
ACTA ARITHMETICA
LXXXV.2 (1998)

On the sum of a prime and the kth power of a prime

by

Claus Bauer (Freiburg)

1. Introduction and statement of results. In the last few years a
number of authors have investigated nonlinear problems in additive prime
number theory for short intervals. Perelli and Pintz [7] and Mikawa [5] have
shown independently that in an interval [x, x + y] with x7/24+ε ≤ y ≤ x,
all but �c y(log x)−c integers can be represented as the sum of a prime
number and a square of a natural number, where c is any positive constant.
A similar result was achieved by Perelli and Zaccagnini [8] for the sum of
a prime number and the kth power of a natural number for a fixed integer
k ≥ 2. Zhan and Liu [13] have proved the following result: Define

Ek(x)= |{n : n ≤ x, 2 |n, n 6≡ 1 (mod p) ∀p > 2 with p− 1 | k, n 6= p1 + pk2

for all prime numbers p1, p2}|.
Then

E2(x+ y)− E2(x)� y(log x)−A

for x7/16+ε ≤ y ≤ x. We are going to generalize this result for all k ≥ 2 by
proving the following theorem:

Theorem 1. For any k ≥ 2, any A > 0 and any ε > 0,

Ek(x+ y)− Ek(x)� y(log x)−A

for x
7
12 (1− 1

2k )+ε ≤ y ≤ x, where the �-constant depends at most on k, A
and ε.

Applying a standard argument we will derive this estimate from the
following theorem. Let Λ(n), µ(n) and φ(n) denote the von Mangoldt, the
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Möbius and the Euler function respectively and write e(α) = e2πiα. For any
fixed integer k and any integer d ∈ {1, k} define

q∑∗

m=1

=
q∑

m=1
(m,q)=1

, Cd(q, a) =
q∑∗

m=1

e

(
mda

q

)
,

A(q, n) =
q∑∗

a=1

C1(q, a)Ck(q, a)e
(−an

q

)
, σ(n,R) =

∑

q≤R

A(q, n)
φ2(q)

,

R(n) =
∑

n=m1+mk2
x−y<m1≤x

y/2k<mk2≤(2k+1)y/2k

Λ(m1)Λ(m2), P (n) =
∑

n=m1+mk2
x−y<m1≤x

y/2k<mk2≤(2k+1)y/2k

1.

We are going to show

Theorem 2. For any fixed k ≥ 2, any A > 0 and any ε > 0,
∑

x<n≤x+H

|R(n)− σ(n, P )P (n)|2 � Hy2/k(log x)−A

for P = (log x)B1 , where B1 = B1(A) is a sufficiently large constant ,
x7/12+ε ≤ y ≤ x and y1−1/2k+ε ≤ H ≤ y. The �-constant depends at
most on k, A and ε.

Our results are weaker than Perelli and Zaccagnini’s analogous results
in [8], who in our notation can choose H in Theorem 2 as small as
max(y1−1/k+ε, x1/2+ε) and therefore obtain an estimate for the correspond-
ing exceptional set for y as small as max(x

7
12 (1− 1

k )+ε, x1/2+ε). This is due
to the fact that we need a mean value estimate for nonlinear trigonometric
sums over primes and not just over natural numbers as given by Perelli and
Zaccagnini. We can only establish this estimate for a range of H longer than
the one in [8].

2. Notation and structure of the proof. Furthermore, we will use
the following notation:

D1(α) =
∑

x−y<m≤x
Λ(m)e(mα), Dk(α) =

∑

y/2k<mk2≤(2k+1)y/2k

Λ(m)e(mkα),

I1(α) =
∑

x−y<m≤x
e(mα), Ik(α) =

∑

y/2k<mk2≤(2k+1)y/2k

e(mkα),

m ∼M ⇔M ≤ m < 2M.

c and ε denote positive constants which depend at most on k and can take
different values on different occasions. By ‖x‖ we denote the distance from
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x to the nearest integer. We set

L = log x, Q = HL−B2 , P = LB1 ,

where B1 and B2 will be determined in the sequel. Without further refer-
ences we shall make use of the relations log x � log y � logH. The major
arcs M and the minor arcs m are defined by

M =
⋃

q≤P

q⋃
a=1

(a,q)=1

[
a

q
− 1
Q
,
a

q
+

1
Q

]
, m =

[
− 1
Q
, 1− 1

Q

]
\M.

Thus we arrive at

(2.1)
∑

x<n≤x+H

|R(n)− σ(n, P )P (n)|2

=
∑

x<n≤x+H

∣∣∣
1−1/Q\
−1/Q

D1(α)Dk(α)e(−nα) dα− σ(n, P )P (n)
∣∣∣
2

�
∑

x<n≤x+H

∣∣∣
\
M

D1(α)Dk(α)e(−nα) dα− σ(n, P )P (n)
∣∣∣
2

+
∑

x<n≤x+H

∣∣∣
\
m

D1(α)Dk(α)e(−nα) dα
∣∣∣
2

=:
∑

M

+
∑
m

.

