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Index for subgroups of the group of units in number fields
by

TsuToMU SHIMADA (Yamato)

We define a sequence of rational integers u;(E) for each finite index
subgroup F of the group of units in some finite Galois number fields K in
which prime p ramifies. For two subgroups E’CFE of finite index in the group
of units of K we prove the formula v,([E : E']) = >\ {w;(E") — w;(E)}.
This is a generalization of results of P. Dénes [3], [4] and F. Kurihara [5].

Introduction. Let p be an odd prime number, Q and Z the field
of rational numbers and the ring of rational integers, respectively. For each
unit € of Q(¢,) which is not in Z, there exist rational integers a, b
and ¢ satisfying ¢ = a + b(1 — (,)° mod (1 — (,)™!, ab # 0 mod p and
¢ # 0mod (p — 1), where ¢ is uniquely determined by e. P. Dénes [2] de-
fined the p-character of the Bernoulli numbers to be the rational inte-
gers usg, Uy, ..., Up—3 such that B;,; = 0mod pPt!l for 0 < j < w; and
By # 0 mod p?witl where i = 2,4,...,p — 3, and proved the following
results under the assumption that the p-character of the Bernoulli numbers
exists:

THEOREM A. There exists a basis {02,04,...,0,_3} for the group of units
of Q(¢)T modulo {£1} such that

0; = a; + b; (1 — () mod (1 — ()t
with ¢; =i+ (p — L)ul  for some integer 0 < u}; < u;.

THEOREM B. We have
p—3

QG N = D (ui—uj).

=2, even

Here h(x) denotes the class number of a field * and v,, the p-adic valuation
normalized by v,(p) = 1.
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L. C. Washington [6] showed that u; = v,(L,(1,w")), i =2,4,...,p — 3,
and then proved Dénes’ assumption stated above, where w is the Teichmiiller
character. Furthermore, Washington gave simple proofs of the theorems
above. In [5], F. Kurihara generalized the results above to a subfield K,, 1
of Q({pn+1)", 0 < n € Z, and showed the following two theorems.

THEOREM C. Let E be a subgroup of Ex, ., the group of units of Kp11,
such that [Ey, , : E] is finite. Then there exists a basis {01,...,0,} for £
modulo {1} such that

n
0" =a; + b mod 74Tt i=1,...,1

"+, for some rational integer u; > 0.

with ¢; =i+ 550(p

Here d = [Q((pn+1)T : Kpq], r =rank Eg, ., = 550(p" ™) — 1 and 7 is
the image of (1 — (yn+1)(1 — Cp_nlﬂ) by the norm from Q((yn+1)" to Kpyq.
Now since ¢; and hence u; depends only on E, it is denoted by ¢;(F) and
u;(E), respectively.

THEOREM D. Let E be a subgroup of Fk, ., and E' a subgroup of E.
Suppose that the index [Ek, ., : E'] is finite. Then

w([E: B =3 {ulB) — w(B)}.

Considering the case where K, 1 = Q((yn+1)", E = Ek, ., and E' is
the group of cyclotomic units in the sense of Sinnott, we see that Theorem D
is a generalization of Theorem B.

Our aim is to prove similar results in some other number fields: the
composite of two Galois extensions of finite degree over Q, one unramified
at p and the other totally ramified.

Now we introduce some notations. Let K1 be a finite Galois extension
over Q which is unramified at p and Ky a finite Galois extension which is
totally ramified at p. Let K = Kyr Ky, [Kr : Q] = dg and [Ky : Q] = ek.
We fix an embedding of K into C, the field of complex numbers. Let J denote
the restriction of the complex conjugation to K. Let KT and K;f be the
fixed field of (J) in K and K7, respectively. Let g1, ..., p4 be the primes of
Ky over p, ) (i =1,...,g) the primes of K over g;, and g the unique prime
of Ky over p. Then p; = @ and (p) = p1... 94 = (9] ... 9,)% = p°¥ in
the ring Ok of integers of K. Let E, be the group of units of a field . Let
§ be the least natural number a that satisfies ex /(p — 1) < p®~ L.

