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Index for subgroups of the group of units in number fields

by

Tsutomu Shimada (Yamato)

We define a sequence of rational integers ui(E) for each finite index
subgroup E of the group of units in some finite Galois number fields K in
which prime p ramifies. For two subgroups E′⊂E of finite index in the group
of units of K we prove the formula vp([E : E′]) =

∑r
i=1{ui(E′) − ui(E)}.

This is a generalization of results of P. Dénes [3], [4] and F. Kurihara [5].

Introduction. Let p be an odd prime number, Q and Z the field
of rational numbers and the ring of rational integers, respectively. For each
unit ε of Q(ζp) which is not in Z, there exist rational integers a, b
and c satisfying ε ≡ a + b(1 − ζp)c mod (1 − ζp)c+1, ab 6≡ 0 mod p and
c 6≡ 0 mod (p− 1), where c is uniquely determined by ε. P. Dénes [2] de-
fined the p-character of the Bernoulli numbers to be the rational inte-
gers u2, u4, . . . , up−3 such that Bipj ≡ 0 mod p2j+1 for 0 ≤ j < ui and
Bipui 6≡ 0 mod p2ui+1, where i = 2, 4, . . . , p − 3, and proved the following
results under the assumption that the p-character of the Bernoulli numbers
exists:

Theorem A. There exists a basis {θ2, θ4, . . . , θp−3} for the group of units
of Q(ζp)+ modulo {±1} such that

θi ≡ ai + bi (1− ζp)ci mod (1− ζp)ci+1

with ci = i+ (p− 1)u′i for some integer 0 ≤ u′i ≤ ui.
Theorem B. We have

vp(h(Q(ζp)+)) =
p−3∑

i=2, even

(ui − u′i).

Here h(∗) denotes the class number of a field ∗ and vp the p-adic valuation
normalized by vp(p) = 1.
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L. C. Washington [6] showed that ui = vp(Lp(1, ωi)), i = 2, 4, . . . , p− 3,
and then proved Dénes’ assumption stated above, where ω is the Teichmüller
character. Furthermore, Washington gave simple proofs of the theorems
above. In [5], F. Kurihara generalized the results above to a subfield Kn+1

of Q(ζpn+1)+, 0 ≤ n ∈ Z, and showed the following two theorems.

Theorem C. Let E be a subgroup of EKn+1 , the group of units of Kn+1,
such that [EKn+1 : E] is finite. Then there exists a basis {θ1, . . . , θr} for E
modulo {±1} such that

θp
n

i ≡ ai + biπ
ci mod πci+1, i = 1, . . . , r,

with ci = i+ 1
2dϕ(pn+1)ui for some rational integer ui ≥ 0.

Here d = [Q(ζpn+1)+ : Kn+1], r = rankEKn+1 = 1
2dϕ(pn+1)− 1 and π is

the image of (1 − ζpn+1)(1 − ζ−1
pn+1) by the norm from Q(ζpn+1)+ to Kn+1.

Now since ci and hence ui depends only on E, it is denoted by ci(E) and
ui(E), respectively.

Theorem D. Let E be a subgroup of EKn+1 and E′ a subgroup of E.
Suppose that the index [EKn+1 : E′ ] is finite. Then

vp([E : E′]) =
r∑

i=1

{ui(E′)− ui(E)}.

Considering the case where Kn+1 = Q(ζpn+1)+, E = EKn+1 and E′ is
the group of cyclotomic units in the sense of Sinnott, we see that Theorem D
is a generalization of Theorem B.

Our aim is to prove similar results in some other number fields: the
composite of two Galois extensions of finite degree over Q, one unramified
at p and the other totally ramified.

Now we introduce some notations. Let KT be a finite Galois extension
over Q which is unramified at p and KV a finite Galois extension which is
totally ramified at p. Let K = KTKV , [KT : Q] = dK and [KV : Q] = eK .
We fix an embedding of K into C, the field of complex numbers. Let J denote
the restriction of the complex conjugation to K. Let K+ and K+

T be the
fixed field of 〈J〉 in K and KT , respectively. Let ℘1, . . . , ℘g be the primes of
KT over p, ℘′i (i = 1, . . . , g) the primes of K over ℘i, and ℘ the unique prime
of KV over p. Then ℘i = ℘′eKi and (p) = ℘1 . . . ℘g = (℘′1 . . . ℘

′
g)
eK = ℘eK in

the ring OK of integers of K. Let E∗ be the group of units of a field ∗. Let
δ be the least natural number a that satisfies eK/(p− 1) < pa−1.

Throughout this paper, we assume the following three conditions:

(A1) ℘ is a principal ideal.
(A2) The exponent of the torsion part of EK+/EK+

T
is prime to p.

(A3) The Leopoldt conjecture is valid for K and p.
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Then we may write ℘ = (πK) with some πK ∈ OKV . Let m be the exponent
in (A2).