3. The minor arcs. In order to estimate the contribution of the integral
over the minor arcs, we shall establish Lemma 3.3 below. For this purpose we
will first give some results and definitions from [4]. For any positive integers
x, y and r with 1 ≤ r ≤ x, xε ≤ y ≤ x and any real number α = a/q+ θ/q2,
(a, q) = 1, |θ| ≤ 1, we have:

(3.1)
∑

x<n≤x+y

τ c(n)τ c(n+ r)� y(log x)c,

(3.2)
∑

n≤y
τ c(n) min

(
x,

1
‖nα‖

)

� (xyq−1/2 + xy1/2 + x1/2y + (xyq)1/2)(log xyq)c

(see (3.3) and (3.4) of [4]).
For any arithmetic function g(n) we define

∇(g(n); v1) = g(n)g(n+ v1),

∇(g(n); v1, . . . , vj) = ∇(∇(g(n); v1, . . . , vj−1); vj).
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Thus

(3.3) ∇((g1g2)(n); v1, . . . , vj) = ∇(g1(n); v1, . . . , vj)∇(g2(n); v1, . . . , vj)

and for g(n)� G(n),

(3.4) ∇(g(n); v1, . . . , vj)� ∇(G(n); v1, . . . , vj).

For a polynomial f(n) with real coefficients we set

∆(f(n); v1) = f(n+ v1)− f(n),

∆(f(n); v1, . . . , vj) = ∆(∆(f(n); v1, . . . , vj−1); vj).

For f(n) = βnk and two polynomials f1(n) and f2(n) we thus obtain

(3.5)

∆(f(n); v1, . . . , vk−1)

= βk!v1 . . . vk−1n+ β
k!
2

∑

a1+...+ak−1=k
ai≥1

va1
1 . . . v

ak−1
k−1 ,

∆(f(n); v1, . . . , vk) = βk!v1 . . . vk,

∆((f1 + f2)(n); v1, . . . , vk−1)

= ∆(f1(n); v1, . . . , vk−1) +∆(f2(n); v1, . . . , vk−1).

For positive numbers x and y, an arithmetic function g(n) which only
takes positive values and a polynomial f(n) with real coefficients we fur-
thermore define

S =
∑

x<n≤x+y

g(n)e(f(n)).

Thus for each integer j ≥ 1 we have

|S|2j � y2j−j−1(3.6)

×
∑
v1

. . .
∑
vj

∑
n

∇(g(n); v1, . . . , vj)e(∆(f(n); v1, . . . , vj)),

where the vi run over all integers and for any fixed v1, . . . , vj the summation
over n is restricted by the inequalities

(3.7) x < n+ σ(j) ≤ x+ y,

where σ(j) runs over the set

(3.8) Σ(j) =
{∑

z∈Z
z : Z is any subset of {v1, . . . , vj}

}
.

Finally,

(3.9)
∑
v1�y

. . .
∑
vj�y

∑

n∼N
∇(τ c(n)τ c(n+ r); v1, . . . , vj)� yjN(log y)c

for Nε � y � N and r � N .
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The above statements can all be found in [4], (3.5)–(3.10), Lemmas 3.1
and 3.2 or they follow straight from the definitions.

In the next three lemmas we use L to denote log y (and not log x as
before).

Lemma 3.1. Let am and bm for m ≥ 0 be real numbers satisfying am �
τ c(m) and bm � τ c(m). Then for every fixed number k ≥ 2 and any A > 0
there exists a B3 = B3(A) > 0 such that for B ≥ B3 the estimate

(3.10)
2y\
y

∣∣∣
∑

t<mknk≤t+H,m∼M
ambne(mknkα)

∣∣∣
2
dt� H2y2/k−1L−A

holds for α = a/q + θ/q2, (a, q) = 1, |θ| ≤ 1, LB ≤ q ≤ HL−B , y1−1/k ≤
H ≤ y, LB ≤ M ≤ 2Hy1/k−1L−B. The �-constant depends at most on k
and A. The lemma also holds if the summation range of n is shortened.

P r o o f. Let K = 2k−1 and J1 denote the left-hand side in (3.10). By
Cauchy’s inequality and (3.1) we thus see

J1 � MLc
∑

m∼M

2y\
y

∣∣∣
∑

t<mknk≤t+H
bne(mknkα)

∣∣∣
2
dt

= MLc
∑

m∼M

∑
n1

∑

n2, n1 6=n2

y<mknk1≤2y+H

bn1bn2e(m
k(nk1 − nk2)α)

T2\
T1

1 dt

+O
(

MLcMH
∑

n�y1/k/M

τ c(n)
)
,

where T1 = max(mknk1 − H,mknk2 − H) and T2 = min(mknk1 ,m
knk2). Set

n1 − n2 = r, n2 = n and g(m,n, r) = H − mkr(nk−1 + . . . + (n + r)k−1).
As

TT2

T1
1 dt = 0, if not mk|nk1 − nk2 | ≤ H, we can assume that |r| �

HM−kMk−1y−(k−1)/k = HM−1y−(k−1)/k, and also r > 0. By Rl(n) we
denote a polynomial in at least the variable n whose degree relative to n
is not greater than l. For a sufficiently large B, by using (3.1), Hölder’s
inequality, (3.5) and (3.6) we obtain

|J1|K/2

�
∣∣∣MLc

∑

0<r�H/(My(k−1)/k)

∑

m∼M

∑

y1/k/M�n�y1/k/M

mkr(nk−1+...+(n+r)k−1)≤H

g(m,n, r)

× bnbn+re(mkrknk−1α+mkRk−2(n)α)
∣∣∣
K/2

+HKyK(2−k)/2kL−KA/2

�MK/2(Hy(1−k)/kM−1M)K/2−1
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× Lc
∑

0<r�H/(My(k−1)/k)

∑

m∼M

∣∣∣
∑

y1/k/M�n�y1/k/M

mkr(nk−1+...+(n+r)k−1)≤H

g(m,n, r)

× bnbn+re(mkrknk−1α+mkRk−2(n)α)
∣∣∣
K/2

+HKyK(2−k)/2kL−KA/2

� HK/2−1MK/2y(1−k)(K/2−1)/k
(
y1/k

M

)K/2−k+1

Lc

×
∑

0<r�H/(My(k−1)/k)

