On the average number of unitary factors of finite abelian groups

by
Wenguang Zhai (Jinan) and Xiaodong Cao (Beijing)

1. Introduction. Let $t(G)$ denote the number of unitary factors of G and

$$
T(x)=\sum t(G)
$$

where the summation is taken over all abelian groups of order not exceeding x. It was first proved by Cohen [2] that

$$
\begin{equation*}
T(x)=c_{1} x(\log x+2 \gamma-1)+c_{2} x+E_{0}(x) \tag{1.1}
\end{equation*}
$$

with $E_{0}(x) \ll \sqrt{x}$. Krätzel [3] proved that

$$
E_{0}(x)=c_{3} \sqrt{x}+E_{1}(x) \quad \text { with } \quad E_{1}(x) \ll x^{11 / 29} \log ^{2} x .
$$

Let θ denote the smallest α such that

$$
\begin{equation*}
E_{1}(x) \ll x^{\alpha+\varepsilon} \tag{1.2}
\end{equation*}
$$

Then the exponents $\theta \leq 31 / 82,3 / 8,77 / 208$ were obtained by H. Menzer [7], P. G. Schmidt [8], H. Q. Liu [6], respectively.

The aim of this paper is to further improve the exponent $77 / 208$. We have the following Theorem 1.

Theorem 1. $\theta \leq 9 / 25$.
Following Krätzel [3], we only need to study the asymptotic behavior of the divisor function $d(1,1,2 ; n)$ which is defined by

$$
d(1,1,2 ; n)=\sum_{n_{1} n_{2} n_{3}^{2}=n} 1
$$

Let $\Delta(1,1,2 ; x)$ denote the error term of the summation function

$$
D(1,1,2 ; x)=\sum_{n \leq x} d(1,1,2 ; n)
$$

[^0]We then have
Theorem 2. $\Delta(1,1,2 ; x)=O\left(x^{9 / 25+\varepsilon}\right)$.
Theorem 1 immediately follows from Theorem 2.
Notations. $e(t)=\exp (2 \pi i t) ; n \sim N$ means $c_{1} N<n<c_{2} N$ for some absolute constants c_{1} and $c_{2} ; \varepsilon$ is a sufficiently small number which may be different at each occurrence; $\Delta(t)$ always denotes the error term of the Dirichlet divisor problem; $\psi(t)=t-[t]-1 / 2$.
2. A non-symmetric expression of $\Delta(1,1,2 ; x)$. In this paper we shall use a non-symmetric expression of $\Delta(1,1,2 ; x)$ instead of its symmetric expression used in previous papers. This is the following lemma.

Basic Lemma. We have

$$
\Delta(1,1,2 ; x)=\sum_{m \leq x^{1 / 3}} \Delta\left(\frac{x}{m^{2}}\right)+O\left(x^{1 / 3} \log x\right) .
$$

Proof. We only sketch the proof since it is elementary and direct. We begin with

$$
\begin{aligned}
D(1,1,2 ; x) & =\sum_{n \leq x} d(1,1,2 ; x)=\sum_{n_{1} n_{2} n_{3}^{2} \leq x} 1=\sum_{m^{2} n \leq x} d(n) \\
& =\sum_{n \leq x^{1 / 3}} d(n)[\sqrt{x / n}]+\sum_{n \leq x^{1 / 3}} D\left(\frac{x}{m^{2}}\right)-\left[x^{1 / 2}\right] D\left(x^{1 / 3}\right),
\end{aligned}
$$

where $D(x)=\sum_{n \leq x} d(n)$. We apply the well-known abelian partial summation formula

$$
\sum_{n \leq u} d(n) f(n)=D(u) f(u)-\int_{1}^{u} D(t) f^{\prime}(t) d t
$$

to the first sum in the above expression and the Euler-Maclaurin summation formula

$$
\sum_{n \leq x} f(n)=\int_{1}^{u} f(t) d t+\frac{f(1)}{2}-\psi(u) f(u)+\int_{1}^{u} D(t) f^{\prime}(t) d t
$$

