and Littlewood, Kronecker, Ostrowski, Weyl and others in
the first half of this century. Later, Davenport [4] used lattices to show that
Roth’s celebrated result on irregularities of distribution is best possible in
dimension 2, and Korobov [5] initiated systematic studies of parallelepipedal
nets, which are a special case of nets generated by inverses of integer-valued
matrices. For more recent work involving the use of lattices in discrepancy
theory, see the papers of Beck and Chen [1–3] and Skriganov [6].

2. Proof of Theorem 1. The proof of Theorem 1 is based on the
following observation concerning matrix nets arising from matrices whose
inverses have integer entries. For every y = (y1, . . . , ys) ∈ Rs, write

{y} = ({y1}, . . . , {ys}) ∈ Us;
in other words, {y} is obtained from y by replacing each coordinate by its
fractional part.

Lemma 1. Suppose that A is an inverse of an integer-valued matrix.
Then for every fixed w ∈ Λ, we have

{{x + w} : x ∈ X} = X;



146 W. W. L. Chen and V. F. Lev

in other words, the set X is invariant under translation modulo Us by any
vector of Λ.

P r o o f. For every i = 1, . . . , s, let

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
s−i

).

To prove the lemma, we first prove that Zs ⊆ Λ by showing that ei ∈ Λ
for every i = 1, . . . , s. Let mi denote the ith column of the matrix A−1.
Then clearly mi = A−1ei ∈ Zs, where mi and ei are written as column
matrices. It follows that ei = Ami ∈ Λ as required.

Next, for any fixed w ∈ Λ, consider the mapping ϕ : X → Us, defined
by ϕ(x) = {x+w} for every x ∈ X. Since x+w ∈ Λ and x+w−{x+w} ∈
Zs ⊆ Λ, it follows that {x + w} ∈ Λ, so that ϕ maps X into itself. On the
other hand, ϕ is clearly injective, as ϕ(x′) = ϕ(x′′) implies x′′ − x′ ∈ Zs,
and hence x′′ = x′ since x′,x′′ ∈ Us. The assertion now follows since any
injective mapping of a finite set into itself is necessarily a bijection.

We can now complete the proof of Theorem 1. First of all, it is obvious
that

inf
%
R(Φ;X, %) ≤ inf

%0
R(Φ;X, %0),

so it remains to show that

inf
%
R(Φ;X, %) ≥ inf

%0
R(Φ;X, %0).

To do this, it clearly suffices to show that for every % : X → R, there exists
%0 ∈ R such that

(5) R(Φ;X, %) ≥ |R(f ;X, %0)|
for every f ∈ Φ. We choose

(6) %0 =
1
N

∑

x∈X
%(x).

In view of (Φ3), we have, for any y ∈ Rs,
∣∣∣
∑

x∈X
%(x)fy(x)−

\
Us

fy(t) dt
∣∣∣ ≤ R(Φ;X, %).

This, in view of (Φ2), can be rewritten as

(7)
∣∣∣
∑

x∈X
%(x)f(x + y)−

\
Us

f(t) dt
∣∣∣ ≤ R(Φ;X, %).

The key idea here is to take an average over all y ∈ X. More precisely, in
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view of (Φ2), Lemma 1 and (6), we have

1
N

∑

y∈X

∑

x∈X
%(x)f(x + y)

=
1
N

∑

x∈X
%(x)

∑

y∈X
f(x + y) =

1
N

∑

x∈X
%(x)

∑

y∈X
f({x + y})

=
1
N

∑

x∈X
%(x)

∑

y∈X
f(y) = %0

∑

y∈X
f(y) =

∑

x∈X
%0f(x).

It follows that∣∣∣
∑

x∈X
%0f(x)−

\
Us

f(t) dt
∣∣∣ ≤ 1

N

∑

y∈X

∣∣∣
∑

x∈X
%(x)f(x + y)−

\
Us

f(t) dt
∣∣∣

≤ R(Φ;X, %).

This establishes the inequality (5), and completes the proof of Theorem 1.

3. Integral nets with normalized weights. Suppose that for some
f ∈ Φ and every constant C ∈ R, we also have f + C ∈ Φ. Then

R(f + C;X, %0) =
∑

x∈X
%0f(x)−

\
Us

f(t) dt + (%0N − 1)C.

It follows that R(Φ;X, %0) = supf∈Φ |R(f ;X, %0)| can be finite only if %0 =
1/N . In this case, we clearly have

R(Φ;X, 1/N) = inf
%0
R(Φ;X, %0).