∑
m

∑
v1

. . .
∑
vk−2

∑
n

∇(g(m,n, r)bnbn+r; v1, . . . , vk−2)

× e(mkrk!v1 . . . vk−2nα+mkR0(n)α) +O(HKyK(2−k)/2kL−KA/2),

where |v1| � y1/kM−1, . . . , |vk−2| � y1/kM−1, y1/kM−1 � n+σ(k− 2)�
y1/kM−1, mkr((n + σ(k − 2))k−1 + . . . + (r + n + σ(k − 2))k−1) ≤ H and
m ∼M . Applying Hölder’s inequality again as well as (3.3), (3.4) and (3.9)
we find that

(3.11) |J1|K
2/2

� HK2/2−KyK
2(2−k)/2kMK(k−1)

(
H

My(k−1)/k
· y

(k−1)/k

Mk−1

)K−1

Lc

×
∑

0<r�H/(My(k−1)/k)

∑
v1

. . .
∑
vk−2

∑
n

∣∣∣
∑
m

∇(g(m,n, r); v1, . . . , vk−2)

× e(mkrk!v1 . . . vk−2nα+mkR0(n)α)
∣∣∣
K

+HK2
yK

2(2−k)/2kL−K
2A/2,

where the summations are as stated before. Applying (3.5) and (3.6) to the
inner sum over m we obtain
∣∣∣
∑
m

∣∣∣
K

�MK−k∑
u1

. . .
∑
uk−1

∑
m

∇(∇(g(m,n, r); v1, . . . , vk−2);u1, . . . , uk−1)

× e
(
mnr(k!)2v1 . . . vk−2u1 . . . uk−1α

+ nr
(k!)2

2
v1 . . . vk−2

( ∑

a1+...+ak−1=k
ai≥1

ua1
1 + . . .+ u

ak−1
k−1

)
α+ T (m)α

)
,

where |u1| �M, . . . , |uk−1| �M , m+σ∗(k−1) ∼M , (m+σ∗(k−1))kr((n+
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σ(k−2))k−1 + . . .+(r+n+σ(k−2))k−1) ≤ H and T (m) depends on m, but
not on n. Substituting the last estimate in (3.11), using partial summation,

∇(∇(g(m,n, r); v1, . . . , vk−2);u1, . . . , uk−1) ≤ HK2/2

and
∑
A<n<B e(nα)� min(B −A, 1/‖α‖) we find that

(3.12) |J1|K
2/2

� HK2/2−KyK
2(2−k)/2kMK(k−1)

(
H

Mk

)K−1

MK−kLc

×
∑

0<r�H/(My(k−1)/k)

∑
v1

. . .
∑
vk−2

∑
u1

. . .

. . .
∑
uk−1

∑
m

∣∣∣∣
∑
n

∇(∇(g(m,n, r); v1, . . . , vk−2);u1, . . . , uk−1)

× e
(
nr

(k!)2

2
v1 . . . vk−2u1 . . . uk−1(2m+ u1 + . . .+ uk−1)α

)∣∣∣∣

+HK2
yK

2(2−k)/2kL−K
2A/2

� HK2−1yK
2(2−k)/2kLc

∑

0<r�H/(My(k−1)/k)

∑
v1

. . .
∑
vk−2

∑
u1

. . .

. . .
∑
uk−1

∑
m

min
(
y1/k

M
,

1∥∥r (k!)2

2 v1 . . . vk−2u1 . . . uk−1(2m+ u1 + . . .+ uk−1)α
∥∥
)

+HK2
yK

2(2−k)/2k,

where the summations are as stated before. The expression inside ‖ ‖ can
only be zero if at least one ui or one vi is 0. (The expression in brackets is
equal to m+ (m+ u1 + . . .+ uk−1) and so 6= 0 because m+ σ(k− 1) ∼M.)
Thus the contribution of these terms to (3.12) is

� y1/k

M
· H

My(k−1)/k

(
y(k−3)/k

Mk−3 Mk−1 +
y(k−2)/k

Mk−2 Mk−2
)
M(3.13)

� HL−K
2A/2−c.

The number of terms which satisfy

0 6= n = r
(k!)2

2
v1 . . . vk−2u1 . . . uk−1(2m+ u1 + . . .+ uk−1)



106 C. Bauer

is ≤ τ2k−2(n), because r, ui and vj respectively divide n and for fixed r, ui
and vj there is at most one possible choice for m. We can derive from

n� H

My(k−1)/k

(
y1/k

M

)k−2

Mk−1M = HMy−1/k

and (3.2) that these terms do not contribute to (3.12) more than

�
∑

0<n�HMy−1/k

τ c(n) min
(
y1/k

M
,

1
‖nα‖

)

� HLc(q−1/2 +M1/2y−1/2k +H−1/2M−1/2y1/2k +H−1/2q1/2)

� HL−K
2A/2−c,

ifB is chosen arbitrarily large. Now the lemma follows from the last estimate,
(3.12) and (3.13).

Lemma 3.2. Let am denote real numbers which satisfy am � τ c(m). For
any integer k ≥ 2 and any A > 0 there exists a B4 = B4(A) > 0 such that
for B ≥ B4 the estimate

(3.14)
2y\
y

∣∣∣
∑

t<mknk≤t+H,m∼M
ame(mknkα)

∣∣∣
2
dt� H2y2/k−1L−A

holds for α = a/q + θ/q2, (a, q) = 1, |θ| ≤ 1, LB ≤ q ≤ HL−B , y1−1/kLB ≤
H ≤ y and M2k−2 ≤ y1/2kL−B. The �-constant depends at most on k and
A.