Our main result is the following:

Theorem E. Let E be a subgroup ofEK+ such that E ⊃ EK+
T

and

[EK+ : E] <∞. Then there exists a basis {η1, . . . , ηr} of Emp
δeKEK+

T
mod-

ulo EK+
T

such that

ηi ≡ ai + biπ
ci
K mod πci+1

K , i = 1, . . . , r = rankEK+/EK+
T
,

where ai and bi belong to the ring OKT of integers of KT , ai 6≡ 0 modulo
any prime over p, bi 6≡ 0 mod p and ci is a natural number such that ci 6≡
0 mod eK .

Further , let ui(E) =
[
ci
eK

]
(Gauss symbol) and E′ be a subgroup of E

such that E′ ⊃ EK+
T

and [EK+ : E′] <∞. Then

vp([E : E′]) =
r∑

i=1

{ui(E′)− ui(E)}.

Remark 1. Let η be any element of EK+ \ KT such that ηa ∈ EK+
T

for some natural number a. Then, for any σ ∈ Gal(K/KT ), (ησ/η)a =
(ηa)σ/ηa = ηa/ηa = 1. So, ησ−1 is an ath root of unity. Moreover, when
K is a real or CM-field, ησ−1 is real, hence ±1 and (η2)σ−1 = 1. Thus,
η2 ∈ EK+

T
and m equals 1 or 2, hence in this case it is prime to p, i.e. (A2)

is valid.

Remark 2. When K = Q(ζapn) with a prime to p, then KT = Q(ζa).
Note that the condition (A3) is valid by the theorem of A. Brumer [1]. Let
E = EK+ and E′ = C+

KEK+
T

, where CK is the group of cyclotomic units

and C+
K = CK ∩K+. Then, since vp([E : E′]) = vp(h(K+)/h(K+

T )), we get
a generalization of Theorem B:

vp(h(Q(ζapn)+)/h(Q(ζa)+)) =
r∑

i=1

{ui(E′)− ui(E)}.

1. The Fermat quotient and the level of unit. Let the notations
be as in the introduction. Note that KV = Q(πK). Let f(X) = XeK +
c′eK−1X

eK−1 + . . . + c′1X + c′0 ∈ Z[X] be the minimal polynomial of πK
which is of Eisenstein type. That is, c′eK−1 ≡ . . . ≡ c′0 ≡ 0 mod p and
c′0 6≡ 0 mod p2. We write c′i = −pci (i = 0, 1, . . . , eK − 1). Then

(1) πeKK ≡ pc0 mod πeK+1
K and p ≡ b0πeKK mod πeK+1

K ,

where b0 is the natural number such that c0b0 ≡ 1 mod p and 1 ≤ b0 ≤ p−1.
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For any z ∈ OK \KT which is prime to p, we define

c(z) = max{0 ≤ c ∈ Z : z ≡ x+ yπcK mod πc+1
K with some x, y ∈ OKT }.

It can be easily seen that 1 ≤ c(z) <∞. Furthermore, we define c(z) =∞
for z ∈ OKT .

When x0 and y0 give c(z) (z ∈ OK \KT ), it is clear that

x0 6≡ 0 mod ℘i (i = 1, . . . , g) and y0 6≡ 0 mod p.

If c(z) is a multiple of eK , then writing c(z) = ceK with a natural number c,
we have

z ≡ x0 + y0π
ceK
K ≡ x0 + y0p

ccc0 mod πceK+1
K ,

which contradicts the maximality of c(z). Thus, we get c(z) 6≡ 0 mod eK .
To sum up, we have the following:

Lemma 1.1. For any z ∈ OK \KT which is prime to p,

c(z) = max{0 ≤ c ∈ Z : z ≡ x+ yπcK mod πc+1
K for some x, y ∈ OKT }

is a natural number which depends only on z (it does not depend on the
choice of πK) and c(z) 6≡ 0 mod eK . Let x0 and y0 be elements in OKT
giving c(z). Then x0 6≡ 0 mod ℘i (i = 1, . . . , g) and y0 6≡ 0 mod p, and
further , x0 and y0 are uniquely determined by z modulo π

c(z)+1
K and p,

respectively.

Let η ∈ EK \KT . Let η ≡ x+yπ
c(η)
K mod πc(η)+1

K be a congruence giving
c(η) according to Lemma 1.1. Then, in the following, we call c(η) the level
of η and (y/x) mod p ∈ OKT /(p) the (generalized) Fermat quotient of η and
we denote the latter by f(η). Of course they are uniquely determined by η.

In the rest of this section, we present several elementary properties of
the level and the Fermat quotient.

The next lemma immediately follows from the definitions of the Fermat
quotient and the level.