to the second sum, and combine

$$
D(u)=u \log u+(2 \gamma-1) u+\Delta(u)
$$

with $\Delta(u) \ll u^{1 / 3}$ to get

$$
D(1,1,2 ; x)=\text { main terms }+\sum_{m \leq x^{1 / 3}} \Delta\left(\frac{x}{m^{2}}\right)
$$

$$
\begin{aligned}
& -\sum_{n \leq x^{1 / 3}} d(n) \psi(\sqrt{x / n})+O\left(x^{1 / 3}\right) \\
= & \text { main terms }+\sum_{m \leq x^{1 / 3}} \Delta\left(\frac{x}{m^{2}}\right)+O\left(x^{1 / 3} \log x\right),
\end{aligned}
$$

whence our lemma follows.

3. Some preliminary lemmas

Lemma 1. Suppose $0<c_{1} \lambda \leq\left|f^{\prime}(x)\right| \leq c_{2} \lambda$ and $\left|f^{\prime \prime}(x)\right| \sim \lambda N^{-1}$ for $N \leq n \leq c N$. Then

$$
\sum_{a<n \leq c N} e(f(n)) \ll(\lambda N)^{1 / 2}+\lambda^{-1}
$$

Lemma 2 (see [4]). Suppose $f(x)$ and $g(x)$ are algebraic functions in $[a, b]$ and

$$
\begin{gathered}
\left|f^{\prime \prime}(x)\right| \sim R^{-1}, \quad\left|f^{\prime \prime \prime}(x)\right| \ll(R U)^{-1} \\
|g(x)| \ll G, \quad\left|g^{\prime}(x)\right| \ll G U_{1}^{-1}, \quad U, U_{1} \geq 1 .
\end{gathered}
$$

Then

$$
\begin{aligned}
\sum_{a<n \leq b} g(n) e(f(n))= & \sum_{\alpha<u \leq \beta} b_{u} \frac{g\left(n_{u}\right)}{\sqrt{\left|f^{\prime \prime}\left(n_{u}\right)\right|}} e\left(f\left(n_{u}\right)-u n_{u}+1 / 8\right) \\
& +O\left(G \log (\beta-\alpha+2)+G(b-a+R)\left(U^{-1}+U_{1}^{-1}\right)\right) \\
& +O\left(G \min \left(\sqrt{R}, \frac{1}{\langle\alpha\rangle}\right)+G \min \left(\sqrt{R}, \frac{1}{\langle\beta\rangle}\right)\right),
\end{aligned}
$$

where $[\alpha, \beta]$ is the image of $[a, b]$ under the mapping $y=f^{\prime}(x), n_{u}$ is the solution of the equation $f^{\prime}(x)=u$,

$$
b_{u}= \begin{cases}1 & \text { for } \alpha<u<\beta \\ 1 / 2 & \text { for } u=\alpha \in \mathbb{Z} \text { or } u=\beta \in \mathbb{Z}\end{cases}
$$

and the function $\langle t\rangle$ is defined as follows:

$$
\langle t\rangle= \begin{cases}\|t\| & \text { if } t \text { is not an integer }, \\ \beta-\alpha & \text { otherwise },\end{cases}
$$

where $\|t\|=\min _{n \in \mathbb{Z}}\{|t-n|\}$.
Lemma 3 (see [5]). Let $H \geq 1, X \geq 1, Y \geq 1000 ;$ let α, β and γ be real numbers such that $\alpha \gamma(\gamma-1)(\beta-1) \neq 0$, and $A>C(\alpha, \beta, \gamma)>0$, $f(h, x, y)=A h^{\alpha} x^{\beta} y^{\gamma}$. Define

$$
S(H, X, Y)=\sum_{(h, x, y) \in D} c_{1}(h, x) c_{2}(y) e(f(h, x, y)),
$$

where D is a region contained in the rectangle

$$
\{(h, x, y) \mid h \sim H, x \sim X, y \sim Y\}
$$

such that for any fixed pair $\left(h_{0}, x_{0}\right)$, the intersection $D \cap\left\{\left(h_{0}, x_{0}, y\right) \mid y \sim Y\right\}$ has at most $O(1)$ segments. Also, suppose

$$
\left|c_{1}(h, x)\right| \leq 1, \quad\left|c_{2}(y)\right| \leq 1, \quad F=A H^{\alpha} X^{\beta} Y^{\gamma} \gg Y
$$