Remark. Under the conditions of Lemma 3.2,
2y\
y

∣∣∣
∑

t<mknk≤t+H,m∼M
(log n)ame(mknkα)

∣∣∣
2
dt� H2y2/k−1L−A.

The lemma and the remark also apply if the summation range of n is
shortened.

P r o o f (of Lemma 3.2). Let J2 denote the left-hand side in (3.14). Fol-
lowing the same lines as in the proof of Lemma 3.1 we arrive at

J2 =
2y\
y

∑

m1∼M

∑

m2∼M

∑
n1

∑
n2

m1n1 6=m2n2

t<(mini)k≤t+H

am1am2

× e(((m2n2)k − (m1n1)k)α) dt+O
(
H

∑

n�y1/k

τ c(n)
)
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=
∑

m1∼M

∑

m2∼M
am1am2

×
∑
n1

∑
n2

0<|(m2n2)k−(m1n1)k|≤H
y<(mini)k≤2y+H

(H − |(m2n2)k − (m1n1)k|)

× e((m2n2 −m1n1)((m1n1)k−1 + . . .+ (m2n2)k−1)α)

+O(Hy1/kLc).

Let r = m2n2 − m1n1, δ = (m1,m2), m1 = δm∗1, m2 = δm∗2, n = n1

and without loss of generality assume r > 0. Then (m∗1,m
∗
2) = 1 and δ | r.

Writing r = δr∗ and noting that

r∗δ =
(m∗2n2)k − (m∗1n1)k

(m∗1n1)k−1 + . . .+ (m∗2n2)k−1 δ � Hy(1−k)/k,

we arrive at

J2 =
∑

δ�M

∑

0<r∗�Hy1/k−1δ−1

∑

m∗1∼Mδ−1

∑

m∗2∼Mδ−1

(m∗1 ,m
∗
2)=1

am∗1δam∗2δ(3.15)

×
∑
n

(H − kδkr∗(m∗1n)k−1 + Pk−2(m∗1n))

× e(kδkr∗(m∗1n)k−1α+ Pk−2(m∗1n)α) +O(Hy1/kLc),

where Pk−2(m∗1n) is a polynomial in m∗1n, δ and r∗ with only positive co-
efficients, and its degree relative to m∗1n is not greater than k − 2. The
summation over n is given by

m∗1δn ≡ −r∗δ (mod m∗2δ), 0 < kδkr∗(m∗1n)k−1 + Pk−2(m∗1n) ≤ H,
y < (m∗1δn+ r∗δ)k ≤ 2y +H, y < (m∗1δn)k ≤ 2y +H.

Using (3.1) we see that the terms with δ > LD do not contribute more
than∑

LD<δ�M
� H

∑

LD<δ

τ c(δ)
∑

0<r∗�Hy1/k−1δ−1

∑

m∗1∼Mδ−1

∑

m∗2∼Mδ−1

τ c(m∗1)τ c(m∗2)

×
∑

(m∗1δn)k�y

∑
n2

r∗=m∗2n2−m∗1n

1

� H
∑

LD<δ

τ c(δ)
∑

0<r∗�Hy1/k−1δ−1

∑

n�y1/kδ−1

τ c(n)τ c(n+ r∗)

� H2y2/k−1
∑

LD<δ

τ c(δ)
δ2 � H2y2/k−1L−A,
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if D is sufficiently large. So we can concentrate on the case δ < LD. Without
loss of generality we assume δ = 1 since in the other cases the proof does not
change fundamentally. As a consequence we suppose the m1 and m2 to be
relatively prime and write n = T +vm2 with v ≥ 0, 0 ≤ T �M , T ≡ −m1r
(mod m2) and m1m1 ≡ 1 (mod m2). Then one can see that it is enough to
estimate the following expression which we denote by J2 again:

(3.16) J2 =
∑

0<r�Hy1/k−1

∑

m1∼M

∑

m2∼M
am1am2

×
∑
v

(H − kr(m1m2v)k−1 + Pk−2(m1m2v))

× e(kr(m1m2v)k−1α+ Pk−2(m1m2v)α) +O(H2y2/k−1L−A),

where v runs over

0 < kr(m1m2v +m1T )k−1 + Pk−2(m1m2v +m1T ) ≤ H,
y � (m1m2v +m1T + r)k � y, y � (m1m2v +m1T )k � y.

So the maximal range of summation over v is given by

(3.17) 0 < r(m1m2v)k−1 ≤ H, y � (m1m2v)k � y.

In the sequel we still assume the mi and uj to be pairwise coprime. By
induction we will show that for 1 ≤ j ≤ k − 1, J = 2j−1 and a sufficiently
large B the following holds:

|J2|J � HJ−1y1−J(y1/k)2J−j−1Lc
∑

0<r1�Hy1/k−1

. . .(3.18)

. . .
∑

0<rj�Hyj/k−1/(r1...rj−1)

∑

m1∼M
. . .

∑

m2J∼M
am1 . . . am2J

×
∑
n

g(r1, . . . , rj ,m1, . . . ,m2J ,m1 . . .m2Jn)

× e(k . . . (k − j + 1)r1 . . . rj(m1 . . .m2Jn)k−jα

+ Pk−j−1(m1 . . .m2Jn)α) +O(H2Jy−Jy2J/kL−JA),

where the maximal range of summation over n is given by

(3.19) 0 ≤ r1 . . . rj(m1 . . .m2Jn)k−j � H, y � (m1 . . .m2Jn)k � y,

and g(r1, . . . , rj ,m1, . . . ,m2J ,m1 . . .m2Jn) � HJ is a polynomial in the
given variables.