Throughout this paper, we assume the following three conditions:

(A1) p is a principal ideal.
(A2) The exponent of the torsion part of Ex+ /EK}- is prime to p.
(A3) The Leopoldt conjecture is valid for K and p.
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Then we may write p = (7x ) with some 7x € Ok, . Let m be the exponent
in (Ag)
Our main result is the following;:

THEOREM E. Let E be a subgroup of Ex+ such that E D EK;: and

FEg+ @ El < o0o. Then there exists a basis {n1,...,n-} o E™’ex B\ mod-
[ " " K
ulo EK; such that

ni = a; + by modw%“, izl,...,r:rankE;@-/EK;,
where a; and b; belong to the ring Ok, of integers of Kr, a; Z 0 modulo
any prime over p, b; Z 0 mod p and ¢; is a natural number such that c¢; #
0 mod eg.
Further, let u;(E) = [£-] (Gauss symbol) and E' be a subgroup of E

€K

such that E' D By and [Ex+ : E'] < oco. Then

vp([E: E']) = Z{ui(E’) —ui(E)}.

REMARK 1. Let n be any element of Ex+ \ K such that n® € EK;
for some natural number a. Then, for any ¢ € Gal(K/Kr), (n7/n)* =
(") /n* = n*/n® = 1. So, n°~1 is an ath root of unity. Moreover, when
K is a real or CM-field, n°~! is real, hence +1 and (n?)°~! = 1. Thus,
n? € EK; and m equals 1 or 2, hence in this case it is prime to p, i.e. (Ag)
is valid.

REMARK 2. When K = Q({gp~) with a prime to p, then Kp = Q((,).
Note that the condition (As) is valid by the theorem of A. Brumer [1]. Let
E = Eg+ and E' = C}EK;, where Ck is the group of cyclotomic units
and O} = O N K*. Then, since v,([E : E']) = v,(h(K*)/h(K)), we get
a generalization of Theorem B:

0 (M(Q(Capn) ) /MQ(C) ) = D {ui(E) = wi( E)}.

i=1

1. The Fermat quotient and the level of unit. Let the notations
be as in the introduction. Note that Ky = Q(7k). Let f(X) = X°x 4+
o 1 XKV 4+ .+ X + ¢ € Z[X] be the minimal polynomial of mg
which is of Eisenstein type. That is, ¢, _; = ... = ¢ = 0mod p and
ch # 0 mod p?. We write ¢, = —pc; (i =0,1,...,ex —1). Then

(1) T = peo mod 7T§<K+1 and p = by mod 7T§<K+1,

where b is the natural number such that cgbg = 1 mod pand 1 < by < p—1.
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For any z € Ok \ Kr which is prime to p, we define

c+1
K

c(z)=max{0<c€Z:z=x+yny mod %" with some z,y € Ok, }.

It can be easily seen that 1 < ¢(z) < co. Furthermore, we define ¢(z) = oo
for z € Ok,
When z( and yo give ¢(2) (z € Ox \ Kr), it is clear that

g Z0mod p; (i=1,...,9) and yo# 0mod p.

If ¢(2) is a multiple of ek, then writing ¢(z) = cex with a natural number c,
we have

2=z + Yomi < = xo + yop ey mod ﬂ';g'K-H,

which contradicts the maximality of ¢(z). Thus, we get ¢(z) # 0 mod ek
To sum up, we have the following:

LEMMA 1.1. For any z € Ok \ K which is prime to p,
c(z) =max{0 < c€Z:z=x+yrf mod 7} for some z,y € Og,.}

is a natural number which depends only on z (it does not depend on the
choice of mk) and c(z) Z 0mod ex. Let xg and yo be elements in Ok,
giving c(z). Then o #Z Omod g; (i = 1,...,9) and yo # 0 mod p, and

c(z)+1
K

further, xo and vy are uniquely determined by z modulo w and p,

respectively.

Letn € Ex\Kr.Let n=x —|—y7r;<(n) mod W%W)H be a congruence giving
¢(n) according to Lemma 1.1. Then, in the following, we call ¢(n) the level
of n and (y/z) mod p € Ok,./(p) the (generalized) Fermat quotient of n and
we denote the latter by f(n). Of course they are uniquely determined by 7.