Then

$$
\begin{aligned}
L^{-3} S(H, X, Y) \ll & (H X)^{19 / 22} Y^{13 / 22} F^{3 / 22}+H X Y^{5 / 8}\left(1+Y^{7} F^{-4}\right)^{1 / 16} \\
& +(H X)^{29 / 32} Y^{28 / 32} F^{-2 / 32} M^{5 / 32}+Y(H X)^{3 / 4} M^{1 / 4}
\end{aligned}
$$

where $L=\log (A H X Y+2), M=\max \left(1, F Y^{-2}\right)$.
Lemma 4 (see [4]). Let $M>0, N>0, u_{m}>0, v_{n}>0, A_{m}>0, B_{n}>$ $0(1 \leq m \leq M, 1 \leq n \leq N)$, and let Q_{1} and Q_{2} be given non-negative numbers with $Q_{1} \leq Q_{2}$. Then there is a q such that $Q_{1} \leq q \leq Q_{2}$ and

$$
\begin{aligned}
\sum_{m=1}^{M} A_{m} q^{u_{m}}+\sum_{n=1}^{N} B_{n} q^{-v_{n}} \ll & \sum_{m=1}^{M} \sum_{n=1}^{N}\left(A_{m}^{v_{n}} B_{n}^{u_{m}}\right)^{1 /\left(u_{m}+v_{n}\right)} \\
& +\sum_{m=1}^{M} A_{m} Q_{1}^{u_{m}}+\sum_{n=1}^{N} B_{n} Q_{2}^{-v_{n}}
\end{aligned}
$$

Lemma 5. Suppose X and Y are large positive numbers, $A>0, \alpha$ and β are rational numbers (not non-negative integers). Suppose D is a subdomain of $\{(x, y) \mid x \sim X, y \sim Y\}$ embraced by $O(1)$ algebraic curves, and $F=$ $A X^{\alpha} Y^{\beta} \gg,|a(x)| \leq 1,|b(y)| \leq 1$. Then

$$
\begin{aligned}
S= & \sum_{(x, y) \in D} a_{x} b_{y} e\left(A x^{\alpha} y^{\beta}\right) \\
\ll & \left(X Y^{1 / 2}+F^{4 / 20} X^{13 / 20} Y^{15 / 20}+F^{4 / 23} X^{15 / 23} Y^{18 / 23}+F^{1 / 6} X^{2 / 3} Y^{7 / 9}\right. \\
& \left.+F^{1 / 5} X^{3 / 5} Y^{4 / 5}+F^{1 / 10} X^{4 / 5} Y^{7 / 10}\right) \log ^{4} F .
\end{aligned}
$$

Proof. This is Theorem 3 of the old version of our paper [9]. The procedure of the proof is the same as Theorem 2 of [1]. The difference lies in that we use Lemma 4 above three times to choose parameters optimally and in the last step the exponent pair $(1 / 2,1 / 2)$ is used.
4. Proof of Theorem 2. By our Basic Lemma, we only need to prove that for fixed $1 \leq M \leq x^{1 / 3} / 2$, we have

$$
\begin{equation*}
S(M)=\sum_{m \sim M} \Delta\left(\frac{x}{m^{2}}\right) \ll x^{9 / 25+\varepsilon} \tag{4.1}
\end{equation*}
$$

CASE 1: $M \ll x^{1 / 5}$. By the well-known Voronoï formula, we have

$$
S(M)=\sum_{m \sim M} \frac{x^{1 / 4}}{m^{1 / 2}} \sum_{n \leq x^{7 / 25}} \frac{d(n)}{n^{3 / 4}} \cos \left(\frac{4 \pi \sqrt{n x}}{m}-\frac{\pi}{4}\right)+O\left(x^{9 / 25+\varepsilon}\right)
$$

Hence for some $1 \ll N \ll x^{7 / 25}$, we have

$$
\begin{equation*}
x^{-\varepsilon} S(M) \ll\left|\sum_{m \sim M} \frac{x^{1 / 4}}{m^{1 / 2}} \sum_{n \sim N} \frac{d(n)}{n^{3 / 4}} e\left(\frac{2 \sqrt{n x}}{m}\right)\right|+x^{9 / 25} \tag{4.2}
\end{equation*}
$$

So it suffices to estimate the sum on the right side of (4.2), denoted by $S(M, N)$.

