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The arithmetic function rk(n) counts the number of ways to write a
natural number n as a sum of two kth powers (k ≥ 2 fixed). The in-
vestigation of the asymptotic behaviour of the Dirichlet summatory func-
tion of rk(n) leads in a natural way to a certain error term PDk(t) which
is known to be O(t1/4) in mean-square. In this article it is proved that
PD3(t) = Ω+(t1/4(log log t)1/4) as t → ∞. Furthermore, it is shown that a
similar result would be true for every fixed k > 3 provided that a certain
set of algebraic numbers contains a sufficiently large subset which is linearly
independent over Q.

1. Introduction. For a bounded convex planar domain D and a large
real parameter t, let AD(t) denote the number of lattice points (of the stan-
dard lattice Z2) in the “blown up” set

√
tD, and define as usual the “lattice

rest” as PD(t) := AD(t)−area(D)t. For the special case where D is the unit
circle D2 (say), the question of the asymptotic behaviour of AD2(t) is the
classical circle problem of C. F. Gauß: its history has been described, e.g.,
in the book of Krätzel [15]. At present, the best results are

(1.1) PD2(t) = O(t23/73(log t)315/146),

and (1) (for some constant (c > 0))

(1.2) PD2(t) = Ω−(t1/4(log t)1/4(log log t)(log 2)/4 exp(−c
√

log log log t)).

1991 Mathematics Subject Classification: 11P21, 11N37.
(1) We recall that F1(t) = Ω∗(F2(t)) means that lim sup(∗F1(t)/F2(t)) > 0 as t→∞

where ∗ is either + or − and F2(t) is positive for t sufficiently large.
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They are due to Huxley [11], [12], and Hafner [4], [5], respectively. In fact,
(1.2) was a celebrated and comparatively recent refinement of Hardy’s clas-
sical bound [7], [8]

(1.3) PD2(t) = Ω−(t1/4(log t)1/4).

An Ω+-estimate (somewhat weaker than (1.2) and (1.3)) has been estab-
lished by Corrádi and Kátai [2], refining earlier work of Gangadharan [6]:

(1.4) PD2(t) = Ω+(t1/4 exp(c′(log log t)1/4(log log log t)−3/4)) (c′ > 0).

It is usually conjectured that

(1.5) inf{θ ∈ R : PD2(t)�θ t
θ} = 1/4.

In favour of this hypothesis, there is the mean-square result

(1.6)
T\
0

(PD2(t))2 dt = CT 3/2 +O(T (log T )2), C =
1

3π2

∞∑
n=1

(r2(n))2

n3/2
,

which in this sharp form is due to Kátai [14].
For general D whose boundary is sufficiently smooth and of nonzero

curvature throughout, (1.1) remains true, according to Huxley [11], [12] as
well. The second named author [17], [18] showed that (1.3) can be generalized
unchanged, as well as a weak form of (1.6), namely

T\
0

(PD(t))2 dt� T 3/2.

Roughly speaking, this means that

(1.7) AD(t) = area(D)t+O(t1/4) in mean-square,

but that there exists an unbounded sequence of values t for which
√
tD

contains less lattice points than (1.7) would suggest.
Now the open question is: Are there also arbitrarily large t-values for

which
√
tD contains more lattice points than could be expected according

to (1.7)—as is known for the circle by (1.4)?
There does not seem to be any chance to attack this problem in general,

since the present methods that yield results like (1.4) depend entirely on
the algebraic nature of the equation of ∂D. Actually, at least according to
the present authors’ intuitive feeling, it appears rather more likely that the
domain

√
tD gets a little extra area quasi “between” lattice points than

that the contrary happens. (In this context we remark parenthetically that
for the Dirichlet divisor problem, which involves a boundary curve which is
convex in the other direction, the Ω−-bound is the more difficult and in fact
the weaker one.)