Lemma 1.2. (1) For any η ∈ EK \KT and any natural number a prime
to p, we have c(ηJ ) = c(η), c(ηa) = c(η), f(ηa) = af(η) and c(η−1) = c(η),
f(η−1) = −f(η).

(2) Let η1 and η2 be elements in EK \KT such that c(η1) < c(η2). Then

c(η1η2) = c(η1) and f(η1η2) = f(η1).

(3) Let η1, . . . , ηs be elements in EK \KT such that c(η1) = . . . = c(ηs)
and f(η1) + . . .+ f(ηs) 6≡ 0 mod p. Then

c(η1 . . . ηs) = c(η1) and f(η1 . . . ηs) = f(η1) + . . .+ f(ηs).

Lemma 1.3. If KV is imaginary , then πJK ≡ −πK mod π2
K .
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P r o o f. By the definition of πK , we have (πJK) = (πK). So, there exists
u ∈ EKV such that πJK = πKu. We have πK = (πJK)J = (πKu)J = πKuu

J .
Thus, uuJ = 1.

First, we assume u 6∈ KT . Let u ≡ a + bπ
c(u)
K mod πc(u)+1

K according
to Lemma 1.1. For any σ ∈ Gal(K/KV ), uσ = u, πσK = πK and u ≡
aσ + bσπ

c(u)
K mod πc(u)+1

K . Because OKV /(πK) = Z/(p), we can always write
u ≡ a + bπcK mod πc+1

K where a, b ∈ Z are prime to p. Then 1 = uuJ ≡
a2 mod πK , so a ≡ ±1 mod p. Since πJK ≡ aπK mod π2

K , we have uJ ≡ a+
bac(u)π

c(u)
K mod πc(u)+1

K . By Lemma 1.2, f(u−1) = f(uJ) ≡ bac(u)−1 mod p
and f(u−1) = −f(u) ≡ −ba−1 mod p. This means ac(u) ≡ −1 mod p, so
that a ≡ −1 mod p and the lemma is proved in this case.

Secondly, we assume u ∈ KT . Then u ∈ KT ∩ KV = Q and u = ±1.
Now, πJK 6= πK by our assumption, so that u = −1. The proof is complete.

Lemma 1.4. For any η ∈ EK \ KT we have c(ηp
δ

) > eK/(p − 1). If
c(η) > eK/(p − 1), then c(ηp

a

) = c(η) + aeK and f(ηp
a

) = ba0f(η) for all
natural numbers a. Here δ and b0 are as in the introduction.

P r o o f. Let η ≡ x + yπ
c(η)
K mod πc(η)+1

K according to Lemma 1.1. Then
there exists y1 ∈ OK such that η = x+ y1π

c(η)
K and y1 ≡ y mod πK . So,

ηp = xp + pxp−1y1π
c(η)
K(2)

+
(
p

2

)
xp−2y2

1π
2c(η)
K + . . .+

(
p

p− 1

)
xyp−1

1 π
(p−1)c(η)
K + yp1π

pc(η)
K .

Since the πK-orders of terms on the right hand side are

0, eK + c(η), eK + 2c(η), . . . , eK + (p− 1)c(η) and pc(η),

it follows that

c(ηp) ≥ min{eK + c(η), pc(η)} ≥ min
{

eK
p− 1

, pc(η)
}
.

Further,

c(ηp
2
) ≥ min

{
eK
p− 1

, pc(ηp)
}

≥ min
{

eK
p− 1

, pmin
{

eK
p− 1

, pc(η)
}}

= min
{

eK
p− 1

, p2c(η)
}
.

For all natural numbers a, we get by induction

c(ηp
a

) ≥ min
{

eK
p− 1

, pac(η)
}
.
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Since c(ηp
δ−1

) ≥ eK/(p− 1), (2) means that

c(ηp
δ

) ≥ min{eK + c(ηp
δ−1

), pc(ηp
δ−1

)} > eK
p− 1

.

When eK/(p− 1) < c(η), we have

eK + c(η) < pc(η) and ηp ≡ xp + pxp−1y1π
c(η)
K mod πeK+c(η)+1

K .

Now from (1), we have

(3) ηp ≡ xp + b0x
p−1yπ

eK+c(η)
K mod πeK+c(η)+1

K .

So, we conclude that c(ηp) ≥ c(η) + eK .
Suppose c(ηp) > c(η)+eK . Let ηp ≡ x2+y2π

c(ηp)
K mod πc(η

p)+1
K according

to Lemma 1.1. Then

x2 ≡ ηp ≡ xp + b0x
p−1yπ

eK+c(η)
K mod πeK+c(η)+1

K

and
x2 − xp ≡ b0xp−1yπ

eK+c(η)
K mod πeK+c(η)+1

K .