In the rest of this section, we present several elementary properties of
the level and the Fermat quotient.

The next lemma immediately follows from the definitions of the Fermat
quotient and the level.

LEMMA 1.2. (1) For any n € Ex \ Kt and any natural number a prime
to p, we have c(n”) = c(n), c(n®) = c(n), f(n*) = af(n) and c(n™") = c(n),
fo=t) = —f(n).
(2) Let m1 and ng be elements in Ex \ Kt such that c(n) < ¢(nz2). Then
c(mnz) = c(m) and  f(mne) = f(m).

(3) Let m,...,ns be elements in Ex \ Kp such that c(n) = ... =c(ns)
and f(m)+...4+ f(ns) Z0mod p. Then

c...ns)=clm) and f(n...ns)=flm)+...+ f(ns)

s)
LeEMMA 1.3. If Ky is imaginary, then nj, = —mx mod 7% .
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Proof. By the definition of 7, we have (7}.) = (7x). So, there exists
u € Eg, such that 77 = mxu. We have nx = (7%,)’ = (7xu)’ = muu’.
Thus, uu’ = 1.

First, we assume u ¢ Kr. Let u = a + bw}}( mod 7 according
to Lemma 1.1. For any ¢ € Gal(K/Ky), v = u, 7% = 7g and u =
a® + b"ﬂ}}(u) mod W;((U)H
u = a + br§ mod 7r;5{+1 where a,b € Z are prime to p. Then 1 = wu
a® mod g, so a = £1 mod p. Since 7r}7< = amx mod 7%, we have u! =a+

bac 5 mod 7. By Lemma 1.2, f(u™') = f(u”) = ba®™~" mod p

u)

c(u)+1
K

. Because Ok, /(mx) = Z/(p), we can always write
J =

and f(u™') = —f(u) = —ba~' mod p. This means a*™ = —1 mod p, so
that a = —1 mod p and the lemma is proved in this case.

Secondly, we assume u € Kr. Then u € Kr N Ky = Q and v = =£1.
Now, 771‘2 # T by our assumption, so that u = —1. The proof is complete.

LEMMA 1.4. For any n € Ex \ Kr we have c(npé) > ex/(p—1). If

c(n) > ex/(p— 1), then c(n”") = ¢(n) + aex and f(nP") = b§f(n) for all
natural numbers a. Here § and by are as in the introduction.

c(n)

Proof. Let n = z + ym " mod 7T;{(n)ﬂ

according to Lemma 1.1. Then

there exists y; € O such that n =x + ylwi((") and y; = y mod mg. So,

(@) o = +pa? gyl

+ <Z> ;gp—2y%7ﬁ(c(n) + ...+ <p ﬁ 1> xyf—lwgfl)c(n) + y%z;(c(n).

Since the mx-orders of terms on the right hand side are

0,ex +c(n),ex +2¢(n),...,ex + (p—1)e(n) and pe(n),
it follows that

) > min{er + ctn)pe(n) = min { () .

Further,

> i {0 punin {5 e = min {2t |

For all natural numbers a, we get by induction

c(n") > min {pefl 7p“6(77)}-
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Since ¢(n?” ') > ex/(p — 1), (2) means that

cn?’) > minfex + ("), pe(n?’ )} > K
p

-1
When ek /(p — 1) < ¢(n), we have

c(n)

ex +c¢(n) <pc(n) and n? =2? +pxp_1y17rK

1
mod W;K+C(n)+ .

Now from (1), we have
(3) nP =P + bozvp_lyw;{K“(”) mod W;K+C(n)+1‘

So, we conclude that ¢(n?) > ¢(n) + ex.

Suppose ¢(n?) > c¢(n)+ex. Let nP = x2+y2ﬂ';<(np) mod 7

to Lemma 1.1. Then

c(n”)+1 :
K according

ex+c(n)+1

extem mod
K

zo =P = 2P + boa? yn

and

ex +c(n) erx+c(n)+1
K K :

xo — xP = by tym mod 7

Take a prime @} dividing mx of K such that y # 0 mod @}. Then, from the

above, ex+c(n) = vy (boxp_lywifﬂ(n)) = vy (v2—2P). This is a multiple of

ex, so that ¢(n) is also a multiple of ex. That is a contradiction. Therefore,
¢(n?) = ¢(n) + ex. Inductively, we obtain ¢(n?") = ¢(n) 4 aeg for all natural
numbers a.

