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1. Introduction. Let t(G) denote the number of unitary factors of G
and

T (x) =
∑

t(G),

where the summation is taken over all abelian groups of order not exceeding
x. It was first proved by Cohen [2] that

(1.1) T (x) = c1x(log x+ 2γ − 1) + c2x+ E0(x)

with E0(x)� √x. Krätzel [3] proved that

E0(x) = c3
√
x+ E1(x) with E1(x)� x11/29 log2 x.

Let θ denote the smallest α such that

(1.2) E1(x)� xα+ε.

Then the exponents θ ≤ 31/82, 3/8, 77/208 were obtained by H. Menzer [7],
P. G. Schmidt [8], H. Q. Liu [6], respectively.

The aim of this paper is to further improve the exponent 77/208. We
have the following Theorem 1.

Theorem 1. θ ≤ 9/25.

Following Krätzel [3], we only need to study the asymptotic behavior of
the divisor function d(1, 1, 2;n) which is defined by

d(1, 1, 2;n) =
∑

n1n2n2
3=n

1.

Let ∆(1, 1, 2;x) denote the error term of the summation function

D(1, 1, 2;x) =
∑

n≤x
d(1, 1, 2;n).
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We then have

Theorem 2. ∆(1, 1, 2;x) = O(x9/25+ε).

Theorem 1 immediately follows from Theorem 2.

Notations. e(t) = exp(2πit); n ∼ N means c1N < n < c2N for some
absolute constants c1 and c2; ε is a sufficiently small number which may
be different at each occurrence; ∆(t) always denotes the error term of the
Dirichlet divisor problem; ψ(t) = t− [t]− 1/2.

2. A non-symmetric expression of ∆(1, 1, 2;x). In this paper we
shall use a non-symmetric expression of ∆(1, 1, 2;x) instead of its symmetric
expression used in previous papers. This is the following lemma.

Basic Lemma. We have

∆(1, 1, 2;x) =
∑

m≤x1/3

∆

(
x

m2

)
+O(x1/3 log x).

P r o o f. We only sketch the proof since it is elementary and direct. We
begin with

D(1, 1, 2;x) =
∑

n≤x
d(1, 1, 2;x) =

∑

n1n2n2
3≤x

1 =
∑

m2n≤x
d(n)

=
∑

n≤x1/3

d(n)[
√
x/n] +

∑

n≤x1/3

D

(
x

m2

)
− [x1/2]D(x1/3),

where D(x) =
∑
n≤x d(n). We apply the well-known abelian partial sum-

mation formula
∑

n≤u
d(n)f(n) = D(u)f(u)−

u\
1

D(t)f ′(t) dt

to the first sum in the above expression and the Euler–Maclaurin summation
formula

∑

n≤x
f(n) =

u\
1

f(t) dt+
f(1)

2
− ψ(u)f(u) +

u\
1

D(t)f ′(t) dt

to the second sum, and combine

D(u) = u log u+ (2γ − 1)u+∆(u)

with ∆(u)� u1/3 to get

D(1, 1, 2;x) = main terms +
∑

m≤x1/3

∆

(
x

m2

)
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−
∑

n≤x1/3

d(n)ψ(
√
x/n) +O(x1/3)

= main terms +
∑

m≤x1/3

∆

(
x

m2

)
+O(x1/3 log x),

whence our lemma follows.

3. Some preliminary lemmas

Lemma 1. Suppose 0 < c1λ ≤ |f ′(x)| ≤ c2λ and |f ′′(x)| ∼ λN−1 for
N ≤ n ≤ cN . Then ∑

a<n≤cN
e(f(n))� (λN)1/2 + λ−1.

Lemma 2 (see [4]). Suppose f(x) and g(x) are algebraic functions in [a, b]
and

|f ′′(x)| ∼ R−1, |f ′′′(x)| � (RU)−1,

|g(x)| � G, |g′(x)| � GU−1
1 , U, U1 ≥ 1.

Then
∑

a<n≤b
g(n)e(f(n)) =

∑

α<u≤β
bu

g(nu)√
|f ′′(nu)|e(f(nu)− unu + 1/8)

+O(G log(β − α+ 2) +G(b− a+R)(U−1 + U−1
1 ))

+O

(
Gmin

(√
R,

1
〈α〉
)

+Gmin
(√

R,
1
〈β〉
))

,

where [α, β] is the image of [a, b] under the mapping y = f ′(x), nu is the
solution of the equation f ′(x) = u,

bu =
{

1 for α < u < β,
1/2 for u = α ∈ Z or u = β ∈ Z;

and the function 〈t〉 is defined as follows:

〈t〉 =
{ ‖t‖ if t is not an integer ,
β − α otherwise,

where ‖t‖ = minn∈Z{|t− n|}.
Lemma 3 (see [5]). Let H ≥ 1, X ≥ 1, Y ≥ 1000; let α, β and γ be

real numbers such that αγ(γ − 1)(β − 1) 6= 0, and A > C(α, β, γ) > 0,
f(h, x, y) = Ahαxβyγ . Define

S(H,X, Y ) =
∑

(h,x,y)∈D
c1(h, x)c2(y)e(f(h, x, y)),
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where D is a region contained in the rectangle

{(h, x, y) | h ∼ H, x ∼ X, y ∼ Y }
such that for any fixed pair (h0, x0), the intersection D∩{(h0, x0, y) | y ∼ Y }
has at most O(1) segments. Also, suppose

|c1(h, x)| ≤ 1, |c2(y)| ≤ 1, F = AHαXβY γ � Y.