In the present paper we present [apparently as the first example apart
from the classical cases] an affirmative answer to the above question for a
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domain Dk whose boundary is Lamé’s curve |u|k + |v|k = 1, k ∈ N. In
number-theoretic terms, this involves the arithmetic function rk(n) which
counts the number of ways to write the positive integer n as a sum of the
kth powers of two integers taken absolutely:

rk(n) = #{(u1, u2) ∈ Z2 : |u1|k + |u2|k = n}.
(k ≥ 3 is a fixed natural number.) To discuss the average order of rk(n), one
is interested in the Dirichlet summatory function

ADk(t) =
∑

1≤n≤tk/2
rk(n),

where t is a large real variable. For k ≥ 3, the asymptotic formula for ADk(t)
contains a second main term which comes from the points of the boundary
curve where the curvature vanishes. It turns out that

(1.8) ADk(t) = area(Dk)t+BkΦk(t)t1/2−1/(2k) + PDk(t)

with

Bk = 23−1/kπ−1−1/kk1/kΓ

(
1 +

1
k

)
,

Φk(t) =
∞∑
n=1

n−1−1/k sin
(

2πn
√
t− π

2k

)
.

A thorough account on the history (which goes back to van der Cor-
put [22]) and the diverse aspects of this problem can be found in Krätzel’s
textbook [15].

Using Huxley’s deep method in its sharpest form, Kuba [16] proved that
the new error term PDk(t) again satisfies the estimate (1.1). Quite recently,
the second named author [19] has been able to show that this analogy par-
tially extends to the order of the mean-square, i.e.,

(1.9)
T\
0

(PDk(t))2 dt� T 3/2

for a large real parameter T (the �-constant possibly depending on k).
Furthermore [20], it is again true that

(1.10) PDk(t) = Ω−(t1/4(log t)1/4).

Stating (1.9) as before in the form

ADk(t) = area(Dk)t+BkΦk(t)t1/2−1/(2k)(1.11)

+O(t1/4) in mean-square,

the question arises again if there are arbitrarily large values of t for which√
tDk contains more lattice points than (1.11) suggests.
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As we shall see, this is connected with the problem of whether there exists
a sufficiently “large” set of coprime pairs (a1, a2) such that the numbers (2)
(ak/(k−1)

1 + a
k/(k−1)
2 )1−1/k together with 1 are linearly independent over the

rationals. If so, an affirmative answer to this question can be given.

Theorem A. Let

M(0) := {a = (a1, a2) ∈ N2 : a1 > a2, gcd(a1, a2) = 1}
and suppose that , for a certain fixed value of k ≥ 3, there exists a set M⊂
M(0) such that :

(I) For X →∞, the set

R :=
{

(a1, a2) ∈ N2 :
(

a1

gcd(a1, a2)
,

a2

gcd(a1, a2)

)
∈M(0) −M

}

satisfies
#{(a1, a2) ∈ R : max(a1, a2) ≤ X} � Xλ

for some exponent λ < 2,
(II) {(ak/(k−1)

1 + a
k/(k−1)
2 )(k−1)/k : a ∈M}∪ {1} is linearly independent

over Q.

Then, for this particular value of k,

lim sup
t→∞

(
PDk(t)
t1/4

)
= +∞.

In fact we shall verify, by some profound algebra and a recent deep
estimate of Heath-Brown [9], that a set M satisfying the hypotheses (I)
and (II) exists for k = 3: see Theorem B in Section 3. Thus we derive the
following unconditional result.

Corollary.

(1.12) lim sup
t→∞

(
PD3(t)
t1/4

)
= +∞.

Finally, in Section 4 we shall refine this result to the quantitative estimate

PD3(t) = Ω+(t1/4(log log t)1/4).

2. Proof of Theorem A

Notation. Here and throughout, C1, C2, . . . denote suitable positive con-
stants which depend at most on k. (This applies to all of the constants
implied in the O- and �-, �- symbols as well.)