Furthermore, from (3),

f(P) =bo

This means that f(n?") = bgf(n) for all natural numbers a. The proof is
complete.

xpfly

_ . Y _
— = b2 = bof(n) mod p.

LEMMA 1.5. Let ny,...,ns be elements in Ex \ Kr such that c(n) =
co.=c(ns) >ex/(p—1) and {f(m),..., f(ns)} is an Fy-independent sys-
tem. Then 1, ...,ns are Z-independent.

Proof. Suppose that n1,...,7ns are Z-dependent, that is, ni* ...n< =
with some eq,...,es € Z. We may assume e; # 0 for all ¢.

Let e; = a;p® (Z > a; Z0modp, 0 <b; €Z,i=1,...,5). Then from
Lemmas 1.2 and 1.4 we have

) b; e; b; ;
c(nf') =cf ") = c(m) + biex  and  f(nf*) = aif(nf"") = b5 ai f (ns)-
We denote by 3 the minimum of {b,...,bs} and assume, without loss of

generality, 5 =b; = ... =b; < bgy1,...,bs with some t (1 <t < s).
From our assumption,

t t
> Fm5) = bgaif(n:) # 0 mod p.
=1

=1
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Now, ¢(n;*) = c(n;) + biex = c(n;) + Pek for all i = 1,...,¢t. So, from
Lemma 1.2, c(H’;f:1 n;') =c(m)+Pex < c(n;j) forallt+1 < j < s. There-
fore, e([T5_, n¢%) = e(ITi—, n") = c(m)+PBex . This contradicts [[;_, nf* = 1
(whose level is c0) and the lemma is proved.

In the end we investigate the action of J on the Fermat quotient of a
real unit.

LEMMA 1.6. For any n € Ex+ \ Kr, f(n)? = (=1 f(n) if Ky is
imaginary, and f(n)’ = f(n) if Ky is real.

Proof. First, we assume that Ky is imaginary. Let n = = + yw;((n)

modﬂy)+1 according to Lemma 1.1. From Lemmas 1.2 and 1.3,
n=n’ =2’ + y‘](—l)c(")wign) mod 7T§<(n)+l.
Therefore,

J(—1)e) J
fn)=f(n") = y ()77 = (—1)°™ <y> = (=1 f(5)” mod p.

z/ x

When Ky is real, n =/ = 27/ +y/7" mod 73" ™. Thus, f(n) = f(n’) =
(y/x)” = f(n)” as desired.

2. A basis of units modulo units of K:JF Let the notation be as
before. In this section, we shall prove the existence of a set of representatives

of a basis of E™P’¢x F K /E Kk Which satisfies some conditions on the Fermat
quotient and the level.
When K7 is imaginary, let

Okr/(p) = (Okz /()" @ (Oker/(p)~

be the decomposition associated with (1 + .J)/2 and (1 — J)/2. Then it is
easy to see that

(i) dimg, (Ok,/(p))* = dimg, (Ox, /(p))™ = dx /2.

(i) B3 C Ker(N)- Exe, and Elf, ") € Ker(N*) - By, where N and
N7 is the norm map from K to Kr and from K to Kif , respectively.

The next lemma is due to Washington [6].

LEMMA 2.1. Let E be a subgroup of Ex of finite index and let n be a
non-torsion element of E. If vy (log,n) is sufficiently large for all primes

©; (1 =1,...,9) then n is a pth power in E. Here, we consider v (log,n)
and log,, n in the localization of K with respect to o

Proof. If n is not a pth power in F, then we can take us,...,u, € £
(r = ranky, E) such that {n,us,...,u,} generates a subgroup E’ of E of
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finite index prime to p. Let R, (%) be the p-adic regulator of * (see Washing-
ton [7]). From our assumption, R,(E’) = 0 mod /¢ for all @) | p, where c is
sufficiently large. Now,

R, (E') = [Ex : E)[E : ERy(Ex) #0
by our assumption (Ag). So, v,(R,(E’)) = v,([Ex : E]) + vp(Ry(Ek)).
The right hand side depends only on K and E. But the left hand side is
sufficiently large. That is a contradiction and the proof is complete.