For j = 1, (3.18) follows from (3.16) and (3.17). Suppose that (3.18)
holds for a j with 1 ≤ j ≤ k − 2. By using Cauchy’s inequality we get
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(3.20) |J2|2J
� H2J−2y2−2J(y1/k)4J−2j−2LcHyj/k−1

×
∑

0<r1�Hy1/k−1

. . .
∑

0<rj�Hyj/k−1/(r1...rj−1)

∑

m1∼M
. . .

. . .
∑

m2J∼M

∑

u1∼M
. . .

∑

u2J∼M
am1 . . . am2Jau1 . . . au2J

×
∑
n

∑
u

g(r1, . . . , rj ,m1, . . . ,m2J ,m1 . . .m2Jn)

× g(r1, . . . , rj , u1, . . . , u2J , u1 . . . u2Ju)e(k . . . (k − j + 1)r1 . . . rj

× ((u1 . . . u2Ju)k−jα−(m1 . . .m2Jn)k−jα)+Pk−j−1(u1 . . . u2Ju)α

− Pk−j−1(m1 . . .m2Jn)α) +O(H4Jy−2J (y1/k)4JL−2JA),

where the summations over n and u are both given by (3.19). Setting rj+1 =
u1 . . . u2Ju−m1 . . .m2Jn, we obtain

(3.21) (u1 . . . u2Ju)k−j − (m1 . . .m2Jn)k−j

= rj+1(k − j)(m1 . . .m2Jn)k−j−1 + Pk−j−2(m1 . . .m2Jn),

where Pk−j−2 is a polynomial at least in m1 . . .m2Jn and with degree ≤
k − j − 2 with respect to this variable. By employing the definition of rj+1

and (3.19) we also have

rj+1 =
(u1 . . . u2Ju)k−j − (m1 . . .m2Jn)k−j

(m1 . . .m2Jn)k−j−1 + . . .+ (u1 . . . u2Ju)k−j−1(3.22)

� H

r1 . . . rj
y(j+1)/k−1.

We shall assume without loss of generality that rj+1 ≥ 0. Keeping in mind
that the m1 . . .m2J and u1 . . . u2J were supposed to be coprime we write

(3.23) n = S + gu1 . . . u2J ,

where m1 . . .m2JS ≡ −rj+1 (mod u1 . . . u2J), 0 ≤ S � M2J and g ≥ 0.
From (3.19) and (m1 . . .m2JS)k �M4×2k−3k � yL−2Bk we can derive

(3.24) y � (m1 . . .m2Ju1 . . . u2Jg)k � y.

From (3.19) and (3.23) we further conclude that

(3.25) 0 ≤ r1 . . . rj+1(m1 . . .m2Ju1 . . . u2Jg)k−j−1 � H.

Taking into account (3.23) we can write
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g(r1, . . . , rj ,m1, . . . ,m2J ,m1 . . .m2Jn)

× g(r1, . . . , rj , u1, . . . , u2J ,m1 . . .m2Jn+ rj+1)

:= g(r1, . . . , rj+1,m1, . . . ,m2J , u1, . . . , u2J ,m1 . . .m2Ju1 . . . u2Jg),

and so from (3.20) to (3.25) we obtain

|J2|2J� H2J−1y1−2J(y1/k)4J−j−2Lc(3.26)

×
∑

0<r1�Hy1/k−1

. . .
∑

0≤rj+1�Hy(j+1)/k−1/(r1...rj−1rj)

×
∑

m1∼M
. . .

∑

m2J∼M

∑

u1∼M
. . .

∑

u2J∼M
am1 . . . am2Jau1 . . . au2J

×
∑
g

g(r1, . . . , rj+1,m1, . . . ,m2J ,

u1, . . . , u2J ,m1 . . .m2Ju1 . . . u2Jg)

× e(k . . . (k − j)r1 . . . rjrj+1(m1 . . .m2Ju1 . . . u2Jg)k−j−1

+ Pk−j−2(m1 . . .m2Ju1 . . . u2Jg)α)

+O(H4Jy−2J (y1/k)4JL−2JA),

where the summation ranges are given by (3.24) and (3.25). Using (3.1) and
(3.19) it follows that in (3.20) and therefore also in (3.26) the contribution
of the terms with rj+1 = 0 is

� H4J−1y1−2J (y1/k)4J−j−2Lc

×
∑

0<r1�Hy1/k−1

. . .
∑

0<rj�Hyj/k−1/(r1...rj−1)

(
H

r1 . . . rj

)1/(k−j)

� H4Jy−2J(y1/k)4J−1Lc

×
∑

0<r1�Hy1/k−1

. . .
∑

0<rj−1�Hy(j−1)/k−1/(r1...rj−2)

1
r1 . . . rj−1

� H4Jy−2J(y1/k)4JLcy−1/k.

Now (3.18) follows from (3.26) in the case of j+1 if we rename the u1, . . . , u2J

as m2J+1, . . . ,m4J . Choosing j = k − 1 in (3.18) and setting K = 2k−2, we
derive the following result from (3.19) and by using partial summation:

|J2|K � H2K−1y−K(y1/k)2KLc(3.27)

×
∑

0<r1�Hy1/k

. . .
∑

0<rk−1�Hy−1/k/(r1...rk−2)

∑

m1∼M
. . .