Theorem 2 establishes a conclusion of this type, but under far less restrictive
and more acceptable conditions.

Note that the first condition in hypothesis (b) of Theorem 2 cannot be
replaced by the weaker condition

inf
%0
R(Φ;X, %0) ≤M(Φ).

Consider, for example, the class Φ of all Riemann integrable functions
f : Rs → R, periodic with period 1 in each variable and satisfying the
condition that ∣∣∣

\
Us

f(t) dt
∣∣∣ ≤ 1.

Obviously, for this class, M(Φ) = 1 and

inf
%
R(Φ;X, %) ≤ inf

%0
R(Φ;X, %0) ≤ R(Φ;X, 0) = 1,

but R(Φ;X, 1/N) = ∞. On the other hand, the condition M(Φ) > 0 is
also necessary. Consider, for example, the class Φ of all Riemann integrable
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functions f : Rs → R, periodic with period 1 in each variable and satisfying\
Us

f(t) dt = 0.

Obviously, for this class, M(Φ) = 0 and

0 ≤ inf
%
R(Φ;X, %) ≤ inf

%0
R(Φ;X, %0) ≤ R(Φ;X, 0) = 0,

but again R(Φ;X, 1/N) =∞.
To prove Theorem 2, we need the following lemma.

Lemma 2. For any net (X, %), we have

R(Φ;X, %) ≥ |N%0 − 1|M(Φ),

where %0 is defined by (6).

P r o o f. We return to the inequality (7), and apply a different averaging
argument. Instead of averaging over all y ∈ X, we integrate over y ∈ Us,
and obtain∣∣∣

\
Us

( ∑

x∈X
%(x)f(x + y)−

\
Us

f(t) dt
)
dy
∣∣∣ ≤ R(Φ;X, %).

In view of (Φ2), this gives∣∣∣
∑

x∈X
%(x)− 1

∣∣∣
∣∣∣
\
Us

f(t) dt
∣∣∣ ≤ R(Φ;X, %).

The assertion follows on taking the supremum over all f ∈ Φ and noting
(6).

To prove Theorem 2, we shall in fact only use Lemma 2 in the case of
constant weight functions %(x) = %0. In this case, we have

(8) R(Φ;X, %0) ≥ |N%0 − 1|M(Φ).

We assume, for the sake of simplicity, that inf%0 R(Φ;X, %0) is attained
for some number %0 ∈ R, so that by Theorem 1, we have

R(Φ;X, %0) = inf
%
R(Φ;X, %).

Consider first the case |N%0| < 2ε/3. By (8), we have

R(Φ;X, %0) ≥ |N%0 − 1|M(Φ) ≥
(

1− 2ε
3

)
M(Φ),

contradicting hypothesis (b) of Theorem 2. It follows that hypothesis (a) is
valid, and so

R(Φ;X, %0) ≥
(

1− 2ε
3

)
M(Φ) ≥

(
1− 2ε

3

)
εR(Φ;X, 1/N)

≥ ε

3
R(Φ;X, 1/N).
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On the other hand, if |N%0| ≥ 2ε/3, then for every f ∈ Φ, we have

R(f ;X, 1/N) =
1
N

∑

x∈X
f(x)−

\
Us

f(t) dt

=
1

N%0

( ∑

x∈X
%0f(x)−

\
Us

f(t) dt
)
−
(

1− 1
N%0

) \
Us

f(t) dt,

so that

|R(f ;X, 1/N)| ≤ 1
|N%0|R(Φ;X, %0) +

|N%0 − 1|
|N%0|

∣∣∣
\
Us

f(t) dt
∣∣∣

≤ 2
|N%0|R(Φ;X, %0) ≤ 3

ε
R(Φ;X, %0),

in view of (1) and (8). This completes the proof of Theorem 2.

4. Preparation for the proof of Theorem 3. We note first that if
B ⊆ Us, then (2) becomes simply

(9) DB(X, %) =
∑

x∈Λ∩B
%(x)− µ(B).

Furthermore, if B contains no points of Λ, then D(X, %) ≥ µ(B). Indeed,
this last inequality remains valid for any aligned rectangular box B ⊆ Us

which is free of points of Λ, even without the additional restriction that
B ∈ B, as B can be “approximated” by another box in B. We shall use this
remark later in the course of the proof of Theorem 3.