Next we prove a relation between v, (log,n) and the level of 7.

LEMMA 2.2. Let n be any element of Ex \ Kr and @, (i=1,...,9) the
prime of K over p. Suppose N(n) =1 and ¢(n) > ex/(p —1). Then

vg; (log,n) = min{e(n) + 1 —vy(ex)ex, c(n)}  for all @f.

c(n) c(n)+1
K

Proof. Let n = x+ymy, "’ mod m according to Lemma 1.1. Let ¢ =
¢(n). Fix any prime @} | p. From the assumption, 1 = N(n) = 2°% mod 7¥%.
Observe that the mg-order of z¢% — 1 is a multiple of ex and c is not a
multiple of ex by Lemma 1.1. Thus 2° = 1 mod 7¢/*. As ¢ > ex/(p — 1),
we have vy (log,z°%) > ¢ + 1 (see Lemma 5.5 of Washington [7]).
Thus, vy (ex) + vy (log,r) > ¢+ 1. From vy (ex) = vp(ex)ex, we obtain
Vg (logpx) > c+1—wvy(ex)ex. There exists y; € Ok such that n = z+y1 7%
and y; = y mod 7x. Then, since log,n = log,x +log,, (1 +y17% /z), we have

v (log,n) > min {vgoé (log,>), v <logp <1 + zﬁﬁ%)) }
> min{c+ 1 —v,(ex)ex,c}.
The lemma is proved.
For any natural number ¢, we define
Fi. ={f(n) :n € Eg+ \ Kr such that ¢(n) = ¢} C Ok,./(p).

LEmMA 2.3. (I) If Kr and Ky are imaginary, then Fy. C (Ok,./(p))™
if c is even, and F§; C (Og,/(p))™ if ¢ is odd. Moreover, dimp, Ff, < 1dk.

(IT) If Kr is imaginary and Ky is real, then F§ C (Og,/(p))" for
all ¢, and dimg, Fg < %dK.

(IIT) If Kr is real and Ky is imaginary, then ex is even and c(n) is
even for all n € Ex+ \ Kr. Obviously, Ff, C (Ok,./(p)) = (Ok,/(p))t and
dimg, F& < dyg.

(IV) If K7 and Ky are real, then F§. C (Ok,/(p)) = (O, /(p))" and
dim]pp FIC{ S dK.

Proof. (I) Clearly, K is imaginary. Let n € Ex+ \ Kpr and n = = +
yw%") mod ﬂ'%n)+1 according to Lemma 1.1. Let ¢ = ¢(n). Since Ky is imag-
inary, the statement follows from Lemma 1.6 and (i).
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(IT) In this case, our statement follows easily from Lemma 1.6 and (i).

(IIT) Let n € Ex+ \ Ky and n = = + yﬂ'%n) mod W%"Hl according to
Lemma 1.1. Let ¢ = ¢(n). Because the order of J is 2, ek is clearly even.
From Lemma 1.3,

n=n' =27 +y’(~1)°r% mod 7¢}*.

Here, 27 = x and y” = y because Kr is real. So, z + yn, =z + y(—1)°7%
mod 71'?_1. This means that c is even.

(IV) It is clear.

REMARK 3. We have r = ranky (Fx+ /EK;) = ranky Ex+ —ranky, EK;.
Hence we easily observe that:

r=idk(ex — 1) and dimg, F§ < 2dg in the case (I) or (II).

r= dK(%eK — 1) and dimyp, Ff; < dk in the case (III).

r =di(ex — 1) and dimp, Ff; < dg in the case (IV).

THEOREM 2.4. Let E D EK; be a subgroup of Ex+ of finite index. Let
r=ranky (Fx+ /EK;) Then there exists a set of representatives {m,...,n-}

of a basis of Emp&eKEK;/EK; such that

(1) e(n;) >ex/(p—1) (i=1,...,7).

(2) Nt(g)=1(G=1,...,7r).