. . .
∑

m2K∼M
τ c(m1 . . .m2K)
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×min
(

H

r1 . . . rk−1m1 . . .m2K
,

1
‖k!r1 . . . rk−1m1 . . .m2Kα‖

)

+H2Ky−K(y1/k)2KL−KA

� H2K−1y−K(y1/k)2KLc

× max
N�HM2Ky−1/kLc

∑

n∼N
τ c(n) min

(
H

N
,

1
‖nα‖

)

+H2Ky−K(y1/k)2KL−KA,

because r1 . . . rk−1m1 . . .m2K � HM2Ky−1/kLc. For N ≥ LD1 we find

(3.28)
∑

n∼N
τ c(n) min

(
H

N
,

1
‖nα‖

)

� (Hq−1/2 + (HN)1/2 +HN−1/2 + (Hq)1/2)Lc

� (Hq−1/2 +HMKy−1/2k + HL−D1/2 + (Hq)1/2)Lc

� HL−KA−c

by applying (3.2) for sufficiently large B and D1. For N ≤ LD1 and D1

fixed according to the preceding discussion, we obtain the following for a
sufficiently large B:

∑

n∼N
τ c(n) min

(
H

N
,

1
‖nα‖

)
� L

∑

n�LD1

1
‖nα‖(3.29)

� Lq
∑

n≤LD1

1� HL−KA−c.

The lemma now follows from (3.27)–(3.29).
From Lemmas 3.1 and 3.2 we derive

Lemma 3.3. Let α = a/q + θ/q2, (a, q) = 1 and |θ| ≤ 1. For every fixed
k ≥ 2 and every A > 0 there exists a B5 = B5(A) > 0 such that for B ≥ B5,

2y\
y

∣∣∣
∑

t<mk≤t+H
Λ(m)e(mkα)

∣∣∣
2
dt� H2y2/k−1L−A

for LB ≤ q ≤ HL−B and y1−1/2kLB ≤ H ≤ y, where the �-constant
depends at most on k and A.

P r o o f. Set

M(s) =
∑

n≤X
µ(n)n−s, X = 2y1/2k, Re(s) > 1.
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We conclude from Heath-Brown’s identity (see [2]) in the form

−ζ
′(s)
ζ(s)

= ζ(s)ζ ′(s)M2(s)− 2ζ ′(s)M(s)− ζ ′(s)
ζ(s)

(1− ζ(s)M(s))2,

that
∑
t<mk≤t+H Λ(m)e(mkα) can be written as O(Lc) sums of the form

(3.30)
∑

= w
∑

t<(m1...m4)k≤t+H
mi∼Mi

a1(m1) . . . a4(m4)e((m1 . . .m4)kα),

where |w| ∈ {1, 2}, a1(m1) = logm1, a2(m2) = 1, a3(m3) = µ(m3),
a4(m4) = µ(m4), y ≤ (M1 . . .M4)k ≤ 3y, M3 ≤ 2y1/2k, M4 ≤ 2y1/2k.
(Some Mi may be 1.)

Applying Cauchy’s inequality it is obviously enough to show that any
integral

T2y
y
|∑ |2 dt, where

∑
is of the type in (3.30), can be estimated

sufficiently well.
We distinguish between two cases:

(a) If there exists an 1 ≤ j ≤ 4 with xε ≤ Mj ≤ 2y1/2k, we can define
a∗1(m1) by a∗1(m1) log(2y + H) = a1(m1) and replace a1(m1) by a∗1(m1)
in (3.30). Then by applying the assumption of the lemma and Lemma 3.1
for M = Mj we obtain

2y\
y

∣∣∣
∑∣∣∣

2
dt� H2y2/k−1L−A−c.

(b) If Mi satisfies Mi < xε or Mi > 2y1/2k for all 1 ≤ i ≤ 4 there exists
exactly one j with Mj > 2y1/2k. We know that in this case j ≤ 2. For j = 2
we apply Lemma 3.2 to M =

∏
i 6=2Mi ≤ xε. If j = 1 we apply the remark

to Lemma 3.2.

In the sequel we use L again to denote log x. We can now proceed to
estimate the sum

∑
m in (2.1). Arguing as in Section 3 of [6] we find

∑
m

=
\
m

D1(α)Dk(α)
\
m

D1(β)Dk(β)K(α− β) dβ dα

�
\
m

|D1(α)Dk(α)|
\
m

|D1(β)Dk(β)|min
(
H,

1
‖α− β‖

)
dβ dα,

where K(η) =
∑
x<n≤x+H e(ηn). Splitting the unit interval in H adjacent,

disjoint intervals Hi of length H−1, we obtain
∑
m

�
∑

1≤i≤H

∑

1≤j≤H

H

1 + |i− j|(3.31)

×
\

m∩Hi
|D1(α)Dk(α)|

\
m∩Hj

|D1(β)Dk(β)| dα dβ
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� H
∑

1≤i≤H

( \
m∩Hi

|D1(α)Dk(α)| dα
)2 ∑

1≤j≤H

1
1 + |i− j|

� HL
∑

1≤i≤H

( \
m∩Hi

|D1(α)|2 dα
)( \

m∩Hi
|Dk(α)|2 dα

)

� HyL3 max
1≤i≤H

\
m∩Hi

|Dk(α)|2 dα.