Take a prime ℘′i dividing πK of K such that y 6≡ 0 mod ℘′i. Then, from the
above, eK+c(η) = v℘′i(b0x

p−1yπ
eK+c(η)
K ) = v℘′i(x2−xp). This is a multiple of

eK , so that c(η) is also a multiple of eK . That is a contradiction. Therefore,
c(ηp) = c(η)+eK . Inductively, we obtain c(ηp

a

) = c(η)+aeK for all natural
numbers a.

Furthermore, from (3),

f(ηp) ≡ b0x
p−1y

xp
≡ b0 y

x
≡ b0f(η) mod p.

This means that f(ηp
a

) = ba0f(η) for all natural numbers a. The proof is
complete.

Lemma 1.5. Let η1, . . . , ηs be elements in EK \ KT such that c(η1) =
. . . = c(ηs) > eK/(p − 1) and {f(η1), . . . , f(ηs)} is an Fp-independent sys-
tem. Then η1, . . . , ηs are Z-independent.

P r o o f. Suppose that η1, . . . , ηs are Z-dependent, that is, ηe11 . . . ηess = 1
with some e1, . . . , es ∈ Z. We may assume ei 6= 0 for all i.

Let ei = aip
bi (Z 3 ai 6≡ 0 mod p, 0 ≤ bi ∈ Z, i = 1, . . . , s). Then from

Lemmas 1.2 and 1.4 we have

c(ηeii ) = c(ηp
bi

i ) = c(ηi) + bieK and f(ηeii ) = aif(ηp
bi

i ) = bbi0 aif(ηi).

We denote by β the minimum of {b1, . . . , bs} and assume, without loss of
generality, β = b1 = . . . = bt < bt+1, . . . , bs with some t (1 ≤ t ≤ s).

From our assumption,
t∑

i=1

f(ηeii ) =
t∑

i=1

bbi0 aif(ηi) 6≡ 0 mod p.
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Now, c(ηeii ) = c(ηi) + bieK = c(ηi) + βeK for all i = 1, . . . , t. So, from
Lemma 1.2, c(

∏t
i=1 η

ei
i ) = c(η1) +βeK < c(ηejj ) for all t+ 1 ≤ j ≤ s. There-

fore, c(
∏s
i=1 η

ei
i ) = c(

∏t
i=1 η

ei
i ) = c(η1)+βeK . This contradicts

∏s
i=1 η

ei
i = 1

(whose level is ∞) and the lemma is proved.

In the end we investigate the action of J on the Fermat quotient of a
real unit.

Lemma 1.6. For any η ∈ EK+ \ KT , f(η)J = (−1)c(η)f(η) if KV is
imaginary , and f(η)J = f(η) if KV is real.

P r o o f. First, we assume that KV is imaginary. Let η ≡ x + yπ
c(η)
K

modπc(η)+1
K according to Lemma 1.1. From Lemmas 1.2 and 1.3,

η = ηJ ≡ xJ + yJ(−1)c(η)π
c(η)
K mod πc(η)+1

K .

Therefore,

f(η) = f(ηJ) ≡ yJ(−1)c(η)

xJ
≡ (−1)c(η)

(
y

x

)J
≡ (−1)c(η)f(η)J mod p.

When KV is real, η = ηJ ≡ xJ+yJπc(η)
K mod πc(η)+1

K . Thus, f(η) = f(ηJ) ≡
(y/x)J ≡ f(η)J as desired.

2. A basis of units modulo units of K+
T . Let the notation be as

before. In this section, we shall prove the existence of a set of representatives
of a basis of Emp

δeKEK+
T
/EK+

T
which satisfies some conditions on the Fermat

quotient and the level.
When KT is imaginary, let

OKT /(p) = (OKT /(p))
+ ⊕ (OKT /(p))

−

be the decomposition associated with (1 + J)/2 and (1 − J)/2. Then it is
easy to see that

(i) dimFp(OKT /(p))
+ = dimFp(OKT /(p))

− = dK/2.

(ii) EeKK ⊂ Ker(N) ·EKT and E[K+:K+
T ]

K+ ⊂ Ker(N+) ·EK+
T

, where N and

N+ is the norm map from K to KT and from K+ to K+
T , respectively.

The next lemma is due to Washington [6].

Lemma 2.1. Let E be a subgroup of EK of finite index and let η be a
non-torsion element of E. If v℘′i(logpη) is sufficiently large for all primes
℘′i (i = 1, . . . , g) then η is a pth power in E. Here, we consider v℘′i(logpη)
and logp η in the localization of K with respect to ℘′i.

