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1. Introduction. Let d ≥ 1, k ≥ 2, l ≥ 2, n ≥ 1, y ≥ 1 be integers with
gcd(n, d) = 1. Erdős [4] and Rigge [12] independently proved that a product
of two or more consecutive positive integers is never a square. Further Erdős
and Selfridge [5] showed that a product of k consecutive integers is never a
power, i.e.,

n(n+ 1) . . . (n+ k − 1) = yl with integers k ≥ 2, l ≥ 2, n ≥ 1, y ≥ 1

never holds. In [14, Corollary 1] the author extended this result by showing
that

n(n+ d) . . . (n+ (k − 1)d) = yl with integers k ≥ 3, l ≥ 2, n ≥ 1, y ≥ 1

never holds for 1 < d ≤ 6. In this paper we extend the range of d for the
preceding equation with l = 2.

Theorem 1. The only solution of the equation

n(n+ d) . . . (n+ (k − 1)d) = y2 in integers k ≥ 3, n ≥ 1, y ≥ 1(1)

and 1 < d ≤ 22

is (n, d, k) = (18, 7, 3).

Theorem 1 is a consequence of the following more general result.

Theorem 2. Let k ≥ 3, n ≥ 1 and 1 < d ≤ 22. Then there exists a
prime exceeding k which divides n(n+ d) . . . (n+ (k − 1)d) to an odd power
except when (n, d, k) ∈ {(2, 7, 3), (18, 7, 3), (64, 17, 3)}.

Equation (1) implies that every prime exceeding k divides the product
n(n + d) . . . (n + (k − 1)d) to an even power. This contradicts Theorem 2
except when (n, d, k) ∈ {(2, 7, 3), (18, 7, 3), (64, 17, 3)}. But in these three
cases we find that n(n + d) . . . (n + (k − 1)d) equals 2 · 122, 1202, 2 · 5042,
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respectively. Hence equation (1) holds only when (n, d, k) = (18, 7, 3). Thus
Theorem 1 follows from Theorem 2. Let P (m) denote the greatest prime
factor of m for any integer m > 1 and we write P (1) = 1. Then it follows
from Theorem 2 that the equation

n(n+ d) . . . (n+ (k − 1)d) = By2 in positive integers k ≥ 3, n, y, B(2)

with P (B) ≤ k
never holds for 1 < d ≤ 22 except when (n, d, k) ∈ {(2, 7, 3), (18, 7, 3),
(64, 17, 3)}.

Marszałek [7] proved that equation (2) with d > 1 and B = 1 implies
that

(3) k < 2 exp(d(d+ 1)1/2).

Shorey and Tijdeman [16] proved that equation (2) with d > 1 implies that

(4) k < dC/log log d

where C is an effectively computable absolute constant. We prove

Theorem 3. Equation (2) with d ≥ 23 implies that

(5) k <

{
4d(log d)2 if d is odd,
1.3d(log d)2 if d is even.

In Theorem 3 we need to consider only d ≥ 23 in view of Theorem 2. The
estimate (5) is a considerable improvement of (3). The estimate (4) involves
an unspecified constant which turns out to be large. Therefore the estimate
(5) is better than (4) for small values of d.

Now we exhibit infinitely many solutions in relatively prime integers
n ≥ 1 and d > 1 of equation (2) with k = 3 and square-free integer B
satisfying P (B) ≤ 3. We observe that B ∈ {1, 2, 3, 6}. For B = 1, the
existence of infinitely many solutions follows from a well known result that
there are infinitely many triples of relatively prime squares in arithmetic
progression. For B > 1, we prove

Theorem 4. Let B ∈ {2, 3, 6}. There are infinitely many triples (n, d, y)
with integers n ≥ 1, d > 1, y ≥ 1 and gcd(n, d) = 1 satisfying

(6) n(n+ d)(n+ 2d) = By2.

Let d = 1, k ≥ 3 and n(n+1) . . . (n+k−1) be divisible by a prime greater
than k. Then Erdős and Selfridge [5] proved that there exists a prime p ≥ k
dividing n(n + 1) . . . (n + k − 1) to an odd power. The author [14] showed
that the above assertion is valid with p > k whenever k ≥ 4. If d = 1 and
k = 3, we prove

Theorem 5. There is a prime exceeding 3 which divides n(n+ 1)(n+ 2)
to an odd power except when n ∈ {1, 2, 48}.
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When n = 1, 2, 48, we see that n(n+1)(n+2) equals 6, 6 ·22, 6 ·1402 and
the assertion of Theorem 5 is false. For the proof of Theorem 5, it suffices
to show that the equation

(7) n(n+ 1)(n+ 2) = By2 with B ∈ {1, 2, 3, 6}
has no solution other than B = 6, (n, y) ∈ {(1, 1), (2, 2), (48, 140)}. If B = 1,
the above assertion is a particular case of the result of Erdős and Rigge
mentioned at the beginning of this section. If B = 6 and n odd, then the
assertion was proved by Meyl [8] whereas Watson [17] and Ljunggren [6]
proved the case of n even.

The Algorithm in Section 3 was programmed and checkings and com-
putations for the proof of Theorem 2 were carried out using Mathematica.
I thank Professor T. N. Shorey for many helpful discussions. I also thank
the referee for his valuable comments on an earlier draft of the paper.

2. Lemmas. We suppose throughout this section that n ≥ 1, d > 1 and
k ≥ 3 with (n, d, k) 6= (2, 7, 3). Then by a result of Shorey and Tijdeman
[15], we have

(8) P (n(n+ d) . . . (n+ (k − 1)d)) > k.

Further we suppose that

(9) ordp(n(n+ d) . . . (n+ (k − 1)d)) ≡ 0 (mod 2) for all primes p > k.