(2) This expression arises—roughly speaking—when counting the lattice points of√
tDk by the Poisson summation formula and evaluating the resulting integrals by the

method of stationary phase. In terms of convex geometry, (uk/(k−1) + vk/(k−1))1−1/k is
the tac-function of Dk.
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For any subset S of N2 and positive real X, we put

SX := {(s1, s2) ∈ S : max(s1, s2) ≤ X}.
Further, for any set T of real or complex numbers and any positive integer
k, we write

T [k] := {tk : t ∈ T }.
Lemma 1. For arbitrary U ∈ R+ and any u ∈ [U − 1, U + 1], we have

PDk(u2) ≥ − 8u1/2
√
k − 1

S∗(u)− C1u
1/2,

where

S∗(u) =
∑

(m,h)∈D(U)

(hm)−1+q/2|(m,h)|−q+1/2
q

× (β1(h,U) sin(−2πu|(m,h)|q + π/4)

+ β2(h,U) cos (−2πu|(m,h)|q + π/4)),

with

β1(h, U) =
1
π
τ

(
h

[U ] + 1

)
, β2(h,U) =

h(1− h/([U ] + 1))
[U ] + 1

,

and where q is related to k by 1/k + 1/q = 1, i.e., q = k/(k − 1). Further ,
| · |q denotes the q-norm in R2, i.e.,

|(v1, v2)|q = (|v1|q + |v2|q)1/q,

and

τ(w) = πw(1− w) cot(πw) + w for 0 < w < 1.

The domain of summation is given by

D(U) = {(m,h) ∈ N2 : h ≤ U, h < m ≤ f ′h,u(NJ)},
where

fh,u(w) = −h(uk − wk)1/k,

and

NJ = u(1− 2−J(1− 2−1/k)) with J =
[

log ((1− 2−1/k)(U + 1))
log 2

]
+ 1.

We remark that f ′h,u(NJ) is independent of u and f ′h,u(NJ) � h2J(1−1/k).

P r o o f (of Lemma 1). The proof is analogous to that of Nowak [20], for-
mulae (3.2), (3.5), (3.6), by a trivial modification of the method used there.
(The key step is again the transition from fractional parts to trigonometric
polynomials via a celebrated inequality of Vaaler [21] which now is applied
in the shape a ≤ b+ |a− b| in contrast to a ≥ b− |a− b| in [20].)
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Lemma 2 (Kronecker’s approximation theorem; see, e.g., Hlawka–
Schoißengeier–Taschner [10], p. 23). If 1, θ1, . . . , θs ∈ R are linearly inde-
pendent over Q, and α1, . . . , αs ∈ R are arbitrary , U0, ε ∈ R+, then there
exists an integer U > U0 such that

‖Uθn − αn‖ < ε (n = 1, . . . , s),

where ‖ · ‖ denotes the distance from the nearest integer.

Lemma 3. For a real parameter M ≥ 1, let FM denote the Fejér kernel

FM (v) = M

(
sin (πMv)
πMv

)2

.

Then for arbitrary Q ∈ R+ and γ ∈ R,
1\
−1

FM (v) cos(2πQv + γ) dv = max
(

1− Q

M
, 0
)

cos γ +O

(
1
Q

)
,

where the O-constant is independent of M and γ.

P r o o f. See Lemma 3 in [20].

Proof of the theorem. As in [20], we multiply S∗(u) by the Fejér kernel
FM (u−U), and integrate over u from U −1 to U +1. (At this stage, M and
U are considered as independent large real parameters.) By the definition
of S∗(u) in Lemma 1, we obtain

I(U) :=
U+1\
U−1

S∗(u)FM (u− U) du =
1\
−1

S∗(U + v)FM (v) dv(2.1)

=
∑

(m,h)∈D(U)
|(m,h)|q≤M

(hm)−1+q/2|(m,h)|−q+1/2
q

(
1− |(m,h)|q

M

)

× (β1(h,U) sin(−2πU |(m,h)|q + π/4)

+ β2(h,U) cos(−2πU |(m,h)|q + π/4))

+
∑

(m,h)∈D(U)

O((hm)−1+q/2|(m,h)|−q−1/2
q ).