Then

L−3S(H,X, Y )� (HX)19/22Y 13/22F 3/22 +HXY 5/8(1 + Y 7F−4)1/16

+ (HX)29/32Y 28/32F−2/32M5/32 + Y (HX)3/4M1/4,

where L = log(AHXY + 2),M = max(1, FY −2).

Lemma 4 (see [4]). Let M > 0, N > 0, um > 0, vn > 0, Am > 0, Bn >
0 (1 ≤ m ≤ M, 1 ≤ n ≤ N), and let Q1 and Q2 be given non-negative
numbers with Q1 ≤ Q2. Then there is a q such that Q1 ≤ q ≤ Q2 and

M∑
m=1

Amq
um +

N∑
n=1

Bnq
−vn �

M∑
m=1

N∑
n=1

(Avnm B
um
n )1/(um+vn)

+
M∑
m=1

AmQ
um
1 +

N∑
n=1

BnQ
−vn
2 .

Lemma 5. Suppose X and Y are large positive numbers, A > 0, α and β
are rational numbers (not non-negative integers). Suppose D is a subdomain
of {(x, y) | x ∼ X, y ∼ Y } embraced by O(1) algebraic curves, and F =
AXαY β � Y, |a(x)| ≤ 1, |b(y)| ≤ 1. Then

S =
∑

(x,y)∈D
axbye(Axαyβ)

� (XY 1/2 + F 4/20X13/20Y 15/20 + F 4/23X15/23Y 18/23 + F 1/6X2/3Y 7/9

+ F 1/5X3/5Y 4/5 + F 1/10X4/5Y 7/10) log4 F.

P r o o f. This is Theorem 3 of the old version of our paper [9]. The proce-
dure of the proof is the same as Theorem 2 of [1]. The difference lies in that
we use Lemma 4 above three times to choose parameters optimally and in
the last step the exponent pair (1/2, 1/2) is used.

4. Proof of Theorem 2. By our Basic Lemma, we only need to prove
that for fixed 1 ≤M ≤ x1/3/2, we have

(4.1) S(M) =
∑

m∼M
∆

(
x

m2

)
� x9/25+ε.
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Case 1: M � x1/5. By the well-known Voronöı formula, we have

S(M) =
∑

m∼M

x1/4

m1/2

∑

n≤x7/25

d(n)
n3/4

cos
(

4π
√
nx

m
− π

4

)
+O(x9/25+ε).

Hence for some 1� N � x7/25, we have

(4.2) x−εS(M)�
∣∣∣∣
∑

m∼M

x1/4

m1/2

∑

n∼N

d(n)
n3/4

e

(
2
√
nx

m

)∣∣∣∣+ x9/25.

So it suffices to estimate the sum on the right side of (4.2), denoted by
S(M,N).

Let am = M1/2m−1/2, bn = d(n)N3/4−εn−3/4. Then obviously

(4.3) x−εS(M,N)� x1/4M−1/2N−3/4

∣∣∣∣
∑

m∼M

∑

n∼N
ambne

(
2
√
nx

m

)∣∣∣∣.

We suppose x1/20 �M � x1/5. For M � x1/20, we have S(M)� x0.35

by the trivial estimate ∆(t)� t1/3.
Let T (M,N) denote the two-dimensional sum on the right side of (4.3).

If N ≥M , we use Lemma 5 to bound T (M,N) (take (X,Y ) = (N,M)) and
we get

x−εT (M,N)� NM1/2 + x2/20N15/20M11/20(4.4)

+ x2/23N17/23M14/23 + x1/12N3/4M11/18

+ x1/10N7/10M3/5 + x1/20N17/20M6/10.

Inserting (4.4) into (4.3) we have

x−εS(M,N)� (Nx)1/4 + x7/20M1/20 + x31/92N−1/92M5/46(4.5)

+ x1/3M1/9 + x7/20N−1/20M1/10

+ x3/10N1/10M1/10

� x9/25,

where N ≥M and M � x1/5 were used.
If x2/25M1/2 � N < M , we again use Lemma 5 to bound T (M,N)

(whence S(M,N)), but this time we take (X,Y ) = (M,N), and we get

x−εS(M,N)� x1/3N1/12 + x7/20N2/20M−1/20(4.6)

+ x31/92N11/92M−1/46 + x3/10M1/5

+ x7/20N3/20M−1/10 + x1/4N−1/4M1/2

� x9/25,

where N < M and M � x1/5 were used.
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If N � x2/25M1/2, we use the exponent pair (1/6, 4/6) to estimate the
sum over m and estimate the sum over n trivially to get

(4.7) x−εS(M,N)� x9/25.