We write

(10) n+ id = aix
2
i , ai square-free, P (ai) ≤ k, xi > 0 for 0 ≤ i ≤ k − 1.

We observe that gcd(ai, d) = 1 for 0 ≤ i ≤ k− 1 since gcd(n, d) = 1. We de-
note by {a′1, . . . , a′t′} the set of all the distinct elements from {a0, . . . , ak−1}.
By (8), we have

(11) n+ (k − 1)d ≥ (k + 1)2.

Let m ≥ 1 be an integer and 2 ≤ p(d)
1 < p

(d)
2 < . . . be all the primes which

are coprime to d. We define Bm,d = {a′r | P (a′r) ≤ p
(d)
m } and g(k,m, d) =

|Bm,d|. We observe that

(12) g(k,m, d) ≥ t′ −
∑

i≥m+1

([
k

p
(d)
i

]
+ ε

(d)
i

)
:= g0(k,m, d)

where ε(d)
i = 0 if p(d)

i > k and for p(d)
i ≤ k, ε(d)

i = 0 or 1 according as p(d)
i | k

or not for i ≥ m + 1. We note that g(k,m, d) and g0(k,m, d) are the same
as g(k,m) and g0(k,m) of [14].

Throughout this section we assume without reference that h is a positive
integer with h even whenever d is even. Further, let % > 0. Define Vh =
{α | α is a positive integer with αh2 < % and gcd(α, d) = 1}. We write
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Vh =
⋃
i≥1 Vhi such that for every i ≥ 1, positive integers α and β are in

Vhi if and only if α ≡ β (mod d
εh gcd(d,h)

)
where

(13) εh = 1 if 2 -
d

gcd(d, h)
and εh = 2 if 2 | d

gcd(d, h)
.

Further, let δh = max{|Vhi|} and δ(d) =
∑∗
h<
√
% δh. Here we recall that the

summation in
∑∗ is taken over even values of h whenever d is even. We

note that δ(d) can be computed for every d and % and that the values of
δ(d) for 7 ≤ d ≤ 22 and % = 1

3d
2 can be found in Table 1. We begin with

the following lemma which gives a lower bound for the number of distinct
ai, viz., t′.

Lemma 1. Let n ≥ (k − 1)2d2/(4%). If (9) holds, then t′ ≥ k − δ(d).

P r o o f. Let b1, . . . , br, . . . be the aj ’s which occur more than once with
n+ ird = brx

2
ir

for r ≥ 1 and such that xir is minimal, i.e., if ai = br with
i 6= ir, then xi > xir . For any br with r ≥ 1, we say that br is repeated at
the hth place if there exists some j, 0 ≤ j ≤ k− 1, such that aj = br, j 6= ir,
xj = xir + h with h ≥ 1. We observe that j is uniquely determined. We set
Wh = {aj | 0 ≤ j ≤ k − 1, aj = br, j 6= ir and xj = xir + h for some r}.
In order to get a lower bound for the number of distinct aj ’s, we need to
get an upper bound for

∑
h≥1 |Wh|. We observe that |Wh| is equal to the

number of br which are repeated at the hth place. We proceed to find an
upper bound for this number.

Suppose br is repeated at the hth place. Then by its definition, we obtain
for some j, 0 ≤ j ≤ k − 1, j 6= ir,

(k − 1)d ≥ (j − ir)d = br(x2
j − x2

ir ) = br(2hxir + h2)(14)

> 2hb1/2r (brx2
ir )

1/2 ≥ 2hb1/2r n1/2 > hb1/2r

(k − 1)d√
%

.

Thus

(15) brh
2 < %.

Hence h <
√
%, i.e., the number of places at which br can be repeated is at

most [
√
%]. Further, we note from (14), (10) and (15) that h is even whenever

d is even and that br ∈ Vh. Also we observe that h(2xir + h) ≡ 0 (mod d)
from which it follows that xir ≡ c

(
mod d

εh gcd(d,h)

)
where c depends only

on h and d with εh as in (13). Thus n ≡ brc2
(
mod d

εh gcd(d,h)

)
. Further, we

observe that gcd
(
c, d
εh gcd(d,h)

)
= 1 since gcd(n, d) = 1.

If bs 6= br is such that bs is repeated at the hth place, then by the
foregoing argument, we have bsh2 < % and n ≡ bsc2

(
mod d

εh gcd(d,h)

)
. Thus

br ≡ bs
(
mod d

εh gcd(d,h)

)
since gcd

(
c, d
εh gcd(d,h)

)
= 1. Hence br, bs belong to
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Vhi for some i. Thus the number of br which are repeated at the hth place
is ≤ δh. Since h <

√
%, we have

∑

h≥1

|Wh| ≤
∑

h<
√
%

δh = δ(d).

Hence the number of distinct aj ’s is at least k − δ(d).

As a consequence of Lemma 1, we have

Corollary 1. Let k ≥ 2(2d− 7). If (9) holds, then t′ ≥ k− δ(d) where
δ(d) is computed with % = 1

3d
2.

P r o o f. By (11) and k ≥ 2(2d− 7), we see that

n ≥ (k + 1)2 − (k − 1)d > (k + 1)2 − (k − 1)(k + 14)
4

>
3
4

(k − 1)2.

Now the result follows immediately from Lemma 1.

Let 1 = s1 < s2 < . . . be the sequence of all square-free integers and
1 = s′1 < s′2 < . . . be the sequence of all odd square-free integers.

Lemma 2. We have

(i) si ≥ (1.5)i for i ≥ 39.
(ii) si ≥ (1.6)i for 286 ≤ i ≤ 570.

(iii) s′i ≥ (2.25)i for i ≥ 12.

