Squares in products with terms in an arithmetic progression

by
N. SARADHA (Mumbai)

1. Introduction. Let $d \geq 1, k \geq 2, l \geq 2, n \geq 1, y \geq 1$ be integers with $\operatorname{gcd}(n, d)=1$. Erdős [4] and Rigge [12] independently proved that a product of two or more consecutive positive integers is never a square. Further Erdős and Selfridge [5] showed that a product of k consecutive integers is never a power, i.e.,

$$
n(n+1) \ldots(n+k-1)=y^{l} \text { with integers } k \geq 2, l \geq 2, n \geq 1, y \geq 1
$$

never holds. In [14, Corollary 1] the author extended this result by showing that

$$
n(n+d) \ldots(n+(k-1) d)=y^{l} \text { with integers } k \geq 3, l \geq 2, n \geq 1, y \geq 1
$$

never holds for $1<d \leq 6$. In this paper we extend the range of d for the preceding equation with $l=2$.

Theorem 1. The only solution of the equation
(1) $n(n+d) \ldots(n+(k-1) d)=y^{2} \quad$ in integers $k \geq 3, n \geq 1, y \geq 1$ and $1<d \leq 22$
is $(n, d, k)=(18,7,3)$.
Theorem 1 is a consequence of the following more general result.
Theorem 2. Let $k \geq 3, n \geq 1$ and $1<d \leq 22$. Then there exists a prime exceeding k which divides $n(n+d) \ldots(n+(k-1) d)$ to an odd power except when $(n, d, k) \in\{(2,7,3),(18,7,3),(64,17,3)\}$.

Equation (1) implies that every prime exceeding k divides the product $n(n+d) \ldots(n+(k-1) d)$ to an even power. This contradicts Theorem 2 except when $(n, d, k) \in\{(2,7,3),(18,7,3),(64,17,3)\}$. But in these three cases we find that $n(n+d) \ldots(n+(k-1) d)$ equals $2 \cdot 12^{2}, 120^{2}, 2 \cdot 504^{2}$,

[^0]respectively. Hence equation (1) holds only when $(n, d, k)=(18,7,3)$. Thus Theorem 1 follows from Theorem 2. Let $P(m)$ denote the greatest prime factor of m for any integer $m>1$ and we write $P(1)=1$. Then it follows from Theorem 2 that the equation
(2) $n(n+d) \ldots(n+(k-1) d)=B y^{2} \quad$ in positive integers $k \geq 3, n, y, B$
$$
\text { with } P(B) \leq k
$$
never holds for $1<d \leq 22$ except when $(n, d, k) \in\{(2,7,3),(18,7,3)$, $(64,17,3)\}$.

Marszałek [7] proved that equation (2) with $d>1$ and $B=1$ implies that

$$
\begin{equation*}
k<2 \exp \left(d(d+1)^{1 / 2}\right) \tag{3}
\end{equation*}
$$

Shorey and Tijdeman [16] proved that equation (2) with $d>1$ implies that

$$
\begin{equation*}
k<d^{C / \log \log d} \tag{4}
\end{equation*}
$$

where C is an effectively computable absolute constant. We prove
Theorem 3. Equation (2) with $d \geq 23$ implies that

$$
k< \begin{cases}4 d(\log d)^{2} & \text { if } d \text { is odd } \tag{5}\\ 1.3 d(\log d)^{2} & \text { if } d \text { is even } .\end{cases}
$$

In Theorem 3 we need to consider only $d \geq 23$ in view of Theorem 2. The estimate (5) is a considerable improvement of (3). The estimate (4) involves an unspecified constant which turns out to be large. Therefore the estimate (5) is better than (4) for small values of d.

Now we exhibit infinitely many solutions in relatively prime integers $n \geq 1$ and $d>1$ of equation (2) with $k=3$ and square-free integer B satisfying $P(B) \leq 3$. We observe that $B \in\{1,2,3,6\}$. For $B=1$, the existence of infinitely many solutions follows from a well known result that there are infinitely many triples of relatively prime squares in arithmetic progression. For $B>1$, we prove

Theorem 4. Let $B \in\{2,3,6\}$. There are infinitely many triples (n, d, y) with integers $n \geq 1, d>1, y \geq 1$ and $\operatorname{gcd}(n, d)=1$ satisfying

$$
\begin{equation*}
n(n+d)(n+2 d)=B y^{2} \tag{6}
\end{equation*}
$$

Let $d=1, k \geq 3$ and $n(n+1) \ldots(n+k-1)$ be divisible by a prime greater than k. Then Erdős and Selfridge [5] proved that there exists a prime $p \geq k$ dividing $n(n+1) \ldots(n+k-1)$ to an odd power. The author [14] showed that the above assertion is valid with $p>k$ whenever $k \geq 4$. If $d=1$ and $k=3$, we prove

TheOrem 5. There is a prime exceeding 3 which divides $n(n+1)(n+2)$ to an odd power except when $n \in\{1,2,48\}$.