Case 2: x1/5 �M � x13/60. By the well-known expression

∆(t) = −2
∑

n≤t1/2

ψ

(
t

n

)
+O(1),

we have

(4.8) S(M) = −2
∑

m∼M

∑

nm≤x1/2

ψ

(
x

nm2

)
+O(x1/3).

So it suffices to bound the sum

S0(M,N ;x) =
∑

(m,n)∈D
ψ

(
x

nm2

)
,

where D = {(m,n) | m ∼M , n ∼ N , nm ≤ x1/2}.
By the well-known finite Fourier expansion of ψ(t) we have

S0(M,N ;x)� MN

J
+
∑

h≤J
h−1

∣∣∣∣
∑

(m,n)∈D
e

(
hx

nm2

)∣∣∣∣(4.9)

� MN

J
+
∑

H

∑

h∼H
H−1

∣∣∣∣
∑

(m,n)∈D
e

(
hx

nm2

)∣∣∣∣,

where H runs through {2j | 0 ≤ j ≤ log J/ log 2}. So it suffices to bound

Φ(H,M,N) =
∑

h∼H
H−1

∣∣∣∣
∑

(m,n)∈D
e

(
hx

nm2

)∣∣∣∣.

By Lemma 2 (for details see Liu [4]) we get

x−εΦ(H,M,N)� N

H3/2F 1/2

∑

h∼H

∣∣∣∣
∑

(m,r)∈D1

c(m)b(r)e
(

2
√
rhx

m

)∣∣∣∣(4.10)

+ (HF )1/2 + x1/3,

where F = x/(NM2), D1 is a subdomain of {(m, r) | m ∼ M, r ∼
HFN−1}, |c(m)| ≤ 1, |b(r)| ≤ 1.

Now using Lemma 3 to estimate the sum in (4.10) we get (take (h, x, y) =
(h, r,m))

x−εΦ(H,M,N)� H8/22F 11/22N3/22M13/22 +H1/2F 1/2M5/8(4.11)

+H4/16F 4/16M17/16 +H8/32F 11/32N3/32M28/32

+H13/32F 16/32N3/32M18/32 + F 1/4N1/4M

+H1/4F 2/4N1/4M2/4 + x1/3.



Number of unitary factors of finite abelian groups 299

Insert (4.11) into (4.9) and then choose a best J ∈ (0, x1/2). Via Lemma 4
we get

x−εS0(M,N ;x)� F 11/30N11/30M21/30 + F 8/24N8/24M18/24(4.12)

+ F 4/20N4/20M21/20 + F 11/40N11/40M36/40

+ F 16/45N16/45M31/45 + F 2/5N2/5M3/5

+ F 1/4N1/4M + x1/3.

Now if we notice that F = x/(NM2), MN � x1/2 and x1/5 �M � x13/60

we obtain

x−εS0(M,N ;x)� x11/30M−1/30 + x1/3M1/12 + x4/20M13/20(4.13)

+ x11/40M14/40 + x16/45M−1/45

+ x2/5M−1/5 + x1/4M1/2 + x1/3

� x9/25,

whence (4.1) is true in this case.
Case 3: x13/60 � M � x1/3. We use notations of Case 1. Applying

Lemma 1 to the sum over m we get

x−εS(M,N)� (xN)1/2M−1 + x1/3 � x9/25

if N �M2x−7/25.
Now suppose N �M2x−7/25. Applying Lemma 2 to the variable m (we

omit the routine details which can be found in Liu [4]) we get

x−εS(M,N)� M

N

∣∣∣
∑

n∼N

∑

u∼√nxM−2

c(n)b(u)e(2
√

2u1/2(nx)1/4)
∣∣∣(4.14)

+ x1/3,

where c(n)� 1, b(u)� 1. We apply Lemma 5 to the sum on the right side
of (4.14) to get (take (X,Y ) = (N,F/M))

x−εS(M,N)� (xN)1/4 + x19/40N5/40M−14/20(4.15)

+ x11/23N3/23M−17/23 + x17/36N5/36M−13/18

+ x5/10N1/10M−4/5 + x8/20N4/20M−1/2

� x43/120 � x9/25,

where N � x7/25 and M � x13/60 were used.
From our discussions we know (4.1) is true in any case and Theorem 2

follows.

Acknowledgements. The authors thank Prof. Pan Changdong for his
kind encouragement and the referee for his valuable suggestions.



300 W. G. Zhai and X. D. Cao

References

[1] R. C. Baker and G. Harman, Numbers with a large prime factor , Acta Arith. 73
(1995), 119–145.

[2] E. Cohen, On the average number of direct factors of a finite abelian group, ibid. 6
(1960), 159–173.
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