(3) c1 <o < ... < ¢ where ¢; = c(n;).

(4) Let S; = {n; : ¢(n;) = jmod ek} (1 < j < ex and j is even only
if K is real and Ky is imaginary). Then §S; = %dK (dg resp.) when Krp
is imaginary (resp. real) and {f(n;) : m; € S;} is an Fp-independent system
for each j which defines S;.

Proof. Let {{1,...,&}, & € E, be a set of representatives of a basis
of E"E .+ /E+. Observe that E™E +/FE, + is torsion-free. From Lemma
T T T T

1.4, c({fé) > ex/(p—1). From (ii), as [KT : K] = ek or ex/2, we have
fféeK € Ker(N™) + B+ Therefore,

gfée’( =nu; with some 7; € Ker(NT) N E and u; € EK;, 1<i<r.

Here, {m,...,n-} is also a set of representatives of a basis of the quotient
EmpéeKEK;/EK; that satisfies (1) and (2). And (3) is satisfied by an ap-
propriate change of indices.

Now we define the condition (Cs) for 1 < s < r : {f(n) : c(n;) =
jmodeg, 1 <i<s}isan [F,-independent system for all j (1 < j < eg,
j is even if K is real and Ky is imaginary). Clearly, (Cy) is true. Suppose
that (Cs) is valid. Let c¢(ns41) =1 If {f(m:) : ¢(n;) =l mod ex, 1 <i < s}
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U {f(ns+1)} is an [Fp-independent system, then (Cgyq) is valid. If it is not
Fp-independent, then

f(Ms41) = Z a;by f(n;)  with some a; € Z,

1<i<s,c¢;=lmod ek

where a; = 2 (c(nuy1) — (). We have c(nf*?"") = c(ns1) and f(27") =

€K

a;by" f(n;). Then
AR | B ED DR (CA R (M)

1<i<s,c;=lmodeg 1<i<s,c;=lmodex
So, letting
o -1
77./g+1 = 7754—1( H U?lp ) 5
1<i<s,c;=lmodex
we get () > c(Nsx1). Now {01, ..., 06,101, Ms42,--.,nr} is also a set
of representatives that satisfies (1) and (2). By means of some permuta-
tion of {n, 1, Nst+2,---,Mr}, Wwe may write it {ns11, 7542, .., 7} again with

c(Ms+1) < ... < ¢(ny). Then, further, we repeat the above procedure for
Ns+1- Lemmas 2.1 and 2.2 imply that the procedure must stop after a fi-
nite number of steps. Hence (Cgsy1) becomes true. So, inductively, we get
{m,...,n} as desired.

Note that, in this theorem, the sum of 4§S; for 1 < j < ex (j is even
when Krp is real and Ky is imaginary) is equal to r by Remark 3.

3. A formula for index of subgroups. Let E and E’ be subgroups
of Ex+ such that E D E' D Ey+ and [Ex+ : E'] < oo. Let {n;} and {0;}
be as in Theorem 2.4 for E and E’, respectively.

For n € E, let 7] denote n mod E+, and c(m) = ¢(n) and f(77) = f(n).
They are well defined because c(nu) = ¢(n) and f(nu) = f(n) for any
u € EK;

We define dy to be d if Kr is imaginary (in the case (I) or (II) in
Lemma 2.3) and dg if Kp is real (in the case (III) or (IV) in Lemma 2.3).
Welet R={1,...,r}and By ={(l—1)do+1,...,ldo} (1 <[ < ek), in the
case (I), (IT) or (IV) in Lemma 2.3. Moreover we define B; in the case (III)
as follows:

Bl:{(%—l)dojtl,...,%do} for 1 <l < ek and [ even.

Then R is the union of all B;.
We permute 71, ...,7, and 0;,...,0, such that c¢(n;) = mod ex for all
i € By and c¢(6;) = [ mod ek for all j € B;.
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We let, for all j =1,...,r,
T
(5) éj = Hﬁiaﬂpeﬁ where a;; € Z is 0 or prime to p, and 0 < e;; € Z.
=1

Then
y S 5
det(a;ip™?) = [E™P KByt [Eper : (B')™ N Byt [ Eyet]
= [EmEK; /EK;: : (E/)mEK;/EK;]
= [E : E'] x (a natural number prime to p)
since E™ B+ /EK; and (E’)mEK; /EK; are torsion-free and m is prime to
p by our assumption (As). Consequently, we have:

LEMMA 3.1. Let E and E’ be subgroups of Ex+ such that E D E' D
By and [Ex+ : E'] < 0o. Then vy(det(ajip)) = vp([E : E']).