It will be convenient to consider, along with D(X, %), the corresponding
discrepancy function arising only from those rectangular boxes B ∈ B con-
tained in Us. Accordingly, we denote by B the collection of all boxes B ∈ B
such that B ⊆ Us, and write

(10) D(X, %) = sup
B∈B

|DB(X, %)|,

where the supremum is taken over all rectangular boxes B ∈ B. As before,
in the case of constant weight functions %(x) = %0, we shall use the notation
D(X, %0).

Clearly, we have D(X, %) ≤ D(X, %) for any matrix net (X, %). In the
other direction, we have the following result.

Lemma 3. We have D(X, %) ≤ 2sD(X, %).

P r o o f. For any box B ∈ B, there obviously exist at most 2s integer
vectors ci ∈ Zs and aligned rectangular boxes Bi ∈ B such that B =⋃
i(ci +Bi), and where the union is disjoint. Then it follows easily from (2)
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and (10) that

|DB(X, %)| =
∣∣∣
∑

i

Dci+Bi(X, %)
∣∣∣ =

∣∣∣
∑

i

DBi(X, %)
∣∣∣ ≤ 2sD(X, %),

and the conclusion follows on taking the supremum over all B ∈ B.

It now follows from Lemma 3 that, to prove Theorem 3, it suffices to
establish the estimate

(11) D(X, 1/N) ≤ 2ss2sD(X, %)

for every matrix net (X, %).
The idea underpinning the proof of Theorem 3 is to approximate the dis-

crepancy function DB(X, %) by another discrepancy function DB(Λ), arising
from the lattice Λ and not from the matrix net (X, %). We shall define this
new discrepancy function by assigning to each point of Λ the “correct”
weight detΛ, instead of the “approximation” 1/N . For technical reasons,
we shall also consider the supremum of DB(Λ) on all boxes B ∈ B, not
necessarily in Us and not reduced modulo Us. This enables us to apply the
averaging argument used in the proof of Theorem 1 to this new discrepancy
function.

More precisely, for every B ∈ B, write

(12) DB(Λ) =
∑

x∈Λ∩B
detΛ− µ(B),

and let

D(Λ) = sup
B∈B

|DB(Λ)|,
where the supremum is taken over all aligned rectangular boxes in the col-
lection B.

For any set B ⊆ Rs, let NB(Λ) = |Λ ∩B|, the number of points of Λ in
B (hence, for instance, NUs(Λ) = N). Then (12) becomes

DB(Λ) = NB(Λ) detΛ− µ(B),

and so

(13)
∣∣∣∣NB(Λ)− µ(B)

detΛ

∣∣∣∣ ≤
D(Λ)
detΛ

for any B ∈ B.

Lemma 4. We have D(X, 1/N) ≤ 2D(Λ).

P r o o f. Suppose that B ∈ B. Then it follows from (9) and (12) that

|DB(Λ)−DB(X, 1/N)| =
∣∣∣∣detΛ− 1

N

∣∣∣∣
∑

x∈Λ∩B
1 ≤ |N detΛ− 1|,
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so that

|DB(X, 1/N)| ≤ |DB(Λ)|+ |N detΛ− 1| ≤ D(Λ) + |N detΛ− 1|.
Note next that Us ∈ B, so that |N detΛ − 1| = |DUs(Λ)| ≤ D(Λ). Hence
|DB(X, 1/N)| ≤ 2D(Λ). The result now follows on taking the supremum
over all B ∈ B.

For any B ∈ B and any x ∈ Λ, consider the aligned rectangular box

Bx = (x−B) ∩ Us,
where x−B = {x− y : y ∈ B}. Note here that Bx 6∈ B in general. Clearly,
Bx is non-empty if and only if x ∈ Us +B = {y + z : y ∈ B, z ∈ Us}.

Lemma 5. The number NUs+B(Λ) = |Λ ∩ (Us +B)| of all lattice points
x ∈ Λ for which Bx = (x−B) ∩ Us is non-empty satisfies

NUs+B(Λ) ≤ 2s(1 +D(Λ))
detΛ

.

P r o o f. Clearly, the rectangular box Us+B can be written as the disjoint
union of at most 2s rectangular boxes in B. Hence it follows from (13) that

NUs+B(Λ) ≤ µ(Us +B) + 2sD(Λ)
detΛ

,

and the result follows on noting that µ(Us +B) ≤ 2s.

Our next lemma implements the averaging idea from the proof of The-
orem 1 and is the heart of our argument.

Lemma 6. For every B ∈ B, we have∣∣∣N%0

∑

x∈Λ∩B
1−S

∣∣∣ ≤ NUs+B(Λ)D(X, %),

where %0 is defined by (6) and

(14) S =
∑

x∈Λ
µ((x−B) ∩ Us) =

∑

x∈Λ
µ(Bx).