P r o o f. (i) We first check that si ≥ (1.5)i for 39 ≤ i ≤ 70. Further, we
check that for 0 ≤ r < 36, r 6∈ S0 = {0, 4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32}
we can choose an sir with 39 ≤ ir ≤ 70 such that sir ≡ r (mod 36). Now
we consider any si with i > 70. Then si ≡ r (mod 36) for some r with
0 ≤ r < 36, r 6∈ S0. Thus si ≡ sir (mod 36) with 39 ≤ ir ≤ 70. Hence

(16) si − sir = 36f

for some positive integer f . We know that in any set of 36 consecutive
integers, the number of square-free integers is ≤ 24. Thus the number of
square-free integers ≤ 36f is at most 24f . Also we observe from (16) that
this number is equal to i− ir. Therefore i− ir ≤ 24f ≤ 2

3 (si − sir ) by (16).
Hence si ≥ 3

2 (i− ir) + sir ≥ (1.5)i since sir ≥ (1.5)ir.
(ii) The inequality follows by direct checking.
(iii) We check that s′i ≥ (2.25)i for 12 ≤ i ≤ 35. Also we check for

0 ≤ r < 36 with r ≡ 1 (mod 2) and r 6∈ S0 that we can choose an s′ir with
12 ≤ ir ≤ 35 such that s′ir ≡ r (mod 36). Further, we observe that the
number of odd square-free integers in any set of 36 consecutive integers is
≤ 16. Now we repeat the argument in (i) for any s′i with i > 35 to obtain
(iii).
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It can be checked that
63∏

i=1

si ≥ (1.5)63(63)!,
286∏

i=1

si ≥ (1.6)286(286)!,
51∏

i=1

s′i ≥ (2.25)51(51)!.

By Lemma 2 and from an induction argument we derive

Corollary 2. We have

(i)
∏ν
i=1 si ≥ (1.5)νν! for ν ≥ 63.

(ii)
∏ν
i=1 si ≥ (1.6)νν! for 286 ≤ ν ≤ 570.

(iii)
∏ν
i=1 s

′
i ≥ (2.25)νν! for ν ≥ 51.

The inequality in (i) of the above corollary has already appeared in [5].

Lemma 3. Let 7 ≤ d ≤ 22. Suppose (9) holds. Then k ≤ k0(d) := k0

where k0 is as given in Table 1.

P r o o f. Suppose k > k0. Then k > 2(2d− 7). Hence Corollary 1 is valid.
Thus t′ ≥ k − δ(d) where δ(d) is computed with % = 1

3d
2. We note from

Table 1 that δ(d) ≤ 20. Thus t′ ≥ k−20. From now onwards we shall assume
that k ≥ 83. Since a′i for 1 ≤ i ≤ t′ are square-free integers, we use Corollary
2(i) to obtain

(17)
t′∏

i=1

a′i ≥
k−20∏

i=1

a′i ≥
k−20∏

i=1

si ≥ (1.5)k−20(k − 20)!.

On the other hand, by (10), we have

(18) a′1 . . . a
′
t′ | (k − 1)!

∏

p≤k
p.

We put gq = ordq(a′1 . . . a
′
t′) and hq = ordq((k − 1)!

∏
p≤k p) for any prime

q ≤ k. Then it follows from Marszałek [7, p. 221] that

gq ≤ k

q + 1
+

log k
log q

+ 1 and hq ≥ k − 1
q − 1

− log k
log q

.

Thus

(19) gq − hq ≤ −2k
q2 − 1

+
q

q − 1
+

2 log k
log q

.

Further, from (18) we get

(20) a′1 . . . a
′
t′ | (k − 1)!

(∏

p≤k
p
)(∏

q≤19

qgq−hq
)

where in the product signs p, q run over primes. Now by (20) and (19), we
have

(21) a′1 . . . a
′
t′ ≤ (k − 1)!

(∏

p≤k
p
)
k16
(∏

q≤19

qq/(q−1)
)(∏

q≤19

q2/(q2−1)
)−k

.
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We find that

(22)





∏

q≤19

qq/(q−1) ≤ 153819970,
∏

q≤19

q2/(q2−1) ≥ 2.8819,

∏

p≤k
p ≤ (2.78)k (see [13,p. 71]).

Using (22) in (21) and comparing with (17), we get

(1.5549)k ≤ (153819970)(1.5)20k35.

This inequality is not valid for k ≥ 570. Thus we obtain k < 570. Now let
k ≥ 485. We use Corollary 2(ii) to get

t′∏

i=1

a′i ≥ (1.6)k−20(k − 20)!.

Comparing this lower bound with the upper bound in (21), we get

(1.6586)k ≤ (153819970)(1.6)20k35.

This inequality is not valid for k ≥ 485. Thus we conclude that k < 485.
We shall bring down the value of k to k0 in all cases except d = 19 by

a counting argument which will be presented in the next paragraph. When
d = 19 the counting argument fails. But a refinement of the above argument
itself enables us to bring k < 315. When d = 19 we observe that g19 = 0
and we rewrite (20) as

a′1 . . . a
′
t′ ≤ (k − 1)!

(∏

p≤k
p
)(∏

q≤17

qgq−hq
)

(19)−hq .

On the other hand, by Corollary 2(ii), we have for 485 > k ≥ 303, a′1 . . . a
′
t′ ≥

(1.6)k−17(k− 17)! since δ(d) = 17. Now we combine the preceding estimates
for a′1 . . . a

′
t′ to conclude that k < 315 whenever d = 19.

Let 7 ≤ d ≤ 22, d 6= 19 and k < 485. Since a′i for 1 ≤ i ≤ t′ are distinct
and square-free we have

(23) g(k,m, d) ≤ 1 +
(
m
1

)
+ . . .+

(
m
m

)
= 2m.