Next we prove a formula for index [E : E'].

THEOREM 3.2. Let E and E’ be subgroups of Ey+ such that E D E' D
By and [Ex+ : E'] < oco. Let {n;} and {6;} be as in Theorem 2.4 for E
and E', respectively. Then

1 T T
(BB = —{ Y e0) =D ey}
K =1 j=1
Proof. By the properties of level given in Section 1,

c(f;) = min{c(i7; %) : 1 <i<r}.

Define 4; = {i € R : ¢(f;) = c(7;%"?7")}, 1 < j < r. Clearly, 4; is
non-empty and A; C By if j € B;. Further,
F0,)=">" f@ )= a;by f(7;) forallje R.
i€A; icA;
Since {f(7:)}iep, and {f(0;)}jep, are Fp-independent systems, it follovs
that
(6) det(a;by")jieB, #0modp for all I,
where a); = a;; if i € Aj and ), =0if i € A;.

Now we define P; (1 <[ < ek, [ is even in the case (III) in Lemma 2.3)
to be the set of all permutations on B; and P/ = {m, € P, : 7;(j) € A; for all
j € Bl}

Then, for each [,

(M det(albg )saen = > (sen(m) - [T ajnipbe™).

T EP] JEB;
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From (6) and (7), we see that P/ is non-empty for every I. Let P be the
set of all permutations on R and P’ ={o€ P:o(j) € A, forall j € R}.
It is clear that any element of P’ is a product of 7, € P/ (1 <l < ek, 1
is even in the case (III) of Lemma 2.3) and the restriction of each p € P’
to B; is an element of P/. So, we see that P’ is non-empty. In general, for

any ¢ € P, ¢(0;) < c(7] ﬁ”p e J)) for all j € R, while for each p € P\ P/,

c(f;) < c(ﬁzz';;”p e )) with some j € R. Therefore, for each p € P\ P,

® Sl < etz ™)

For ¢ € P’, by the definition,

T

_ajo(/)P ¢je(d)
Z =2y ).

j=1 j=1
Since
T pie® -
Zc(ng(j; ) ) =D Aclllo) +exejoit = Z c(Mo(5)) + ex Z €je(s)s
j=1 j=1 Jj=1 Jj=1
we have
T 1 T B T 3
9) Zejg(j) = e—{ c(0;) — c(nj)} for all p € P'.
j=1 K>3 j=1
Similarly, from (8),
10 y ! g 0 S e for all P\ P
(10) Zem(jpa{ c(0;) =Y @)} forall g€ P\ P,
j=1 j=1 j=1
From (7) and (9),
T det(a;567); e,
1
— Z (Sgn HGJQ(J)b JQ(J))
oEP’
Z;:1 €ie(i .
=) (sgn(g) b H%y(j))
oEP’ Jj=1

(1/er)(XG—q ¢(0;) =225, (7)) -
_ bO eK 1 ¢l0; 1 ¢(nj . Z (Sgn(g) . HGJQ(J))
0€P’ J=1
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Therefore, from (6),

(11) Z (sgn H aw(])) % 0 mod p.
0EP’ 7j=1

Now, we have

(12) det(a]zp )1<g i<r

= Z (sgn HaJQ(J)p JQ(J)) Z (sgn HaJQ(J)p JQ(J))

o€EP’ QGP\P,
- Z (sgn(g) 'ngzl Cield) . H aje(]'))

o€’ j=1

+ Z (Sgn ;:1 €ie(d) . Ha19(3)>
— p(/er)(jy e(6)= X5 e@)) . > <sgn H a]g(]))

o€ P!
+ Z <sgn pi=1€iet) . H aj@(]‘))'
o€ P\ P’ j=1

Combining (10)—(12), we get

vp(det(asip)i<ji<r) = i{ Z (6 c(n }

€K

<3

j=1 j=1
The proof is completed by using Lemma 3.1.