If for 1 ≤ i ≤ H we choose a fixed α ∈ m ∩ Hi ⊂ [α − 1/H,α + 1/H], we
obtain

(3.32)
∑
m

� Hy2/kL−A

from (3.31), provided we can show that

(3.33)
1/H\
−1/H

|Dk(α+ γ)|2 dγ � y2/k−1L−A−3

uniformly for all α ∈ m. Applying Gallagher’s lemma (see Lemma 1 of [1])
we find

1/H\
−1/H

|Dk(α+ γ)|2 dγ

� H−2
y/2k\

y/2k−H/2

∣∣∣
∑

y/2k<mk≤t+H/2
Λ(m)e(mkα)

∣∣∣
2
dt

+H−2
(2k+1)y/2k−H/2\

y/2k

∣∣∣
∑

t<mk≤t+H/2
Λ(m)e(mkα)

∣∣∣
2
dt

+H−2
(2k+1)y/2k\

(2k+1)y/2k−H/2

∣∣∣
∑

t<mk≤(2k+1)y/2k

Λ(m)e(mkα)
∣∣∣
2
dt

=: J1 + J2 + J3.

Because of the definition of the minor arcs we can apply Lemma 3.3 to
estimate J2 by the right side of (3.33). If H ≤ yL−A−5 a trivial estimate
will give

J1 � H−2H(Hy1/k−1L)2 = Hy2/k−2L2 ≤ y2/k−1L−A−3.

Otherwise we use Vinogradov’s estimate (Hua [3], Lemma 2) which says
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that for any λ0 > 0 the estimate∑

n≤x
e(αpk)� xL−λ0 ,

holds for α = a/q + θ/q2, (a, q) = 1, |θ| ≤ 1, Lλ ≤ q ≤ xL−λ and λ ≥ c =
c(λ0). Applying this to J1 we obtain for any sufficiently large B1 and B2

and H > yL−A−5 the following:

J1 � H−2Hy2/kL−2A−8 < y2/k−1L−A−3.

Treating J3 in the same way and summing up the estimates for the Ji, we
obtain (3.33) and thus (3.32).

4. The major arcs. We will need the following lemma:

Lemma 4.1. For any constants c > 0 and A > 0,

∑

χ (mod q)

2y\
y

∣∣∣
∑′

t<p≤t+θt
(log p)χ(p)

∣∣∣
2
dt�A,ε,c θ

2y3L−A

for q ≤ Lc and y1/6+ε ≤ yθ ≤ y, where
∑′ indicates that if χ is the principal

character , then
∑
t<p≤t+θt log p is replaced by

∑
t<p≤t+θt log p− θt.

P r o o f. The lemma is a generalization of Selberg’s inequality. The proof
goes along the same lines as the proofs of Lemmas 5 and 6 in [9].

Remark. The result is also true if θ is replaced by θc(t), where c(t) is a
positive function of t which satisfies 1� c(t)� 1 in the integration interval.

In the sequel we fix B1 and choose B2 sufficiently large according to the
discussion in Section 3. From (2.1) we obtain

∑

M

�
∑

x<n≤x+H

∣∣∣∣
∑

q≤P

q∑∗

a=1

e

(
−a
q
n

)
(4.1)

×
1/Q\
−1/Q

D1

(
a

q
+ γ

)(
Dk

(
a

q
+ γ

)
−Ck(q, a)

φ(q)
Ik(γ)

)
e(−γn) dγ

∣∣∣∣
2

+
∑

x<n≤x+H

∣∣∣∣
∑

q≤P

q∑∗

a=1

Ck(q, a)
φ(q)

e

(
−a
q
n

)

×
1/Q\
−1/Q

(
D1

(
a

q
+ γ

)
− I1(γ)

µ(q)
φ(q)

)
Ik(γ)e(−γn) dγ

∣∣∣∣
2

+
∑

x<n≤x+H

∣∣∣∣
∑

q≤P

q∑∗

a=1

µ(q)Ck(q, a)
φ2(q)

e

(
−an
q

)
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×
1/2\
1/Q

I1(γ)Ik(γ)e(−nγ) dγ
∣∣∣∣
2

=:
∑

x<n≤x+H

(|An|2 + |Bn|2 + |Cn|2).

Applying Cauchy’s inequality and Gallagher’s lemma (see [1], Lemma 1) we
find that for a fixed n,

(4.2) |An|2

≤ P 2 max
q≤P

(a,q)=1

1/Q\
−1/Q

∣∣∣∣Dk

(
a

q
+ γ

)
− Ck(q, a)

φ(q)
Ik(γ)

∣∣∣∣
2

dγ

1\
0

|D1(γ)|2 dγ

� Q−2yL2B1+2

× max
q≤P

(a,q)=1

(2k+1)y/2k\
y/2k−Q/2

∣∣∣∣
∑

t<mk≤t+Q/2
y/2k<mk≤(2k+1)y/2k

(
Λ(m)e

(
a

q
mk

)
− Ck(a, q)

φ(q)

)∣∣∣∣
2

dt.

Disregarding the powers of primes counted by Λ(n) and introducing
Dirichlet characters, we can derive from (4.2) that

(4.3) |An|2 � Q−2yL3B1+2

×max
q≤P

∑

χmod q

y/2k\
y/2k−Q/2

∣∣∣
∑′

y/2k<pk≤t+Q/2
(log p)χ(p)

∣∣∣
2
dt

+Q−2yL3B1+2

×max
q≤P

∑

χmod q

(2k+1)y/2k−Q/2\
y/2k

∣∣∣
∑′

y/2k<pk≤t+Q/2
(log p)χ(p)

∣∣∣
2
dt

+Q−2yL3B1+2

×max
q≤P

∑

χmod q

(2k+1)y/2k\
(2k+1)y/2k−Q/2

∣∣∣
∑′

y/2k<pk≤t+Q/2
(log p)χ(p)

∣∣∣
2
dt

=: K1 +K2 +K3.