Let us first estimate the error term sum: (m,h) ∈ D(U) implies that
m > h and thus |(m,h)|q � m. Consequently,

∑

(m,h)∈D(U)

O((hm)−1+q/2|(m,h)|−q−1/2
q )

�
∑

h∈N
h−1+q/2

∑

m>h

m−1+q/2−q−1/2 �
∑

h∈N
h−3/2 � 1.
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The next important step is the application of Kronecker’s approximation
principle. For fixed M sufficiently large, we choose δM = ε0/M (ε0 > 0 a
sufficiently small constant), and appeal to Lemma 2 to find a value U > M2

such that

(2.2) B(M) := {(m,h) ∈ N2 : m > h, |(m,h)|q ≤M} ⊂ D(U)

and

(2.3)
∥∥U |(m,h)|q − 1

2

∥∥ < δM

for all (m,h) ∈M with |(m,h)|q ≤M . We define the sets

B1(M) =
{

(m,h) ∈ B(M) :
(

m

gcd(m,h)
,

h

gcd(m,h)

)
∈M

}
,

B2(M) = B(M) ∩R,
whereM andR are as in Theorem A. Therefore, for each (m,h) = (dm′, dh′)
∈ B1(M) with gcd(m′, h′) = 1, it follows that

cos
sin

(
− 2πU |(dm′, dh′)|q +

π

4

)
= (−1)d

1√
2

+O(dδM ).

Furthermore, since

h < |(m,h)|q ≤M <
√
U,

it is clear that, for M large, β1(h,U) is close to 1/π throughout, and β2(h,U)
is small, hence

β1(h, U) sin(−2πU |(m,h)|q + π/4) + β2(h,U) cos(−2πU |(m,h)|q + π/4)

≤ (−1)gcd(m,h) 1

π
√

2
+ ε

for all (m,h) ∈ B1(M), where ε > 0 is small whenever ε0 is small. We note
that the domain of summation in (2.1) is in fact B(M) and split up this
set into B1(M) and B2(M). Distinguishing the cases where gcd(m,h) is odd
and even, resp., we arrive at

−I(U) ≥
(

1

π
√

2
− ε
)
S(M)− 1√

2

(
1

π
√

2
+ ε

)
S

(
M

2

)
(2.4)

− C2

∑

(m,h)∈B2(M)

(hm)−1+q/2|(m,h)|−q+1/2
q − C3,

with

S(M) :=
∑

(m,h)∈B(M)

(hm)−1+q/2|(m,h)|−q+1/2
q

(
1− |(m,h)|q

M

)
,

in view of (2.2) and (2.3).
The next lemma provides an asymptotic expansion for S(M) as M →∞.
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Lemma 4. For M →∞,

S(M) ∼ 2π
3q
M1/2.

P r o o f. We first evaluate

Σ(M) :=
∑

(m,h)∈B(M)

(hm)−1+q/2.

To this end we divide B(M) into subdomains constrained by Y < hm ≤ 2Y ,
where Y ∈ {M/2,M/4, . . .}, and apply twice the crudest form of the Euler
summation formula (see e.g. Krätzel [15], Theorem 1.1). Adding up over Y ,
by a straightforward calculation we get

Σ(M) ∼
\ \

|(v1,v2)|q≤M
v1≥v2≥0

(v1v2)−1+q/2 d(v1, v2) =
π

2q2M
q.

Hence, for M > 1,

S(M) =
M\
1/2

u−q+1/2
(

1− u

M

)
dΣ(u)

=
M\
1/2

u−q+1/2 dΣ(u)− 1
M

M\
1/2

u−q+3/2 dΣ(u)

=
(
q − 1

2

) M\
1/2

u−q−1/2Σ(u) du+
(

3
2
− q
)

1
M

M\
1/2

u−q+1/2Σ(u) du

∼ π

2q2

(
q − 1

2

) M\
1/2

u−1/2 du+
π

2q2

(
3
2
− q
)

1
M

M\
1/2

u1/2 du ∼ 2π
3q
M1/2.

This completes the proof of Lemma 4.

It remains to show that the contribution of the remainder term sum in
(2.4) is small.

Lemma 5. For M →∞,

(2.5)
∑

(m,h)∈B2(M)

(hm)−1+q/2|(m,h)|−q+1/2
q �M1/2−ωq/2,

where ω = 1
2 (2− λ), with λ < 2 from (I) of Theorem A.

P r o o f. We recall that |(m,h)|q � m. The left-hand side of (2.5) is

�
{ ∑

m≤M
h≤m1−ω

+
∑

(m,h)∈RM
m1−ω<h

}
h−1+q/2m−1/2−q/2.
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A short calculation shows that the contribution of the first sum is

�M1/2−ωq/2.