P r o o f. If η is not a pth power in E, then we can take u2, . . . , ur ∈ E
(r = rankZEK) such that {η, u2, . . . , ur} generates a subgroup E′ of E of
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finite index prime to p. Let Rp(∗) be the p-adic regulator of ∗ (see Washing-
ton [7]). From our assumption, Rp(E′) ≡ 0 mod ℘′ci for all ℘′i | p, where c is
sufficiently large. Now,

Rp(E′) = [EK : E][E : E′]Rp(EK) 6= 0

by our assumption (A3). So, vp(Rp(E′)) = vp([EK : E]) + vp(Rp(EK)).
The right hand side depends only on K and E. But the left hand side is
sufficiently large. That is a contradiction and the proof is complete.

Next we prove a relation between v℘′i(logpη) and the level of η.

Lemma 2.2. Let η be any element of EK \KT and ℘′i (i = 1, . . . , g) the
prime of K over p. Suppose N(η) = 1 and c(η) > eK/(p− 1). Then

v℘′i(logpη) ≥ min{c(η) + 1− vp(eK)eK , c(η)} for all ℘′i.

P r o o f. Let η ≡ x+yπc(η)
K mod πc(η)+1

K according to Lemma 1.1. Let c =
c(η). Fix any prime ℘′i | p. From the assumption, 1 = N(η) ≡ xeK mod πcK .
Observe that the πK-order of xeK − 1 is a multiple of eK and c is not a
multiple of eK by Lemma 1.1. Thus xeK ≡ 1 mod πc+1

K . As c > eK/(p− 1),
we have v℘′i(logpx

eK ) ≥ c + 1 (see Lemma 5.5 of Washington [7]).
Thus, v℘′i(eK) + v℘′i(logpx) ≥ c + 1. From v℘′i(eK) = vp(eK)eK , we obtain
v℘′i(logpx) ≥ c+1−vp(eK)eK . There exists y1 ∈ OK such that η = x+y1π

c
K

and y1 ≡ y mod πK . Then, since logpη = logpx+ logp(1 + y1π
c
K/x), we have

v℘′i(logpη) ≥ min
{
v℘′i(logpx), v℘′i

(
logp

(
1 +

y1

x
πcK

))}

≥ min{c+ 1− vp(eK)eK , c}.
The lemma is proved.

For any natural number c, we define

F cK = {f(η) : η ∈ EK+ \KT such that c(η) = c} ⊂ OKT /(p).
Lemma 2.3. (I) If KT and KV are imaginary , then F cK ⊂ (OKT /(p))

+

if c is even, and F cK ⊂ (OKT /(p))
− if c is odd. Moreover , dimFp F

c
K ≤ 1

2dK .
(II) If KT is imaginary and KV is real , then F cK ⊂ (OKT /(p))

+ for
all c, and dimFp F

c
K ≤ 1

2dK .
(III) If KT is real and KV is imaginary , then eK is even and c(η) is

even for all η ∈ EK+ \KT . Obviously , F cK ⊂ (OKT /(p)) = (OKT /(p))
+ and

dimFp F
c
K ≤ dK .

(IV) If KT and KV are real , then F cK ⊂ (OKT /(p)) = (OKT /(p))
+ and

dimFp F
c
K ≤ dK .

P r o o f. (I) Clearly, K is imaginary. Let η ∈ EK+ \ KT and η ≡ x +
yπ

c(η)
K mod πc(η)+1

K according to Lemma 1.1. Let c = c(η). Since KV is imag-
inary, the statement follows from Lemma 1.6 and (i).
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(II) In this case, our statement follows easily from Lemma 1.6 and (i).

(III) Let η ∈ EK+ \ KT and η ≡ x + yπ
c(η)
K mod πc(η)+1

K according to
Lemma 1.1. Let c = c(η). Because the order of J is 2, eK is clearly even.
From Lemma 1.3,

η = ηJ ≡ xJ + yJ(−1)cπcK mod πc+1
K .

Here, xJ = x and yJ = y because KT is real. So, x+ yπcK ≡ x+ y(−1)cπcK
mod πc+1

K . This means that c is even.
(IV) It is clear.

Remark 3. We have r = rankZ(EK+/EK+
T

) = rankZEK+ − rankZEK+
T

.
Hence we easily observe that:

r = 1
2dK(eK − 1) and dimFpF

c
K ≤ 1

2dK in the case (I) or (II).
r = dK( 1

2eK − 1) and dimFpF
c
K ≤ dK in the case (III).

r = dK(eK − 1) and dimFpF
c
K ≤ dK in the case (IV).

Theorem 2.4. Let E ⊃ EK+
T

be a subgroup of EK+ of finite index. Let
r=rankZ(EK+/EK+

T
). Then there exists a set of representatives {η1, . . . , ηr}

of a basis of Emp
δeKEK+

T
/EK+

T
such that

(1) c(ηi) > eK/(p− 1) (i = 1, . . . , r).
(2) N+(ηi) = 1 (i = 1, . . . , r).
(3) c1 ≤ c2 ≤ . . . ≤ cr where ci = c(ηi).
(4) Let Sj = {ηi : c(ηi) ≡ j mod eK} (1 ≤ j < eK and j is even only

if KT is real and KV is imaginary). Then ]Sj = 1
2dK (dK resp.) when KT

is imaginary (resp. real) and {f(ηi) : ηi ∈ Sj} is an Fp-independent system
for each j which defines Sj.