LEMMA 3.3. Let E and E’ be subgroups of Ey+ suchthat E D E' D By
and [Eg+ : E'] < o0o. Let {n;} and {0;} be as in Theorem 2.4 for E and E',
respectively. Then c(6,) > ¢(7;) for all i =1,...,r

Proof. Suppose that there exists ¢ such that 1 <t < r and ¢(4,) < (7).
For each [ (1 <l <eg —1, lis even in the case (III)), we define
Ty=1{0,:1<h<t, ¢, =lmodeg}.

Then {0,,...,0,} =, T; (disjoint union) and ¢t = >, #7;. Fix any . Then
each f(0,) (9, € T)) is a linear combination of f(71),..., f(:—1) because
c(0) <...<c0,) <c(m) <...<c(@) Foreachl (1 <l <ex—1,1is
even in the case (III)), we define

T/ ={7;:1<i<t—1, ¢(7;) =l mod ex}.
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Then {71,...,7,_1} = U, 7] (disjoint union) and ¢t —1 = >, §7]. Now
f(0,) (8, € T)) is a linear combination of {f(7;) : 7; € T]}. Therefore, from
Theorem 2.4(4), we have §7; < #T] for any [, and hence ), 7} < >, #7].
This is a contradiction.

Note that, in Theorem 3.2, it does not necessarily hold that
c(0,) = c(n;) mod ery foralli=1,...,r,

because ¢(f;) is not necessarily congruent to ¢(#7;) modulo e
Observe that we can define integers I(n;) and u(n;) as follows:

c(ni) = 1) +ulmex, 1<Um)<ex, 0<u(n)€Z, 1<i<r.

Let 1(0;) and u(6;) be defined in the same way for 6;. From Lemma 3.3,
c(0:) — c(m) = 1(0:) — 1(m) + ex{u(0i) — u(n:)} = 0.

So that, u(0;) > u(n;) for all i = 1,...,r. In addition,

r

S0~ 3 eln) = 010 — 10n) }+eKZ{u ) = u(mi)}

i=1 i=1 i=1
—eKZ{u —u(n)},

because > .., 1(6;) = > i_, l(m) from Theorem 2.4(4).

On the other hand, by Lemma 3.3, we can easily see that the sequence of
rational integers {c(n1),...,c(n.)}, hence {u(m),...,u(n,)}, depends only
on E. So we may write u(n;) = u;(E) and u(6;) = u;(E"). Consequently, by
means of Theorem 3.2, we have proved the following:

THEOREM 3.4. Let E and E’ be subgroups of Ex+ such that E D E' D
By and [Ex+ : E'] < 00. Let u;(E) and u;(E") be as above. Then

= Z{ui(E’) — ui(E)}

This is a generalization of Theorems B and D. Now, following Dénes, we
may call u;(F) the p-character of E.

References

[1] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967),

121-124.
[2] P.Dénes, Uber irregulire Kreiskorper, Publ. Math. Debrecen 3 (1953), 17-23.
[38] —, Uber Grundeinheitssysteme der irreguliren Kreiskorper von besonderen Kon-

gruenzeigenschaften, ibid. 3 (1954), 195-204.



(4]
(5]
(6]

(7]

Index for subgroups 263

P. Dénes, Uber den zweiten Faktor der Klassenzahl und den Irreqularititsgrad der
irrequldren Kreiskorper, ibid. 4 (1956), 163-170.

F. Kurihara, On the p-adic expansion of units of cyclotomic fields, J. Number
Theory 32 (1989), 226-253.

L. C. Washington, Units of irregular cyclotomic fields, lllinois J. Math. 23 (1979),
635—-647.

—, Introduction to Cyclotomic Fields, Springer, New York, 1997.

Kanagawa Prefectural Yamato-Higashi High-School
1760 Fukami, Yamato, Kanagawa, 242, Japan
E-mail: tshimada@qa2.so-net.or.jp

Received on 15.7.1997
and in revised form on 8.3.1998 (3216)