To deal with the second sum, we split up the domain of summation into
subdomains constrained by Y < m ≤ 2Y , where Y ∈ {M/2,M/4, . . .}. We
obtain (since 1 < q < 2)

∑

(m,h)∈R2Y −RY
m1−ω<h

h−1+q/2m−1/2−q/2 � Y −3/2+ω(1−q/2)
∑

(m,h)∈R2Y

1

� Y 1/2−ω(1+q/2),

using the hypothesis (I) of Theorem A. Adding up over Y ∈ {M/2,M/4, . . .}
we complete the proof of Lemma 5.

Combining Lemmas 4 and 5, and (2.4), we arrive at

−I(U) ≥ C4M
1/2 − C5M

1/2−ωq/2 ≥ C6M
1/2.

On the other hand, it follows from the definition of I(U) that

−I(U) ≤ ( sup
U−1≤u≤U+1

(−S∗(u)))
1\
−1

FM (v) dv ≤ sup
U−1≤u≤U+1

(−S∗(u)).

This implies that there exists some u∗ ∈ [U − 1, U + 1] such that

−S∗(u∗) ≥ C7M
1/2.

Since, by Kronecker’s theorem, this is true for an unbounded sequence of
values u∗, it follows from Lemma 1 that

lim sup
t→∞

PDk(t)
t1/4

≥ C8M
1/2.

Since M was arbitrary, this completes the proof of Theorem A.

3. The cubic case: construction of a large linearly independent
set

Theorem B. Let

M(0) := {a = (a1, a2) ∈ N2 : a1 > a2, gcd(a1, a2) = 1}.
Then there exists a set M⊂M(0) such that :

(I) For X →∞, the set

R :=
{

(a1, a2) ∈ N2 :
(

a1

gcd(a1, a2)
,

a2

gcd(a1, a2)

)
∈M(0) −M

}

satisfies #(RX)� Xλ for some exponent λ < 2.
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(II) {(a3/2
1 + a

3/2
2 )2/3 : a ∈M} ∪ {1} is linearly independent over Q.

Two pivotal tools from the literature

Proposition 1. For any fixed ε > 0 and Z →∞,

#{(x1, . . . , x4) ∈ N4 : xi ≤ Z, x3
1 + x3

2 = x3
3 + x3

4,

(x1, x2) 6∈ {(x3, x4), (x4, x3)}} � Z4/3+ε.

P r o o f. This is a special case of a recent deep result of Heath-Brown [9].

Proposition 2. Let k > 1 be a positive integer and F an algebraic
number field over Q which contains all kth roots of unity. Define F1/k :=
F({x ∈ C : xk ∈ F}) and consider F∗ := F− {0} as a group with respect to
multiplication. Let {tX } be the image of a one-one map X → tX from the
factor group F∗/F[k]

∗ into C such that tkXF
[k]
∗ = X for each coset X ∈ F∗/F[k]

∗ .
Then the set {tX } is a basis of F1/k over F.

P r o o f. This is a result of the classical Kummer theory. For a textbook
reference, see e.g. Bourbaki [1], Chap. 5, §11, No. 8, Theorem 4(c).

Preparations for the proof of Theorem B. First of all, let

M(1) := {(a1, a2) ∈M(0) : a2 < a1 − a0.99
1 };

then it is clear that

(3.1) #(M(0) −M(1))X � X1.99.

Let further

U (n) := {a ∈M(1) : a3
1 − a3

2 = n} (n ∈ N),

Y := {n ∈ N : there exist a,b ∈M(1),a 6= b, with a3
1 − a3

2 = b31 − b32 = n}
and put

U :=
⋃

n∈Y
U (n), M(2) :=M(1) − U .

We claim that there exists some λ1 < 2 such that

(3.2) #(UX)� Xλ1 .

To prove this, consider any a ∈ UX : It follows that a2 < a1 ≤ X and that
there exists some b ∈M(1),b 6= a, such that a3

1−a3
2 = b31−b32. By definition

of UX and M(1),

b2.99
1 ≤ (b1 − b2)(b21 + b1b2 + b22) = a3

1 − a3
2 ≤ X3,

hence b2 < b1 ≤ X3/2.99. According to Proposition 1, the number of possible
quadruples (a1, a2, b1, b2) (which of course is not less than the number of
possible pairs (a1, a2)) is

� X
3

2.99 ( 4
3 +ε) = Xλ1 , λ1 < 2.
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Further, let
W := {(a1, a2) ∈M(2) : a1, a2 ∈ N[2]}.