P r o o f. Let {ξ1, . . . , ξr}, ξi ∈ E, be a set of representatives of a basis
of EmEK+

T
/EK+

T
. Observe that EmEK+

T
/EK+

T
is torsion-free. From Lemma

1.4, c(ξp
δ

i ) > eK/(p − 1). From (ii), as [K+ : K+
T ] = eK or eK/2, we have

ξp
δeK
i ∈ Ker(N+) · EK+

T
. Therefore,

ξp
δeK
i = ηiui with some ηi ∈ Ker(N+) ∩ E and ui ∈ EK+

T
, 1 ≤ i ≤ r.

Here, {η1, . . . , ηr} is also a set of representatives of a basis of the quotient
Emp

δeKEK+
T
/EK+

T
that satisfies (1) and (2). And (3) is satisfied by an ap-

propriate change of indices.
Now we define the condition (Cs) for 1 ≤ s < r : {f(ηi) : c(ηi) ≡

j mod eK , 1 ≤ i ≤ s} is an Fp-independent system for all j (1 ≤ j < eK ,
j is even if KT is real and KV is imaginary). Clearly, (C1) is true. Suppose
that (Cs) is valid. Let c(ηs+1) = l. If {f(ηi) : c(ηi) ≡ l mod eK , 1 ≤ i ≤ s}
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∪ {f(ηs+1)} is an Fp-independent system, then (Cs+1) is valid. If it is not
Fp-independent, then

f(ηs+1) =
∑

1≤i≤s, ci≡lmod eK

aib
αi
0 f(ηi) with some ai ∈ Z,

where αi = 1
eK

(c(ηs+1)−c(ηi)). We have c(ηaip
αi

i ) = c(ηs+1) and f(ηaip
αi

i ) =
aib

αi
0 f(ηi). Then

f
( ∏

1≤i≤s, ci≡lmod eK

ηaip
αi

i

)
=

∑

1≤i≤s, ci≡lmod eK

aib
αi
0 f(ηi) = f(ηs+1).

So, letting

η′s+1 = ηs+1

( ∏

1≤i≤s, ci≡lmod eK

ηaip
αi

i

)−1
,

we get c(η′s+1) > c(ηs+1). Now {η1, . . . , ηs, η
′
s+1, ηs+2, . . . , ηr} is also a set

of representatives that satisfies (1) and (2). By means of some permuta-
tion of {η′s+1, ηs+2, . . . , ηr}, we may write it {ηs+1, ηs+2, . . . , ηr} again with
c(ηs+1) ≤ . . . ≤ c(ηr). Then, further, we repeat the above procedure for
ηs+1. Lemmas 2.1 and 2.2 imply that the procedure must stop after a fi-
nite number of steps. Hence (Cs+1) becomes true. So, inductively, we get
{η1, . . . , ηr} as desired.

Note that, in this theorem, the sum of ]Sj for 1 ≤ j < eK (j is even
when KT is real and KV is imaginary) is equal to r by Remark 3.

3. A formula for index of subgroups. Let E and E′ be subgroups
of EK+ such that E ⊃ E′ ⊃ EK+

T
and [EK+ : E′] < ∞. Let {ηi} and {θi}

be as in Theorem 2.4 for E and E′, respectively.
For η ∈ EK , let η denote η mod EK+

T
, and c(η) = c(η) and f(η) = f(η).

They are well defined because c(ηu) = c(η) and f(ηu) = f(η) for any
u ∈ EK+

T
.

We define d0 to be 1
2dK if KT is imaginary (in the case (I) or (II) in

Lemma 2.3) and dK if KT is real (in the case (III) or (IV) in Lemma 2.3).
We let R = {1, . . . , r} and Bl = {(l− 1)d0 + 1, . . . , ld0} (1 ≤ l < eK), in the
case (I), (II) or (IV) in Lemma 2.3. Moreover we define Bl in the case (III)
as follows:

Bl =
{(

l
2 − 1

)
d0 + 1, . . . , l2d0

}
for 1 < l < eK and l even.

Then R is the union of all Bl.
We permute η1, . . . , ηr and θ1, . . . , θr such that c(ηi) ≡ l mod eK for all

i ∈ Bl and c(θj) ≡ l mod eK for all j ∈ Bl.
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We let, for all j = 1, . . . , r,

(5) θj =
r∏

i=1

ηi
ajip

eji
where aji ∈ Z is 0 or prime to p, and 0 ≤ eji ∈ Z.