Thus if g0(k,m, d) ≥ 2m + 1, we get a contradiction by (12). Since t′ ≥
k− δ(d), we replace t′ in (12) by k− δ(d) and using Table 1 for the values of
δ(d) we check that g0(k,m, d) ≥ 2m + 1 for a proper choice of m whenever
k0 < k < 485. For example, when d = 13 we observe from p

(d)
6 = 17 and the

definition of g0(k,m, d) that g0(k, 5, 13) ≥ 33 for 120 ≤ k < 485. The other
cases are checked similarly. See Table 1 for the choices of m when different
values of d and k are considered. This completes the proof.
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Table 1

d δ(d) Range for k m k0 d δ(d) Range for k m k0

7 6 27–310 3 26 14 5 43–349 2 42
311–484 4 350–484 3

8 4 19–20 2 18 15 14 47–484 3 46
21–106 3 16 11 51–238 3 50
107–318 4 239–484 4
319–484 5 17 15 255–484 6 254

9 7 40–285 3 39 18 6 59–102 1 58
286–484 4 103–348 2

10 2 27–136 1 28 349–484 3
137–383 2 19 17 – – 314
384–484 3 20 8 67–318 2 66

11 9 55–484 4 54 319–484 3
12 4 35–372 2 34 21 20 100–484 3 99

373–484 3 22 7 75–310 3 74
13 12 120–484 5 119 311–484 4

We see from Table 1 that δ(d) ≤ 20 for 7 ≤ d ≤ 22. In the following
lemma we give an upper bound for δ(d) whenever d ≥ 23.

Lemma 4. For d ≥ 23 and % = 1
3d

2, we have

δ(d) ≤
{

1
4d log d+ (.8323)d if d is odd,
1
3d log d+ (.118)d if d is even.

P r o o f. By the definition of δ(d), we obtain

(24) δ(d) ≤
∑

h<d/
√

3

([
d2

3h2 ·
εh gcd(d, h)

d

]
+ 1
)

where the sum is taken over even values of h whenever d is even. We observe
from (13) that εh ≤ 2. Thus from (24) we get

(25) δ(d) ≤ d

3

∑

h<d/(2
√

3)

1
h

+
d

2
√

3
if d is even.

Let d be odd. Then by (13), εh = 1. Further, gcd(d, h) ≤ h/2 whenever h is
even. Hence from (24) we get

δ(d) ≤ d

3

∑

h<d/
√

3, h odd

1
h

+
d

3

∑

h<d/
√

3, h even

1
2h

+
d√
3

≤ d

3

∑

h<d/
√

3

1
h
− d

6

∑

h<d/
√

3, h even

1
h

+
d√
3



Squares in products 35

≤ d

3

∑

h<d/
√

3

1
h
− d

12

∑

h<d/(2
√

3)

1
h

+
d√
3

≤ d

4

∑

h<d/(2
√

3)

1
h

+
d

3

∑

d/(2
√

3)<h<d/
√

3

1
h

+
d√
3
.

Thus

(26) δ(d) ≤ d

4

∑

h<d/(2
√

3)

1
h

+
d

3
+

d√
3

+
2√
3

if d is odd.

We use
∑
h<x 1/h < log x+ γ + 1/x where x > 1 and γ is Euler’s constant

whose value is < .5773 (see [1, p. 55] and [13, pp. 65–66]) and d ≥ 23 in the
estimates (25) and (26) to prove the assertion of the lemma.

Lemma 5. Let k = 3. Suppose (9) holds. Then (a0, a1, a2) ∈ S where
S = S1 ∪ S2 ∪ S3 ∪ S4 with S1 = {(1, 1, 1)}, S2 = {(2, 1, 2)}, S3 = {(1, 2, 3),
(2, 3, 1), (3, 1, 2), (6, 1, 2), (1, 1, 2)} and S4 = {(1, 3, 2), (2, 1, 3), (3, 2, 1),
(2, 1, 6), (2, 1, 1)}. Further , we have

d ≡





0 (mod 8) if (a0, a1, a2) ∈ S1;
±1 (mod 8) if (a0, a1, a2) ∈ S2;
1 (mod 8) if (a0, a1, a2) ∈ S3;
−1 (mod 8) if (a0, a1, a2) ∈ S4.

P r o o f. From (9), we see that (10) holds and therefore {a0, a1, a2} ⊂
{1, 2, 3, 6}. Also gcd(n, n+d) = gcd(n+d, n+2d) = 1 and gcd(n, n+2d) = 1
or 2 since gcd(n, d) = 1. Thus we find that there are 20 possible values for the
triple (a0, a1, a2), viz., (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 6), (1, 2, 1), (1, 2, 3),
(1, 3, 1), (1, 3, 2), (1, 6, 1), (2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 1, 6), (2, 3, 1), (2, 3, 2),
(3, 1, 1), (3, 1, 2), (3, 2, 1), (6, 1, 1), (6, 1, 2).