Then it is trivial that

(3.3) #(WX)� X.

On the set M(3) :=M(2) −W we define an equivalence relation as follows:

a ∼ b⇔ a3
1 − a3

2

b31 − b32
∈ Q[3].

To construct finally the setM announced in Theorem B, we simply select
from each of the equivalence classes arising from this relation that element b
with minimal b31 − b32. We proceed to verify that this selection comprehends
“almost all” elements of M(3):

Lemma 6. The set N :=M(3) −M satisfies #(NX)� Xλ2 with some
λ2 < 2.

Before proving this result, we notice that, along with (3.1)–(3.3), it im-
plies that

(3.4) #(M(0) −M)X � Xλ (λ < 2).

Moreover, by construction,

(3.5) a ∼ b⇔ a = b for a,b ∈M.

P r o o f (of Lemma 6). We can write N as

N = {a ∈M(3) : there exists b ∈M(3) with a ∼ b, b31 − b32 < a3
1 − a3

2}.
Thus we have to estimate the number of all a ∈M(3)

X for which there exists
some b ∈M(3) such that

(∗) a3
1 − a3

2

b31 − b32
=
p3

q3

with p, q ∈ N, gcd(p, q) = 1, p > q.

Case 1: a ∈ M(3)
X such that there exists b ∈ M(3) for which (∗) holds

with p ≤ X2/5. Since (∗) is equivalent to

(∗∗) (a1q)3 + (b2p)3 = (b1p)3 + (a2q)3,

we may appeal once again to Heath-Brown’s Proposition 1: By the argument
used to establish (3.2), b2 < b1 ≤ X3/2.99, and of course a2 < a1 ≤ X, thus
the number of “non-diagonal” solutions (3) of (∗∗) is

� X( 3
2.99 + 2

5 )( 4
3 +ε) � Xλ3 with λ3 < 2.

(3) It is obvious to see that the “diagonal” solutions excluded in the statement of
Proposition 1 lead to the impossible cases a1 = a2, b1 = b2, and a = b, respectively.



190 M. Kühleitner et al.

(Properly speaking, we hereby count all quadruples (a1q, b2p, b1p, a2q) which
solve (∗∗), but for a1q fixed there are only � Xε possibilities for a1; then
a2 is uniquely determined by q and a2q.)

Case 2: a ∈ M(3)
X such that for all b ∈ M(3) satisfying (∗) necessarily

p > X2/5. We can rewrite (∗) as

(a1 − a2) (a2
1 + a1a2 + a2

2)︸ ︷︷ ︸
Q(a)

q3 = (b31 − b32)p3,

hence p3 divides (a1 − a2)Q(a). It is well known that gcd(a1 − a2, Q(a)) is
either 1 or 3 for a1, a2 coprime. Thus we can write p = e0p1p2 with

e0 ∈ {1, 3}, gcd(p1, p2) = 1, p3
1 | (a1 − a2), p3

2 |Q(a).

Consequently, p3
1 ≤ a1 − a2 ≤ X, hence p1 ≤ X1/3, and thus

p2 >
1
3X

2/5−1/3 = 1
3X

1/15.

Let Q(a) = lp3
2 with l ∈ N. There correspond at most� (lp3

2)ε � X2ε pairs
a to each fixed choice of (l, p2). Therefore, the total number of possible
values of a is

� X2ε
∑

p2>X1/15/3

∑

l�p−3
2 X2

1� X2ε
∑

p2>X1/15/3

X2p−3
2 � X28/15+2ε

which completes the proof of Lemma 6.

Proof of Theorem B : Verification of (I). For (a1, a2) ∈ N2, let

(a′1, a
′
2) =

(
a1

gcd(a1, a2)
,

a2

gcd(a1, a2)

)
.

With this notation,

R = {(a1, a2) ∈ N2 : (a′1, a
′
2) ∈M(0) −M}.