Then

det(ajipeji) = [Emp
δeKEK+

T
/EK+

T
: (E′)mp

δeKEK+
T
/EK+

T
]

= [EmEK+
T
/EK+

T
: (E′)mEK+

T
/EK+

T
]

= [E : E′]× (a natural number prime to p)

since EmEK+
T
/EK+

T
and (E′)mEK+

T
/EK+

T
are torsion-free and m is prime to

p by our assumption (A2). Consequently, we have:

Lemma 3.1. Let E and E′ be subgroups of EK+ such that E ⊃ E′ ⊃
EK+

T
and [EK+ : E′] <∞. Then vp(det(ajipeji)) = vp([E : E′]).

Next we prove a formula for index [E : E′].

Theorem 3.2. Let E and E′ be subgroups of EK+ such that E ⊃ E′ ⊃
EK+

T
and [EK+ : E′] < ∞. Let {ηj} and {θj} be as in Theorem 2.4 for E

and E′, respectively. Then

vp([E : E′]) =
1
eK

{ r∑

j=1

c(θj)−
r∑

j=1

c(ηj)
}
.

P r o o f. By the properties of level given in Section 1,

c(θj) = min{c(ηiajip
eji

) : 1 ≤ i ≤ r}.
Define Aj = {i ∈ R : c(θj) = c(ηiajip

eji )}, 1 ≤ j ≤ r. Clearly, Aj is
non-empty and Aj ⊂ Bl if j ∈ Bl. Further,

f(θj) =
∑

i∈Aj
f(ηiajip

eji
) =

∑

i∈Aj
ajib

eji
0 f(ηi) for all j ∈ R.

Since {f(ηi)}i∈Bl and {f(θj)}j∈Bl are Fp-independent systems, it follovs
that

(6) det(a′jib
eji
0 )j,i∈Bl 6≡ 0 mod p for all l,

where a′ji = aji if i ∈ Aj and a′ji = 0 if i 6∈ Aj .
Now we define Pl (1 ≤ l < eK , l is even in the case (III) in Lemma 2.3)

to be the set of all permutations on Bl and P ′l = {τl ∈ Pl : τl(j) ∈ Aj for all
j ∈ Bl}.

Then, for each l,

(7) det(a′jib
eji
0 )j,i∈Bl =

∑

τl∈P ′l

(
sgn(τl) ·

∏

j∈Bl
ajτl(j)b

ejτl(j)
0

)
.
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From (6) and (7), we see that P ′l is non-empty for every l. Let P be the
set of all permutations on R and P ′ = {% ∈ P : %(j) ∈ Aj for all j ∈ R}.
It is clear that any element of P ′ is a product of τl ∈ P ′l (1 ≤ l < eK , l
is even in the case (III) of Lemma 2.3) and the restriction of each % ∈ P ′
to Bl is an element of P ′l . So, we see that P ′ is non-empty. In general, for

any % ∈ P , c(θj) ≤ c(η
aj%(j)p

ej%(j)

%(j) ) for all j ∈ R, while for each % ∈ P \ P ′,
c(θj) < c(η

aj%(j)p
ej%(j)

%(j) ) with some j ∈ R. Therefore, for each % ∈ P \ P ′,

(8)
r∑

j=1

c(θj) <
r∑

j=1

c(η
aj%(j)p

ej%(j)

%(j) ).

For % ∈ P ′, by the definition,
r∑

j=1

c(θj) =
r∑

j=1

c(η
aj%(j)p

ej%(j)

%(j) ).

Since
r∑

j=1

c(η
aj%(j)p

ej%(j)

%(j) ) =
r∑

j=1

{c(η%(j)) + eKej%(j)} =
r∑

j=1

c(η%(j)) + eK

r∑

j=1

ej%(j),

we have

(9)
r∑

j=1

ej%(j) =
1
eK

{ r∑

j=1

c(θj)−
r∑

j=1

c(ηj)
}

for all % ∈ P ′.

Similarly, from (8),

(10)
r∑

j=1

ej%(j) >
1
eK

{ r∑

j=1

c(θj)−
r∑

j=1

c(ηj)
}

for all % ∈ P \ P ′.

From (7) and (9),
∏

l

det(a′jib
eji
0 )j,i∈Bl

=
∑

%∈P ′

(
sgn(%) ·

r∏

j=1

aj%(j)b
ej%(j)
0

)

=
∑

%∈P ′

(
sgn(%) · b

∑r
j=1 ej%(j)

0 ·
r∏

j=1

aj%(j)

)

= b
(1/eK)(

∑r
j=1 c(θ̄j)−

∑r
j=1 c(η̄j))

0 ·
∑

%∈P ′

(
sgn(%) ·

r∏

j=1

aj%(j)

)
.
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Therefore, from (6),

(11)
∑

%∈P ′

(
sgn(%) ·

r∏

j=1

aj%(j)

)
6≡ 0 mod p.