We use without mentioning that x0, x1, x2 are pairwise coprime and
a0x

2
0 + a2x

2
2 = 2a1x

2
1. We exclude the possibilities (1, 1, 3) and (1, 1, 6) since

2x2
1 − x2

0 6≡ 0 (mod 3); (1, 3, 1), (1, 6, 1), (2, 3, 2) since x2
0 + x2

2 6≡ 0 (mod 3);
(3, 1, 1) and (6, 1, 1) since 2x2

1 − x2
2 6≡ 0 (mod 3); (1, 2, 1) since x2

0 + x2
2 6≡ 0

(mod 4). The remaining 12 possibilities are given by S.
We take (a0, a1, a2) = (1, 1, 1) ∈ S1. Then n = x2

0, n+d = x2
1, n+2d = x2

2,
implying x0 and x2 are odd since n and n + 2d are both odd or both even
and gcd(n, n + 2d) = 1 or 2. Thus 2d = x2

2 − x2
0 ≡ 0 (mod 8), yielding

d ≡ 0, 4 (mod 8). If d ≡ 4 (mod 8), then x2
1 = n+ d ≡ 5 (mod 8), which is

not possible. Thus d ≡ 0 (mod 8).
Next we consider (a0, a1, a2) = (2, 1, 2) ∈ S2. Then x1 is odd and n ≡ 0

or 2 (mod 8) according as x0 is even or odd. Hence 1 ≡ x2
1 = n+ d ≡ d or

d+ 2 (mod 8), which implies that d ≡ 1 or 7 (mod 8).
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Now we take (a0, a1, a2) = (1, 2, 3) ∈ S3. Then x0, x2 are odd and d =
2x2

1 − x2
0 ≡ −1 or 1 (mod 8) according as x1 is even or odd. If d ≡ −1

(mod 8), then d = 3x2
2 − 2x2

1 ≡ 3 − 0 ≡ 3 (mod 8), a contradiction. Thus
d ≡ 1 (mod 8). Similarly we prove for other possibilities in S3 that d ≡
1 (mod 8).

Lastly, we consider (a0, a1, a2) = (1, 3, 2) ∈ S4. Then x0 is even and
hence x1, x2 are odd. Thus d = 2x2

2 − 3x2
1 ≡ 7 (mod 8). Likewise we prove

for other possibilities in S4 that d ≡ 7 (mod 8).

Lemma 6. Let k = 3. Suppose (9) holds. Then one of the following pos-
sibilities holds: (i) d = 1, (ii) d ≥ 23, (iii) (n, d) ∈ {(2, 7), (18, 7), (64, 17)}.

P r o o f. Let 1 < d < 23. We shall show that (iii) holds. By Lemma 5, we
need to consider (a0, a1, a2) ∈ S1 with d = 8, 16; (a0, a1, a2) ∈ S2 ∪ S3 with
d = 9, 17 and (a0, a1, a2) ∈ S2 ∪ S4 with d = 7, 15.

Let (a0, a1, a2) ∈ S1 with d = 8, 16. Since x2
1 − x2

0 = d we find that
x0 = 1, x1 = 3 and x0 = 3, x1 = 5 and hence x2

2 = 17 and 41, respectively.
This is not possible.

Let (a0, a1, a2) ∈ S2 with d = 7, 9, 15, 17. Then x2
2 − x2

0 = d implies that
(n, d) = (18, 7).

Let (a0, a1, a2) ∈ S3 with d = 9, 17. Let d = 9. In the first 4 possibilities
in S3 we observe that 3 divides one of n, n+d, n+2d. Hence 3 |n, which is a
contradiction since gcd(n, d) = 1. Let (a0, a1, a2) = (1, 1, 2). Then x2

1−x2
0 =

9 gives x0 = 4 and hence n + 2d = 2x2
2 = 34, which is impossible. Let

d = 17 and (a0, a1, a2) = (1, 2, 3). Then n + 34 ≡ 0, 3 (mod 9), implying
x2

0 = n ≡ 2, 5 (mod 9), a contradiction. The next three possibilities are
excluded similarly. Let (a0, a1, a2) = (1, 1, 2). Then x2

1 − x2
0 = 17 implies

that (x0, x1, x2) = (8, 9, 7). Thus (n, d) = (64, 17).
Let (a0, a1, a2) ∈ S4 with d = 7, 15. Let d = 7 and (a0, a1, a2) = (1, 3, 2).

Then n + 7 ≡ 0, 3 (mod 9). Hence x2
0 = n ≡ 2, 5 (mod 9), a contradiction.

The next three possibilities are excluded similarly. Let (a0, a1, a2) = (2, 1, 1).
Then x2

2 − x2
1 = 7 gives (x0, x1, x2) = (1, 3, 4). Thus (n, d) = (2, 7). Let

d = 15. The first four possibilities in S4 are excluded since 3 divides one of
n, n + d, n + 2d. Let (a0, a1, a2) = (2, 1, 1). Then x2

2 − x2
1 = 15 implies that

x1 = 7 or 1, giving 2x2
0 = n = 34 or −14, which are impossible.

Lemma 7. Let 7 ≤ d ≤ 22 and (n, d) 6∈ {(2, 7), (18, 7), (64, 17)}. Assume
that t′ = k. Then (9) does not hold.

P r o o f. Suppose (9) holds. Then by Lemmas 3, 6 and Table 1, we have
4 ≤ k ≤ k0 ≤ 314. We observe that (10) holds and a0, . . . , ak−1 are
all distinct since t′ = k. We often use these facts and the property that



Squares in products 37

gcd(ai, d) = 1 for 0 ≤ i < k without any reference. We check that

(27)





g0(k, 1, d) ≥ 3 for 4 ≤ k ≤ 8 if 2 or 3 divides d;
g0(k, 2, 7) ≥ 5 for k = 7, 8;
g0(k, 2, d) ≥ 5 for 9 ≤ k ≤ 22;
g0(k, 3, d) ≥ 9 for 23 ≤ k ≤ 78;
g0(k, 4, d) ≥ 17 for 79 ≤ k ≤ 276;
g0(k, 5, d) ≥ 33 for 277 ≤ k ≤ 314.

But (27) contradicts (23), by (12). Thus we may assume that 4 ≤ k ≤ 6 if
d = 7 and 4 ≤ k ≤ 8 if d ∈ {11, 13, 17, 19}.