We put further, for Y ∈ R+,

R(Y ) := {(a1, a2) ∈ R : Y/2 < a′1 ≤ Y }.
Consequently,

#(RX)�
∑

Y=X,X/2,...

#(R(Y )
X )�

∑

Y=X,X/2,...

(X/Y )#(M(0) −M)Y

� X
∑

Y=X,X/2,...

Y λ−1 � Xλ (λ < 2),

by an appeal to (3.4).

Verification of (II). For a = (a1, a2) ∈ N2, put

(3.6) α(a) = (|(a1, a2)|3/2)3 = a3
1 + a3

2 + 2(a1a2)3/2.
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Then we have to show that {1, α(a(1))1/3, . . . , α(a(J))1/3} is linearly inde-
pendent over Q for arbitrary a(1), . . . ,a(J) ∈ M. We apply Proposition 2
with k = 3 and F = Q(α(a(1)), . . . , α(a(J)), ξ), where ξ = 1

2 (−1 + i
√

3) is
a third root of unity. It readily follows that {1, α(a(1))1/3, . . . , α(a(J))1/3}
is linearly independent even over F, provided we can show that the cosets
α(a(j))F[3]

∗ are pairwise distinct for j = 0, 1, . . . , J (with a(0) := (1, 0) for
convenience of notation). Let us assume the contrary, i.e., that for some
r, s, 0 ≤ r < s ≤ J ,

α(a(r))
α(a(s))

= z3, z ∈ F.
Taking the norm on both sides, we conclude that

(3.7)
NF/Q(α(a(r)))
NF/Q(α(a(s)))

∈ Q[3].

Since α(a(1)), . . . , α(a(J)), ξ are quadratic irrationals, the degree of F over
Q is a power of 2, say 2l. As an easy consequence, for a ∈M,

NF/Q(α(a)) = (a3
1 − a3

2)2l .

For r = 0, (3.7) means that

((a(s)
1 )3 − (a(s)

2 )3)2l ∈ Q[3], hence (a(s)
1 )3 − (a(s)

2 )3 ∈ N[3],

which contradicts Fermat’s Last Theorem with the classical exponent 3. For
r > 0, (3.7) becomes

(
(a(r)

1 )3 − (a(r)
2 )3

(a(s)
1 )3 − (a(s)

2 )3

)2l

∈ Q[3], hence
(a(r)

1 )3 − (a(r)
2 )3

(a(s)
1 )3 − (a(s)

2 )3
∈ Q[3],

which means that a(r) ∼ a(s), thus, in view of (3.5), a(r) = a(s), the desired
contradiction. This completes the proof of Theorem B.

4. A quantitative refinement. A comparison with the classical re-
sults on the circle and divisor problems shows that our (1.12) corresponds
to the achievements of Ingham [13]. It is natural to ask for stronger es-
timates comparable to those of Gangadharan [6] and Corrádi–Kátai [2].
However, it is immediate that the very sharp bounds in [2] depend on the
special multiplicative structure of the function r2(n) and its reappearance
after the exponential sum transformation. Further, even the attempt to gen-
eralize Gangadharan’s elaborate argument leads to overwhelming technical
difficulties.

In this paper we shall use a different approach based on tools from the
theory of uniform distribution (in particular on the Erdős–Turán–Koksma
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inequality) to establish a result which may be compared to those of Gan-
gadharan [6].

Theorem C. As t→∞,

PD3(t) = Ω+(t1/4(log log t)1/4),

i.e.,

lim sup
t→∞

(
PD3(t)

t1/4(log log t)1/4

)
> 0.

P r o o f. The idea is to use a quantitative version of Kronecker’s approx-
imation principle. Recalling (2.3) and the analysis nearby, this has to be
applied to the set of numbers

{α(a)1/3 : a ∈M, α(a) ≤M3} =: {θj : j = 1, . . . , s}
(in arbitrary order), with α(a) as in (3.6). Let s denote the cardinality of
this set; then obviously s �M2. Our first task is to establish a lower bound
for ‖∑s

j=1 hjθj‖ where h = (h1, . . . , hs) ∈ Zs − {0} and ‖ · ‖ denotes the
distance from the nearest integer.