Now, we have

(12) det(ajipeji)1≤j,i≤r

=
∑

%∈P ′

(
sgn(%) ·

r∏

j=1

aj%(j)p
ej%(j)

)
+

∑

%∈P\P ′

(
sgn(%) ·

r∏

j=1

aj%(j)p
ej%(j)

)

=
∑

%∈P ′

(
sgn(%) · p

∑r
j=1 ej%(j) ·

r∏

j=1

aj%(j)

)

+
∑

%∈P\P ′

(
sgn(%) · p

∑r
j=1 ej%(j) ·

r∏

j=1

aj%(j)

)

= p(1/eK)(
∑r
j=1 c(θ̄j)−

∑r
j=1 c(η̄j)) ·

∑

%∈P ′

(
sgn(%) ·

r∏

j=1

aj%(j)

)

+
∑

%∈P\P ′

(
sgn(%) · p

∑r
j=1 ej%(j) ·

r∏

j=1

aj%(j)

)
.

Combining (10)–(12), we get

vp(det(ajipeji)1≤j,i≤r) =
1
eK

{ r∑

j=1

c(θj)−
r∑

j=1

c(ηj)
}
.

The proof is completed by using Lemma 3.1.

Lemma 3.3. Let E and E′ be subgroups of EK+ such that E ⊃ E′ ⊃ EK+
T

and [EK+ : E′] <∞. Let {ηi} and {θi} be as in Theorem 2.4 for E and E′,
respectively. Then c(θi) ≥ c(ηi) for all i = 1, . . . , r.

P r o o f. Suppose that there exists t such that 1 ≤ t ≤ r and c(θt) < c(ηt).
For each l (1 ≤ l ≤ eK − 1, l is even in the case (III)), we define

Tl = {θh : 1 ≤ h ≤ t, c(θh) ≡ l mod eK}.
Then {θ1, . . . , θt} =

⋃
l Tl (disjoint union) and t =

∑
l ]Tl. Fix any l. Then

each f(θh) (θh ∈ Tl) is a linear combination of f(η1), . . . , f(ηt−1) because
c(θ1) ≤ . . . ≤ c(θt) < c(ηt) ≤ . . . ≤ c(ηr). For each l (1 ≤ l ≤ eK − 1, l is
even in the case (III)), we define

T ′l = {ηi : 1 ≤ i ≤ t− 1, c(ηi) ≡ l mod eK}.



262 T. Shimada

Then {η1, . . . , ηt−1} =
⋃
l T
′
l (disjoint union) and t − 1 =

∑
l ]T
′
l . Now

f(θh) (θh ∈ Tl) is a linear combination of {f(ηi) : ηi ∈ T ′l }. Therefore, from
Theorem 2.4(4), we have ]Tl ≤ ]T ′l for any l, and hence

∑
l ]Tl ≤

∑
l ]T
′
l .

This is a contradiction.

Note that, in Theorem 3.2, it does not necessarily hold that

c(θi) ≡ c(ηi) mod eK for all i = 1, . . . , r,

because c(θ1) is not necessarily congruent to c(η1) modulo eK .
Observe that we can define integers l(ηi) and u(ηi) as follows:

c(ηi) = l(ηi) + u(ηi)eK , 1 ≤ l(ηi) < eK , 0 ≤ u(ηi) ∈ Z, 1 ≤ i ≤ r.
Let l(θi) and u(θi) be defined in the same way for θi. From Lemma 3.3,

c(θi)− c(ηi) = l(θi)− l(ηi) + eK{u(θi)− u(ηi)} ≥ 0.

So that, u(θi) ≥ u(ηi) for all i = 1, . . . , r. In addition,
r∑

i=1

c(θi)−
r∑

i=1

c(ηi) =
r∑

i=1

{l(θi)− l(ηi)}+ eK

r∑

i=1

{u(θi)− u(ηi)}

= eK

r∑

i=1

{u(θi)− u(ηi)},

because
∑r
i=1 l(θi) =

∑r
i=1 l(ηi) from Theorem 2.4(4).

On the other hand, by Lemma 3.3, we can easily see that the sequence of
rational integers {c(η1), . . . , c(ηr)}, hence {u(η1), . . . , u(ηr)}, depends only
on E. So we may write u(ηi) = ui(E) and u(θi) = ui(E′). Consequently, by
means of Theorem 3.2, we have proved the following:

Theorem 3.4. Let E and E′ be subgroups of EK+ such that E ⊃ E′ ⊃
EK+

T
and [EK+ : E′] <∞. Let ui(E) and ui(E′) be as above. Then

vp([E : E′]) =
r∑

i=1

{ui(E′)− ui(E)}.

This is a generalization of Theorems B and D. Now, following Dénes, we
may call ui(E) the p-character of E.
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