P r o o f. It is not difficult to see that given any box Bx = (x − B) ∩ Us
and any positive number ε, there exists B′x ∈ B such that

|µ(B′x)− µ(Bx)| < ε and B′x ∩ Λ = Bx ∩ Λ.
Since ∣∣∣

∑

y∈B′x∩Λ
%(y)− µ(B′x)

∣∣∣ ≤ D(X, %),

and since ε can be chosen arbitrarily small, we have also∣∣∣
∑

y∈Bx∩Λ
%(y)− µ(Bx)

∣∣∣ ≤ D(X, %).
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Summing over all x ∈ Λ for which Bx is non-empty, we obtain

(15)
∣∣∣
∑

x∈Λ

∑

y∈Bx∩Λ
%(y)−

∑

x∈Λ
µ(Bx)

∣∣∣ ≤ NUs+B(Λ)D(X, %).

Note now that
∑

x∈Λ

∑

y∈Bx∩Λ
%(y) =

∑

x∈Λ

∑

y∈Λ∩(x−B)∩Us
%(y)(16)

=
∑

y∈Λ∩Us
%(y)

∑

x∈Λ∩(y+B)

1

=
∑

y∈Λ∩Us
%(y)

∑

x∈Λ∩B
1.

The result follows on combining (6) and (14)–(16).

To calculate S, we need two more lemmas.

Lemma 7. For every B ∈ B, we have

(17)
\
Us

NB+x(Λ) dx = S.

Furthermore, for any fundamental region R of the lattice Λ, we have

(18)
\
R
NB+x(Λ) dx = µ(B).

P r o o f. We have\
Us

NB+x(Λ) dx =
\
Us

( ∑

y∈Λ∩(B+x)

1
)
dx =

∑

y∈Λ

\
(y−B)∩Us

dx

=
∑

y∈Λ
µ((y −B) ∩ Us) = S,

in view of (14). On the other hand,\
R
NB+x(Λ) dx =

\
R

( ∑

y∈Λ∩(B+x)

1
)
dx =

∑

y∈Λ

\
(y−B)∩R

dx

=
∑

y∈Λ

\
B∩(y−R)

dz =
\
B

dz = µ(B).

Suppose now that R is a fixed fundamental region of Λ. We write Us =
Ω0 ∪Ω1, where

(19) Ω0 =
⋃

w∈Λ :R+w⊆Us
(R+ w) and Ω1 = Us \Ω0.
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Then it follows from (17) that

(20) S =
\
Ω0

NB+x(Λ) dx +
\
Ω1

NB+x(Λ) dx.

Lemma 8. For every B ∈ B, we have\
Ω0

NB+x(Λ) dx =
µ(B)µ(Ω0)

detΛ
.

Furthermore, ∣∣∣∣
\
Ω1

NB+x(Λ) dx− µ(B)µ(Ω1)
detΛ

∣∣∣∣ ≤
µ(Ω1)D(Λ)

detΛ
.

P r o o f. By (18) and (19), we have\
Ω0

NB+x(Λ) dx =
∑

w∈Λ :R+w⊆Us

\
R+w

NB+x(Λ) dx =
∑

w∈Λ :R+w⊆Us
µ(B)

=
µ(B)
µ(R)

∑

w∈Λ :R+w⊆Us
µ(R) =

µ(B)µ(Ω0)
µ(R)

=
µ(B)µ(Ω0)

detΛ
.

This proves the first assertion. The second assertion follows immediately on
applying (13) to the box B+x and integrating with respect to x over Ω1.

To use Lemma 8, we need an estimate for µ(Ω1).

Lemma 9. Suppose that s ≥ 2. Suppose further that for every funda-
mental region R of the lattice Λ, the inequality µ(Ω1) > 1/2 holds. Then
D(X, %) > (2s)−2s for any choice of the weight function %.