Let k = 4 and d ∈ {7, 11, 13, 17, 19}. We know that P (ai) ≤ 3 and
hence ai ∈ {1, 2, 3, 6}. Thus n(n + d)(n + 2d)(n + 3d) is a square. But this
is impossible by a well known result of Euler (see Dickson [3, p. 635] and
Mordell [9, p. 21, Corollary]). We also use this fact without reference when
we deal with other values of k.

Let k = 5. Since ai’s are distinct, we need only consider the case when
5 divides one and only one of n, n + d, n + 2d, n + 3d, n + 4d and hence
at most one ai. The values of the other ai’s belong to {1, 2, 3, 6}. We may
assume that 5 divides one of n + d, n + 2d, n + 3d. Suppose 5 |n + d. Then
{n, n + 2d, n + 3d, n + 4d} ∈ {y2

1 , 2y
2
2 , 3y

2
3 , 6y

2
4} for some positive integers

y1, y2, y3, y4. We explain the case d = 7. Then n ≡ 3 (mod 5). Hence n = 2y2
2

or 3y2
3 . Let n = 2y2

2 . Then n+14 = 3y2
3 , n+21 = y2

1 and hence n+28 = 6y2
4 ,

which gives 3 | 14, a contradiction. When n = 3y2
3 , we get n + 14 = 2y2

2 ,
n + 21 = y2

1 and hence n + 28 = 6y2
4 , implying 3 | 28, a contradiction. As

another example, we take d = 11. Then n ≡ 4 (mod 5). We find that
n = 6y2

4 , n+ 22 = y2
1 , n+ 33 = 3y2

3 , n+ 44 = 2y2
2 . Here we observe that y1

is even, y2, y3, y4 are odd. Hence n ≡ 6 (mod 8) and n + 33 ≡ 7 (mod 8).
But n+ 33 = 3y2

3 ≡ 3 (mod 8), a contradiction. By a similar argument, we
exclude all the cases 5 |n+ d, 5 |n+ 2d, 5 |n+ 3d for d ∈ {7, 11, 13, 17, 19}.
Thus k 6= 5.

Let k = 6. Then P (ai) ≤ 5 and we may assume that 5 -n. Hence 5 divides
only one of {n+ d, n+ 2d, n+ 3d, n+ 4d}. Therefore five of the ai’s belong
to {1, 2, 3, 6}. This is not possible since ai’s are all distinct. Thus k 6= 6.

Let k = 7 and d ∈ {11, 13, 17, 19}. Then P (ai) ≤ 7 and we may assume
that there exist distinct i1, i2 and i3 between 0 and 6 such that 7 |n + i1d,
5 |n+i2d, 5 |n+i3d since otherwise g0(k, 2, d) ≥ 5 leading to a contradiction.
There are 8 possibilities for (i1, i2, i3) for each d. We check the case 7 |n+d,
5 |n, 5 |n+5d for d = 17. Then n+2d = 6y2

4 , n+3d = y2
1 , n+ 4d = 2y2

2 and
hence n + 6d = 3y2

3 , which implies 3 | 4d, a contradiction. The other cases
are excluded similarly.

Finally, let k = 8 and d ∈ {11, 13, 17, 19}. Then P (ai) ≤ 7 and we may
assume that 7 |n, 7 |n+ 7d, 5 |n+ d, 5 |n+ 6d for otherwise g0(k, 2, d) ≥ 5,
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which is a contradiction. Then (n+ 2d)(n+ 3d)(n+ 4d)(n+ 5d) is a square,
which is impossible.

The following lemma deals with the integral solutions of certain Dio-
phantine equations.

Lemma 8. (i) There are infinitely many integral solutions in x and y of
the equation x2 − 2y2 = 1 with x odd and of the equation x2 − 3y2 = 1 with
x odd as well as with x even.

(ii) All solutions of the equation 3x2 +y2 = z2 in integers x, y, and z are
given by

x = %0us, y = 1
2%0(αu2 − βs2), z = 1

2%0(αu2 + βs2)

where αβ = 3, u and s are positive integers with gcd(u, s) = 1 and %0 is any
integer when u and s are odd but %0 is even when one of u and s is even
and the other is odd.

(iii) The only solutions in non-zero integers of x4 + y4 = 2z2 with
gcd(x, y) = 1 are x2 = 1, y2 = 1 and z2 = 1. There is no solution in
non-zero integers of the equation x4 − y4 = 2z2 with gcd(x, y) = 1.

Lemma 8(i) is a well known result in continued fraction theory. We refer
to [10, Theorem 7.25, pp. 173–174] from where the result in Lemma 8(i) can
be derived easily using the facts that

√
2 = 〈1, 2〉 and

√
3 = 〈1, 1, 2〉. Lemma

8(ii) can be found in [2, pp. 40–41]. The first assertion in Lemma 8(iii) is
proved in [11, p. 38]. It also follows from A14.4 of [11, p. 171]. In fact, the
statement given therein should be corrected as: If m ≥ 0 and x4+y4 = 2mz2

with gcd(x, y) = 1, then m = 1 and x2 = y2 = z2 = 1. The second assertion
in Lemma 8(iii) follows from A14.5 of [11, p. 172].

3. An algorithm. In this section, we modify the algorithm given in
[14, §4].

Algorithm. Let d and k ≥ 4 be given. Also let µ > 0.
Step 1. Find all primes q1, . . . , qθ, qθ+1, . . . , qθ+η which are coprime to

d and such that q1 < . . . < qθ ≤ k < qθ+1 < . . . < qθ+η and q2
i < k2d2/µ for

1 ≤ i ≤ θ + η.

Step 2. Set D = {qα1
1 . . . qαθθ q2β1

θ+1 . . . q
2βη
θ+η | qα1

1 . . . qαθθ q2β1
θ+1 . . . q

2βη
θ+η

< k2d2/µ for non-negative integers αi, βj , 1 ≤ i ≤ θ, 1 ≤ j ≤ η and
β1, . . . , βη not all zero}.