Let $a_{m}=M^{1 / 2} m^{-1 / 2}, b_{n}=d(n) N^{3 / 4-\varepsilon} n^{-3 / 4}$. Then obviously

$$
\begin{equation*}
x^{-\varepsilon} S(M, N) \ll x^{1 / 4} M^{-1 / 2} N^{-3 / 4}\left|\sum_{m \sim M} \sum_{n \sim N} a_{m} b_{n} e\left(\frac{2 \sqrt{n x}}{m}\right)\right| \tag{4.3}
\end{equation*}
$$

We suppose $x^{1 / 20} \ll M \ll x^{1 / 5}$. For $M \ll x^{1 / 20}$, we have $S(M) \ll x^{0.35}$ by the trivial estimate $\Delta(t) \ll t^{1 / 3}$.

Let $T(M, N)$ denote the two-dimensional sum on the right side of (4.3). If $N \geq M$, we use Lemma 5 to bound $T(M, N)$ (take $(X, Y)=(N, M))$ and we get

$$
\begin{align*}
x^{-\varepsilon} T(M, N) \ll & N M^{1 / 2}+x^{2 / 20} N^{15 / 20} M^{11 / 20} \tag{4.4}\\
& +x^{2 / 23} N^{17 / 23} M^{14 / 23}+x^{1 / 12} N^{3 / 4} M^{11 / 18} \\
& +x^{1 / 10} N^{7 / 10} M^{3 / 5}+x^{1 / 20} N^{17 / 20} M^{6 / 10}
\end{align*}
$$

Inserting (4.4) into (4.3) we have

$$
\begin{align*}
x^{-\varepsilon} S(M, N)< & (N x)^{1 / 4}+x^{7 / 20} M^{1 / 20}+x^{31 / 92} N^{-1 / 92} M^{5 / 46} \tag{4.5}\\
& +x^{1 / 3} M^{1 / 9}+x^{7 / 20} N^{-1 / 20} M^{1 / 10} \\
& +x^{3 / 10} N^{1 / 10} M^{1 / 10} \\
\ll & x^{9 / 25},
\end{align*}
$$

where $N \geq M$ and $M \ll x^{1 / 5}$ were used.
If $x^{2 / 25} M^{1 / 2} \ll N<M$, we again use Lemma 5 to bound $T(M, N)$ (whence $S(M, N)$), but this time we take $(X, Y)=(M, N)$, and we get

$$
\begin{align*}
x^{-\varepsilon} S(M, N) \ll & x^{1 / 3} N^{1 / 12}+x^{7 / 20} N^{2 / 20} M^{-1 / 20} \tag{4.6}\\
& +x^{31 / 92} N^{11 / 92} M^{-1 / 46}+x^{3 / 10} M^{1 / 5} \\
& +x^{7 / 20} N^{3 / 20} M^{-1 / 10}+x^{1 / 4} N^{-1 / 4} M^{1 / 2} \\
\ll & x^{9 / 25},
\end{align*}
$$

where $N<M$ and $M \ll x^{1 / 5}$ were used.