Lemma 7. There exists a positive constant c1 such that

‖h1θ1 + . . .+ hsθs‖ ≥ 1
%(max(|h1|, . . . , |hs|))

for all h ∈ Zs − {0}, where %(t) := (3sMt)c
s
1 .

P r o o f. The numbers θj are all algebraic integers of degree 6. For θj =
α(a)1/3 = |(a1, a2)|3/2, we put θ−j := (a3/2

1 − a3/2
2 )2/3. It is simple to show

that the conjugates of θj are ξrθj , ξrθ−j , r = 0, 1, 2, ξ = 1
2 (−1+ i

√
3) a third

root of unity. We consider the field extension F = Q(θ1, θ
−
1 , . . . , θs, θ

−
s , ξ).

The corresponding Galois group G = Gal(F/Q) contains at most cs1 elements
χ where c1 is a suitable positive constant. For fixed h, let −h0 be the nearest
integer to h1θ1 + . . .+ hsθs. It is clear that∣∣∣

∏

χ∈G
χ(h0 + h1θ1 + . . .+ hsθs)

∣∣∣ ≥ 1,

since the left-hand side is the modulus of the norm of a nonzero algebraic in-
teger. (Note that 1, θ1, . . . , θs are linearly independent over Q.) Furthermore,
for every χ ∈ G,

|χ(h0 + h1θ1 + . . .+ hsθs)| ≤ 3s|h|∞ max
1≤j≤s

|θj | ≤ 3s|h|∞M.

Consequently,

|h0 + h1θ1 + . . .+ hsθs| ≥ (3s|h|∞M)−c
s
1 ,

which establishes Lemma 7.
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Let next ωN denote the s-dimensional sequence (nθ1, . . . , nθs)2N
n=N+1,

where N is any positive integer. In terms of the theory of uniform distribu-
tion (4) modulo 1, it follows that the discrepancy of this sequence satisfies

(4.1) D(ωN ) ≤ cs2s!
logN log γ(N)

γ(N)
,

with γ denoting the inverse function of %, provided that N is so large com-
pared to s that γ(N) ≥ e (say). In fact, (4.1) is essentially the estimate in
Theorem 1.80 of Drmota and Tichy [3], p. 70, with the dependence on the
dimension s worked out explicitly. Now let ¤ denote the s-dimensional cube[

1
2 −ε0M

−1, 1
2 +ε0M

−1
]s

(cf. (2.3)). Then it follows that (with 〈·〉 denoting
the fractional part)

#{n ∈ N : N < n ≤ 2N, (〈nθ1〉, . . . , 〈nθs〉) ∈ ¤} ≥ Nvol(¤)−ND(ωN )

≥ N((2ε0)sM−s − cs3s!N−c
−s
1 (logN)2)

≥ N((c4M)−c5M
2 − (c6M)c7M

2
N−c

−M2

8 (logN)2),

using Stirling’s formula and the fact that s � M2. A short computation
shows that this last expression is > 0 if we choose

(4.2) N = N∗(M) :=
[
c
cM

2
10

9

]

with sufficiently large constants c9, c10. Consequently, for arbitrary M there
exists at least one integer U in ]N∗(M), 2N∗(M)] such that (〈Uθ1〉, . . .
. . . , 〈Uθs〉) ∈ ¤ which, in the notation of Section 2, means that (2.3) is
true for all (m,h) ∈ M with |(m,h)|3/2 ≤ M . The rest of the analysis in
Section 2 applies as before, yielding the existence of some u∗ ∈ [U−1, U+1]
satisfying

−S∗(u∗) ≥ C7M
1/2

and, in view of Lemma 1, also

PD3(u2
∗) ≥ C8u

1/2
∗ M1/2.

The condition U ∈ ]N∗(M), 2N∗(M)] (along with (4.2)) on the one hand
ensures that u∗ tends to +∞ if so does M , and on the other hand implies
that

M � (log log u∗)1/2.

Thus
PD3(u2

∗) ≥ C9u
1/2
∗ (log log u∗)1/4

for an unbounded sequence of values u∗. This completes the proof of Theo-
rem C.

(4) For an enlightening introduction to this area, the reader may consult, e.g., the
recent textbook of Drmota and Tichy [3].
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