Step 3. For every q ∈ D, find the smallest j0 ≥ 1 such that d <
q/(k − j0). Then find some j = j(q) with j0 ≤ j ≤ k−1 such that P (q+ jd)
and P (q − (k − j)d) are > qθ+η.

In our application, it is always possible to find j0 in Step 3 because
d ≤ 22 and q ≥ q2

θ+1 ≥ 25. Also q−(k−j)d is positive since d < q/(k − j0) <
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q/(k − j) as j ≥ j0. We derive from the above Algorithm the following result.

Lemma 9. Let d, k and µ > 0 be given such that n+ (k − 1)d < k2d2/µ.
If (9) and Step 3 hold , then (8) does not hold.

P r o o f. Since n+ (k− 1)d < k2d2/µ, every term n+ id for 0 ≤ i ≤ k− 1
is of the form q ∈ D or q with P (q) ≤ qθ. Now we follow the proof of [14,
Lemma 11] to obtain the assertion of the lemma.

4. Proof of Theorem 2. Let 1 < d ≤ 22 and (n, d, k) 6∈ {(2, 7, 3),
(18, 7, 3), (64, 17, 3)}. We assume that (9) holds and arrive at a contradiction.
We apply Lemma 6 to get k ≥ 4. Next we use Theorem 1 of [14] to derive
that d ≥ 7. Then by Lemma 3, we may assume that k ≤ k0 where k0 is as
given in Table 1.

Suppose n ≥ (k − 1)2d2/4. Then we take % = 1 in Lemma 1 and observe
that δ(d) = 0. Thus from Lemma 1, we derive that t′ = k and hence it
follows from Lemma 7 that (9) does not hold. Thus our supposition n ≥
(k − 1)2d2/4 is false. We assume from now onwards that n < (k − 1)2d2/4
and hence

(28) n+ (k − 1)d <
k2d2

4
for 4 ≤ k ≤ k0 and 7 ≤ d ≤ 22.

Suppose k ≥ 27. Then from Table 1 we have d ≥ 9. Assume that n ≥
(k − 1)2d2/36. Then we take % = 9 in Lemma 1. Thus h ≤ 2. Suppose
d = 9. Then V1 = {1, 2, 4, 5, 7, 8}, V2 = {1, 2}, ε1 = 1, ε2 = 1, δ1 = 1 and
δ2 = 1. Hence δ(d) ≤ 2. Similarly, for other values of d we find that δ(d) ≤ 2.
Hence by Lemma 1, t′ ≥ k−2. We check that g(k, 3, d) ≥ 9 for 27 ≤ k ≤ 66.
This contradicts (23). Thus we derive that

(29) n+ (k − 1)d <
(k − 1)2d2

36
+ (k − 1)d <

k2d2

32
for 27 ≤ k ≤ 66 and 9 ≤ d ≤ 22.

Let k > 66. Then we see from Table 1 that d ∈ {13, 17, 19, 21, 22} and
the corresponding upper bound for k, viz., k0 is large. We use the idea in
the preceding paragraph in order to get a good upper bound for n+(k−1)d
in different ranges of k. First we assume that n+(k−1)d ≥ k2d2/µ for some
positive integer µ. Then we find a lower bound for t′, say t0, and a range of
k, say R1 ≤ k ≤ R2, in which by (12), we check that g(k,m, d) ≥ 2m + 1 for
a suitable choice of m. Since this is a contradiction we derive that

(30) n+ (k − 1)d <
k2d2

µ
for R1 ≤ k ≤ R2.

In Table 2, we tabulate the choice of µ, values of t0, R1, R2 and m when
d ∈ {13, 17, 19, 21, 22}.
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Table 2

d µ t0 R1–R2 m

13 92 k − 5 67–119 4
17 92 k − 5 67–119 4

135 k − 7 120–159, 160–174 4, 5
184 k − 8 175–215, 216–233 5, 6
240 k − 10 234–254 6

19 32 k − 2 67–80 4
132 k − 6 81–143, 144–174 4, 5
185 k − 8 175–302 5

21 165 k − 7 67–99 2
22 32 k − 1 67–74 2

For a given d, k, we use (28)–(30) with Table 2 and construct the set D
mentioned in Step 2 of the Algorithm in Section 3. Next we proceed to check
that Step 3 holds for the given d, k and q ∈ D. This would contradict (8)
by Lemma 9. The verification of Step 3 is done as follows. First, we delete
from D all the integers q for which both P (q + jd) and P (q − (k − j)d)
exceed qθ+η with j = j0. We denote the set of remaining integers of D by
D1. Secondly if D1 6= ∅, we delete from D1 those integers for which both
P (q + jd) and P (q − (k − j)d) exceed qθ+η with j = j0 + 1. The remaining
set of integers from D1 is denoted by D2. The above process is continued
till we reach j = k − 1 or until Di becomes an empty set for some integer
i ≥ 1. For the values of d and k under consideration, we find that we need
only take j with j0 ≤ j ≤ min(k − 1, 25).

There are triples (d, k, q) for which the Algorithm fails, i.e., we are
unable to find some j with j0 ≤ j < k such that both P (q + jd) and
P (q − (k − j)d) exceed qθ+η. In all, we find 207 triples which are not cov-
ered by the Algorithm. For each d, we give below a few examples of such
triples. For a given d, we have chosen as examples those triples for which
either k or q is maximum among all the triples (d, k, q): (7, 4, 25), (8, 5, 49),
(9, 12, 169), (10, 6, 49), (11, 12, 169), (12, 4, 49), (13, 13, 1058), (14, 5, 363),
(14, 13, 361), (15, 5, 578), (16, 7, 361), (16, 12, 169), (17, 7, 1058), (17, 25, 961),
(18, 5, 289), (18, 9, 121), (19, 9, 1681), (19, 25, 961), (20, 10, 867), (20, 16, 289),
(21, 15, 361), (21, 16, 289), (22, 6, 637), (22, 16, 289).