If $N \ll x^{2 / 25} M^{1 / 2}$, we use the exponent pair $(1 / 6,4 / 6)$ to estimate the sum over m and estimate the sum over n trivially to get

$$
\begin{equation*}
x^{-\varepsilon} S(M, N) \ll x^{9 / 25} . \tag{4.7}
\end{equation*}
$$

CASE 2: $x^{1 / 5} \ll M \ll x^{13 / 60}$. By the well-known expression

$$
\Delta(t)=-2 \sum_{n \leq t^{1 / 2}} \psi\left(\frac{t}{n}\right)+O(1),
$$

we have

$$
\begin{equation*}
S(M)=-2 \sum_{m \sim M} \sum_{n m \leq x^{1 / 2}} \psi\left(\frac{x}{n m^{2}}\right)+O\left(x^{1 / 3}\right) . \tag{4.8}
\end{equation*}
$$

So it suffices to bound the sum

$$
S_{0}(M, N ; x)=\sum_{(m, n) \in D} \psi\left(\frac{x}{n m^{2}}\right),
$$

where $D=\left\{(m, n) \mid m \sim M, n \sim N, n m \leq x^{1 / 2}\right\}$.
By the well-known finite Fourier expansion of $\psi(t)$ we have

$$
\begin{align*}
S_{0}(M, N ; x) & \ll \frac{M N}{J}+\sum_{h \leq J} h^{-1}\left|\sum_{(m, n) \in D} e\left(\frac{h x}{n m^{2}}\right)\right| \tag{4.9}\\
& \ll \frac{M N}{J}+\sum_{H} \sum_{h \sim H} H^{-1}\left|\sum_{(m, n) \in D} e\left(\frac{h x}{n m^{2}}\right)\right|,
\end{align*}
$$

where H runs through $\left\{2^{j} \mid 0 \leq j \leq \log J / \log 2\right\}$. So it suffices to bound

$$
\Phi(H, M, N)=\sum_{h \sim H} H^{-1}\left|\sum_{(m, n) \in D} e\left(\frac{h x}{n m^{2}}\right)\right| .
$$

By Lemma 2 (for details see Liu [4]) we get

$$
\begin{align*}
x^{-\varepsilon} \Phi(H, M, N) \ll & \frac{N}{H^{3 / 2} F^{1 / 2}} \sum_{h \sim H}\left|\sum_{(m, r) \in D_{1}} c(m) b(r) e\left(\frac{2 \sqrt{r h x}}{m}\right)\right| \tag{4.10}\\
& +(H F)^{1 / 2}+x^{1 / 3},
\end{align*}
$$

where $F=x /\left(N M^{2}\right), D_{1}$ is a subdomain of $\{(m, r) \mid m \sim M, r \sim$ $\left.H F N^{-1}\right\},|c(m)| \leq 1,|b(r)| \leq 1$.

Now using Lemma 3 to estimate the sum in (4.10) we get $(\operatorname{take}(h, x, y)=$ (h,r,m))

$$
\begin{align*}
x^{-\varepsilon} \Phi(H, M, N) \ll & H^{8 / 22} F^{11 / 22} N^{3 / 22} M^{13 / 22}+H^{1 / 2} F^{1 / 2} M^{5 / 8} \tag{4.11}\\
& +H^{4 / 16} F^{4 / 16} M^{17 / 16}+H^{8 / 32} F^{11 / 32} N^{3 / 32} M^{28 / 32} \\
& +H^{13 / 32} F^{16 / 32} N^{3 / 32} M^{18 / 32}+F^{1 / 4} N^{1 / 4} M \\
& +H^{1 / 4} F^{2 / 4} N^{1 / 4} M^{2 / 4}+x^{1 / 3} .
\end{align*}
$$

Insert (4.11) into (4.9) and then choose a best $J \in\left(0, x^{1 / 2}\right)$. Via Lemma 4 we get

$$
\begin{align*}
x^{-\varepsilon} S_{0}(M, N ; x) \ll & F^{11 / 30} N^{11 / 30} M^{21 / 30}+F^{8 / 24} N^{8 / 24} M^{18 / 24} \tag{4.12}\\
& +F^{4 / 20} N^{4 / 20} M^{21 / 20}+F^{11 / 40} N^{11 / 40} M^{36 / 40} \\
& +F^{16 / 45} N^{16 / 45} M^{31 / 45}+F^{2 / 5} N^{2 / 5} M^{3 / 5} \\
& +F^{1 / 4} N^{1 / 4} M+x^{1 / 3}
\end{align*}
$$