P r o o f. Consider the aligned cube

Q =
{

x = (x1, . . . , xs) ∈ Rs : |xi| ≤ 1
4s2

}
,

centred at the origin. We claim that this cube cannot possibly contain s
linearly independent vectors of Λ. Indeed, if it does, then for the fundamental
region R generated by those s points, we have

d = sup
x,y∈R

max
1≤i≤s

|xi − yi| ≤ 1
4s
,

where the supremum is taken over all pairs of vectors x = (x1, . . . , xs),
y = (y1, . . . , ys) in R. But Us has 2s faces, each of area 1, so that µ(Ω1) ≤
2sd ≤ 1/2, clearly a contradiction. It follows that all the points of Q ∩ Λ
lie on some (s− 1)-dimensional hyperplane L. We now consider the 2s open
cubes

Q(δ) = {x ∈ Q : δixi > 0 for every i = 1, . . . , s},
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where δ = (δ1, . . . , δs) ∈ {−1, 1}s. At most 2s−1 of these can have a non-
empty intersection with L. Hence at least one of these small cubes, say Q0,
does not contain any point of Λ. We observe that the edge length of Q0 is
1/(4s2). Now consider the cube

B =
{

x = (x1, . . . , xs) ∈ Us :
1

4s2 ≤ x1, . . . , xs < 1− 1
4s2

}
.

If B ∩ Λ is empty, then it follows from (3) and (9) that

D(X, %) ≥ µ(B) =
(

1− 1
2s2

)s
≥
(

1
2s2

)s
> (2s)−2s.

On the other hand, if B ∩Λ is non-empty, then there exists a lattice vector
y ∈ B ∩ Λ. Consider the translation Q0 + y. Since Q0 ∩ Λ = ∅, we clearly
have (Q0 + y) ∩ Λ = ∅. Note also that Q0 + y ⊆ Us. Hence it follows again
from (3) and (9) that

D(X, %) ≥ µ(Q0 + y) = µ(Q0) = (4s2)−s = (2s)−2s.

5. Completion of the proof of Theorem 3. Suppose first of all that
s = 1. If detΛ > 1, then the distance between any two neighbouring points
of Λ is greater than 1. Hence for any weight function %, we clearly have

D(X, %) ≥ 1 = D(X, 1/N).

If detΛ ≤ 1, then the distance between any two neighbouring points of Λ
is detΛ ≤ 1, so that D(X, %) ≥ detΛ for any % and hence by Lemmas 3
and 4,

D(X, 1/N) ≤ 2D(X, 1/N) ≤ 4D(Λ) = 4 detΛ ≤ 4D(X, %)

as required. For the remainder of this paper, we assume that s ≥ 2.
Suppose that B ∈ B, and that %0 and S are defined by (6) and (14)

respectively. Then

(21) |DB(Λ)| =
∣∣∣
∑

x∈Λ∩B
detΛ− µ(B)

∣∣∣ ≤ I1 + I2 + |S detΛ− µ(B)|,

where

I1 =
∣∣∣(1−N%0)

∑

x∈Λ∩B
detΛ

∣∣∣ and I2 =
∣∣∣N%0

∑

x∈Λ∩B
detΛ−S detΛ

∣∣∣.

It is easy to see from (6), (9) and (10) that

|N%0 − 1| = |DUs(X, %)| ≤ D(X, %).

On the other hand, it follows from (13) that
∑

x∈Λ∩B
detΛ = NB(Λ) detΛ ≤ µ(B) +D(Λ) ≤ 1 +D(Λ).
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Hence

(22) I1 ≤ D(X, %)(1 +D(Λ)).

Next, it follows from Lemmas 6 and 5 that

(23) I2 ≤ 2sD(X, %)(1 +D(Λ)).

Finally, it follows from (20), Lemma 8 and µ(Ω0) + µ(Ω1) = 1 that

(24) |S detΛ− µ(B)| ≤ µ(Ω1)D(Λ).

In view of Lemma 9, we may assume that there exists a fundamental region
R such that µ(Ω1) < 1/2. We may also assume, without loss of generality,
that

(25) D(X, %) < 2−ss−2s;

for otherwise D(X, 1/N) ≤ 1 ≤ 2ss2sD(X, %), so that (11) follows immedi-
ately.

Substituting (22)–(24) into (21) and noting (25), we get

|DB(Λ)| ≤ (2s + 1)D(X, %)(1 +D(Λ)) + µ(Ω1)D(Λ)

≤ 2s+1D(X, %)(1 +D(Λ)) + 1
2D(Λ)

≤ 2s+1D(X, %) +
(
2s−2s + 1

2

)D(Λ)

≤ 2s+1D(X, %) + 3
4D(Λ).

Taking the supremum over all B ∈ B, we obtain

D(Λ) ≤ 2s+1D(X, %) + 3
4D(Λ),

so that D(Λ) ≤ 2s+3D(X, %). It now follows from Lemma 4 that

D(X, 1/N) ≤ 2s+4D(X, %).

The inequality (11) follows on noting that 2s+4 ≤ 2ss2s. This completes the
proof of Theorem 3.
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