Estimating K1 and K3 trivially we obtain

K1 +K3 � Q−2yL4B1+2Q(Qy1/k−1L)2 = Qy2/k−1L4B1+4 ≤ y2/kL−A.

Substituting t = vk and taking into account that
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Qvy−1 � Qv1−k � k
√
vk +Q/2− k

√
vk � Qv1−k � Qvy−1,

we apply the remark regarding Lemma 4.1 and find that

K2 � Q−2yL3B1+2y1−1/ky3/k
(
Q

y

)2

L−A−3B1−2 = y2/kL−A.

Summing up we get

(4.4) |An|2 � y2/kL−A.

For the estimation of Bn we split the integral. If |γ| ≤ γ0 = y−1LA+4B1+2

we have, by applying the Siegel–Walfisz theorem in short intervals (see (6)
of [6]), the equality

D1

(
a

q

)
=
µ(q)
φ(q)

y +OE,ε,B1(yL−E).

Thus by using partial summation and Ik(γ) � y1/k we obtain, for a suffi-
ciently large E,

(4.5)
\

|γ|≤γ0

∣∣∣∣D1

(
a

q
+ γ

)
− µ(q)
φ(q)

I1(γ)
∣∣∣∣|Ik(γ)| dγ � y1/kL−A/2−2B1 .

If γ0 < |γ| ≤ 1/Q, we use Lemmas 4.2 and 4.8 of [11] to show Ik(γ) �
1/y(k−1)/k|γ|, and thus

\
γ0<|γ|≤1/Q

�
( 1\

0

(∣∣∣∣D1

(
a

q
+ γ

)∣∣∣∣
2

+ |I1(γ)|2
)
dγ

)1/2

(4.6)

×
( \
γ0<|γ|≤1/Q

(|γ|−2y2/k−2) dγ
)1/2

� y1/kL−A/2−2B1 .

From (4.5) and (4.6) we can derive

(4.7) |Bn|2 � y2/kL−A.

We note that for s ≥ ck2 log k,
1\
0

|Ik(γ)|2s dγ � y2s/k−1

(see Lemma in 5.2 of [12]). So together with I1(γ) � 1/‖γ‖ we have the
following estimate for the integral in Cn

\
�
( 1\

0

|Ik(γ)|2s dγ
)1/2s( 1/2\

1/Q

|γ|−2s/(2s−1) dγ
)(2s−1)/2s

� y1/k−1/2sQ1/2s = y1/kL−B2/2s,
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and so

(4.8) |Cn|2 � y2/kL−A.

From (4.1), (4.4), (4.7) and (4.8) we obtain
∑

M

� Hy2/kL−A,

from which, together with (2.1) and (3.32), Theorem 2 follows.

5. Proof of Theorem 1. We need the following lemma:

Lemma 5.1. Let T = [ k
√
H], suppose η is a small fixed number with

0 < η < 1/8, w is an arbitrarily large fixed number and v = w+ 1−wη. Set
furthermore

X =
[
(log T )

k − 1/2
20

· η
wv

]
and S = [Xv].

Then for x with x1/3 ≤ H ≤ x and each fixed D with S ≤ (logH)D,

∑

x<n≤x+H

∣∣∣∣σ(n, (logH)D)−
∏

p≤S

(
1 +

A(p, n)
(p− 1)2

)∣∣∣∣
2

�ε,k,w,η H(log T )−w+1+wη+ε.

P r o o f. The proof is literally the same as the one of Satz 1 of [10].
Furthermore, we know from Lemma 2.6 of [10] that

∏

p≤S

(
1 +

A(p, n)
(p− 1)2

)
� L−1.

Using this we obtain

Ek(x+H)− Ek(x)

� y−2/kL2
∑

x<n≤x+H

|R(n)− σ(n, P )P (n)|2

+ y−2/kL2
∑

x<n≤x+H

∣∣∣∣σ(n, P )P (n)−
∏

p≤S

(
1 +

A(p, n)
(p− 1)2

)
P (n)

∣∣∣∣
2

.

Now Theorem 1 follows from Lemma 5.1 and Theorem 2.

The author would like to thank Professor Dr. T. Zhan and Professor Dr.
D. Wolke for their steady encouragement.
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[5] H. Mikawa, On the sum of a prime and a square, Tsukuba J. Math. 17 (1993),
299–310.

[6] A. Pere l l i and J. Pintz, On the exceptional set for Goldbach’s problem in short
intervals, J. London Math. Soc. (2) 47 (1993), 41–49.

[7] —, —, Hardy–Littlewood numbers in short intervals, J. Number Theory 54 (1995),
297–308.

[8] A. Pere l l i and A. Zaccagnin i, On the sum of a prime and a k-th power , Izv.
Ross. Akad. Nauk Mat. 59 (1995), no. 1, 185–200.

[9] B. Saf far i and R. C. Vaughan, On the fractional parts of x/n and related se-
quences. II , Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, 1–30.

[10] W. Schwarz, Zur Darstellung von Zahlen durch Summen von Primzahlpoten-
zen. II , J. Reine Angew. Math. 206 (1961), 78–112.

[11] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Clarendon
Press, Oxford, 1986.

[12] A. Zaccagnin i, The exceptional set for the sum of a prime and a k-th power ,
Mathematika 39 (1992), 400–421.

[13] T. Zhan and J. Y. Liu, On a theorem of Hua, Arch. Math. (Basel) 69 (1997),
375–390.

Mathematisches Institut
Albert-Ludwigs-Universität Freiburg
Eckerstr. 1
79104 Freiburg, Germany

Received on 5.6.1996
and in revised form on 28.10.1997 (2998)