Now if we notice that $F=x /\left(N M^{2}\right), M N \ll x^{1 / 2}$ and $x^{1 / 5} \ll M \ll x^{13 / 60}$ we obtain

$$
\begin{align*}
x^{-\varepsilon} S_{0}(M, N ; x) \ll & x^{11 / 30} M^{-1 / 30}+x^{1 / 3} M^{1 / 12}+x^{4 / 20} M^{13 / 20} \tag{4.13}\\
& +x^{11 / 40} M^{14 / 40}+x^{16 / 45} M^{-1 / 45} \\
& +x^{2 / 5} M^{-1 / 5}+x^{1 / 4} M^{1 / 2}+x^{1 / 3} \\
\ll & x^{9 / 25},
\end{align*}
$$

whence (4.1) is true in this case.
CASE 3: $x^{13 / 60} \ll M \ll x^{1 / 3}$. We use notations of Case 1. Applying Lemma 1 to the sum over m we get

$$
x^{-\varepsilon} S(M, N) \ll(x N)^{1 / 2} M^{-1}+x^{1 / 3} \ll x^{9 / 25}
$$

if $N \ll M^{2} x^{-7 / 25}$.
Now suppose $N \gg M^{2} x^{-7 / 25}$. Applying Lemma 2 to the variable m (we omit the routine details which can be found in Liu [4]) we get

$$
\begin{align*}
x^{-\varepsilon} S(M, N) \ll & \frac{M}{N}\left|\sum_{n \sim N} \sum_{u \sim \sqrt{n x} M^{-2}} c(n) b(u) e\left(2 \sqrt{2} u^{1 / 2}(n x)^{1 / 4}\right)\right| \tag{4.14}\\
& +x^{1 / 3},
\end{align*}
$$

where $c(n) \ll 1, b(u) \ll 1$. We apply Lemma 5 to the sum on the right side of (4.14) to get (take $(X, Y)=(N, F / M))$

$$
\begin{align*}
x^{-\varepsilon} S(M, N) \ll & (x N)^{1 / 4}+x^{19 / 40} N^{5 / 40} M^{-14 / 20} \tag{4.15}\\
& +x^{11 / 23} N^{3 / 23} M^{-17 / 23}+x^{17 / 36} N^{5 / 36} M^{-13 / 18} \\
& +x^{5 / 10} N^{1 / 10} M^{-4 / 5}+x^{8 / 20} N^{4 / 20} M^{-1 / 2} \\
\ll & x^{43 / 120} \ll x^{9 / 25},
\end{align*}
$$

where $N \ll x^{7 / 25}$ and $M \gg x^{13 / 60}$ were used.
From our discussions we know (4.1) is true in any case and Theorem 2 follows.

Acknowledgements. The authors thank Prof. Pan Changdong for his kind encouragement and the referee for his valuable suggestions.

References

[1] R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145.
[2] E. Cohen, On the average number of direct factors of a finite abelian group, ibid. 6 (1960), 159-173.
[3] E. Krätzel, On the average number of direct factors of a finite Abelian group, ibid. 51 (1988), 369-379.
[4] H. Q. Liu, The distribution of 4-full numbers, ibid. 67 (1994), 165-176.
[5] -, On the number of abelian groups of a given order (supplement), ibid. 64 (1993), 285-296.
[6] -, On some divisor problems, ibid. 68 (1994), 193-200.
[7] H. Menzer, Exponentialsummen und verallgemeinerte Teilerprobleme, Habilitationsschrift, FSU, Jena, 1992.
[8] P. G. Schmidt, Zur Anzahl unitärer Faktoren abelscher Gruppen, Acta Arith. 64 (1993), 237-248.
[9] W. G. Zhai and X. D. Cao, On the average number of direct factors of finite abelian groups, ibid. 82 (1997), 45-55.

Department of Mathematics
Beijing Institute
Shandong Normal University
Jinan, Shandong 250014
P.R. China

E-mail: arith@sdunetnms.sdu.edu.cn
of Petrochemical Technology
Daxing, Beijing 102600 P.R. China

E-mail: biptiao@info.iuol.cn.net

[^0]: 1991 Mathematics Subject Classification: Primary 11N37.