We observe that in all the 207 cases k and q are not very large. For all
these triples (d, k, q), we factorize the product n(n + d) . . . (n + (k − 1)d)
directly with n ∈ {q, q − d, . . . , q − (k − 1)d} to find a prime exceeding k
which divides the product to an odd power. This completes the proof of
Theorem 2.

5. Proof of Theorem 3. Suppose that d ≥ 23 and k ≥ 4d(log d)2

if d is odd and k ≥ (1.3)d(log d)2 if d is even. Then k > 2(2d − 7). Also
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by equation (2), we may assume that (9) holds. Thus we conclude from
Corollary 1 that t′ ≥ k − δ(d) where δ(d) is computed with % = 1

3d
2. By

Lemma 4, δ(d) ≤ (.52)d log d for d odd, δ(d) ≤ (.38)d log d for d even and
hence k − δ(d) ≥ 63. Hence by Corollary 2(i), we have

(31)
t′∏

i=1

a′i ≥
k−δ(d)∏

i=1

a′i ≥
k−δ(d)∏

i=1

si ≥ (1.5)k−δ(d)(k − δ(d))!.

We use (31), (21) and (22) to get

(32) 1.5549 ≤ (153819970)1/k(1.5)δ(d)/kk(15+δ(d))/k.

Let d be even. Then we turn to sharpening (32). Since gcd(a′i, d) = 1 for
1 ≤ i ≤ t′ we find that a′1, . . . , a

′
t′ are odd. By Corollary 2(iii), we have

t′∏

i=1

a′i ≥
(

9
4

)k−δ(d)

(k − δ(d))!.

We note that g2 = 0 and we use (20) with (19) for q ≥ 3, g2−h2 ≤ −k+ log k
log 2

to estimate
t′∏

i=1

a′i ≤ (38454993)(.7657)kk15(k − 1)!.

Finally, we combine the upper and lower estimates for
∏t′

i=1 a
′
i to conclude

that

(33) 2.9384 ≤ (38454993)1/k
(

9
4

)δ(d)/k

k(14+δ(d))/k for d even.

We observe that the right hand sides of the inequalities (32) and (33)
are decreasing functions of k. Therefore, we put k = (3.8)d(log d)2 in (32)
when d is odd and k = (1.3)d(log d)2 in (33) when d is even. By Lemma
4, we may replace δ(d) in (32) by 1

4d log d + (.8323)d and δ(d) in (33) by
1
3d log d+ (.118)d. The resulting inequalities do not hold for d ≥ 23.

6. Proofs of Theorems 4 and 5

Proof of Theorem 4. We choose

(n, d, y) =





(2, x2
0 − 2, 2x0y0) where x2

0 − 2y2
0 = 1 with x0 odd,

(2, x2
0 − 2, 2x0y0) where x2

0 − 3y2
0 = 1 with x0 odd,

(1, x2
0/2− 1, x0y0/2) where x2

0 − 3y2
0 = 1 with x0 even.

Then we observe that (n, d, y) is a solution of equation (6) with B ∈ {2, 3, 6}.
Now by Lemma 8(i), there are infinitely many such triples (n, d, y) satisfying
equation (6) with B ∈ {2, 3, 6}. This proves Theorem 4.
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Proof of Theorem 5. Let n 6∈ {1, 2, 48}. By the remarks following The-
orem 5 in Section 1, we need to consider equation (7) with B = 2, 3.
Thus we may assume that (9) holds and we shall arrive at a contradic-
tion. We apply Lemma 5 to assume that (a0, a1, a2) = (1, 1, 2) if B = 2 and
(a0, a1, a2) = (6, 1, 2) if B = 3. The first case implies x2

1 − x2
0 = 1, which

is not possible. In the second case we have 3x2
0 + x2

2 = x2
1 with x0 even,

and x0, x1, x2 pairwise coprime. Hence by Lemma 8(ii), we have %0 = 2 and
1 = x2

1− 6x2
0 = α2u4 +β2s4− 18u2s2 with αβ = 3. It is no loss of generality

to assume that α = 1, β = 3 while dealing with this equation. Thus we
consider u4 + 9s4 − 18u2s2 = 1. This implies that 1 + 8u4 = c21 for some
integer c1. This immediately reduces to the equation u4

1−2u4
2 = ±1 for some

integers u1 and u2 with u1u2 = ±u. We apply Lemma 8(iii) to observe that
(u1, u2) = (±1, 0) or (±1,±1). Hence u = 0 or ±1. Thus we have 9s4 = 1
or s2(9s2 − 18) = 0. The former is impossible while the latter gives s = 0,
implying that x0 = 0 by Lemma 8(ii) and this is not possible.
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[12] O. Rigge, Über ein diophantisches Problem, in: 9th Congress Math. Scand., Hel-

singfors, 1938, Mercator, 155–160.
[13] J. B. Rosser and L. Schoenfe ld, Approximate formulas for some functions of

prime numbers, Illinois J. Math. 6 (1962), 64–94.
[14] N. Saradha, On perfect powers in products with terms from arithmetic progres-

sions, Acta Arith. 82 (1997), 147–172.
[15] T. N. Shorey and R. Ti jdeman, On the greatest prime factor of an arithmetical

progression, in: A Tribute to Paul Erdős, A. Baker, B. Bollobás and A. Hajnal
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