When $n=1,2,48$, we see that $n(n+1)(n+2)$ equals $6,6 \cdot 2^{2}, 6 \cdot 140^{2}$ and the assertion of Theorem 5 is false. For the proof of Theorem 5 , it suffices to show that the equation

$$
\begin{equation*}
n(n+1)(n+2)=B y^{2} \quad \text { with } B \in\{1,2,3,6\} \tag{7}
\end{equation*}
$$

has no solution other than $B=6,(n, y) \in\{(1,1),(2,2),(48,140)\}$. If $B=1$, the above assertion is a particular case of the result of Erdős and Rigge mentioned at the beginning of this section. If $B=6$ and n odd, then the assertion was proved by Meyl [8] whereas Watson [17] and Ljunggren [6] proved the case of n even.

The Algorithm in Section 3 was programmed and checkings and computations for the proof of Theorem 2 were carried out using Mathematica. I thank Professor T. N. Shorey for many helpful discussions. I also thank the referee for his valuable comments on an earlier draft of the paper.
2. Lemmas. We suppose throughout this section that $n \geq 1, d>1$ and $k \geq 3$ with $(n, d, k) \neq(2,7,3)$. Then by a result of Shorey and Tijdeman [15], we have

$$
\begin{equation*}
P(n(n+d) \ldots(n+(k-1) d))>k . \tag{8}
\end{equation*}
$$

Further we suppose that
(9) $\operatorname{ord}_{p}(n(n+d) \ldots(n+(k-1) d)) \equiv 0(\bmod 2) \quad$ for all primes $p>k$.

We write
(10) $n+i d=a_{i} x_{i}^{2}, \quad a_{i}$ square-free, $P\left(a_{i}\right) \leq k, x_{i}>0$ for $0 \leq i \leq k-1$.

We observe that $\operatorname{gcd}\left(a_{i}, d\right)=1$ for $0 \leq i \leq k-1$ since $\operatorname{gcd}(n, d)=1$. We denote by $\left\{a_{1}^{\prime}, \ldots, a_{t^{\prime}}^{\prime}\right\}$ the set of all the distinct elements from $\left\{a_{0}, \ldots, a_{k-1}\right\}$. By (8), we have

$$
\begin{equation*}
n+(k-1) d \geq(k+1)^{2} \tag{11}
\end{equation*}
$$

Let $m \geq 1$ be an integer and $2 \leq p_{1}^{(d)}<p_{2}^{(d)}<\ldots$ be all the primes which are coprime to d. We define $B_{m, d}=\left\{a_{r}^{\prime} \mid P\left(a_{r}^{\prime}\right) \leq p_{m}^{(d)}\right\}$ and $g(k, m, d)=$ $\left|B_{m, d}\right|$. We observe that

$$
\begin{equation*}
g(k, m, d) \geq t^{\prime}-\sum_{i \geq m+1}\left(\left[\frac{k}{p_{i}^{(d)}}\right]+\varepsilon_{i}^{(d)}\right):=g_{0}(k, m, d) \tag{12}
\end{equation*}
$$

where $\varepsilon_{i}^{(d)}=0$ if $p_{i}^{(d)}>k$ and for $p_{i}^{(d)} \leq k, \varepsilon_{i}^{(d)}=0$ or 1 according as $p_{i}^{(d)} \mid k$ or not for $i \geq m+1$. We note that $g(k, m, d)$ and $g_{0}(k, m, d)$ are the same as $g(k, m)$ and $g_{0}(k, m)$ of [14].

Throughout this section we assume without reference that h is a positive integer with h even whenever d is even. Further, let $\varrho>0$. Define $V_{h}=$ $\left\{\alpha \mid \alpha\right.$ is a positive integer with $\alpha h^{2}<\varrho$ and $\left.\operatorname{gcd}(\alpha, d)=1\right\}$. We write
$V_{h}=\bigcup_{i \geq 1} V_{h i}$ such that for every $i \geq 1$, positive integers α and β are in $V_{h i}$ if and only if $\alpha \equiv \beta\left(\bmod \frac{d}{\varepsilon_{h} \operatorname{gcd}(d, h)}\right)$ where

$$
\begin{equation*}
\varepsilon_{h}=1 \text { if } 2 \nmid \frac{d}{\operatorname{gcd}(d, h)} \quad \text { and } \quad \varepsilon_{h}=2 \text { if } 2 \left\lvert\, \frac{d}{\operatorname{gcd}(d, h)} .\right. \tag{13}
\end{equation*}
$$

Further, let $\delta_{h}=\max \left\{\left|V_{h i}\right|\right\}$ and $\delta(d)=\sum_{h<\sqrt{\varrho}}^{*} \delta_{h}$. Here we recall that the summation in \sum^{*} is taken over even values of h whenever d is even. We note that $\delta(d)$ can be computed for every d and ϱ and that the values of $\delta(d)$ for $7 \leq d \leq 22$ and $\varrho=\frac{1}{3} d^{2}$ can be found in Table 1. We begin with the following lemma which gives a lower bound for the number of distinct a_{i}, viz., t^{\prime}.

Lemma 1. Let $n \geq(k-1)^{2} d^{2} /(4 \varrho)$. If (9) holds, then $t^{\prime} \geq k-\delta(d)$.
Proof. Let $b_{1}, \ldots, b_{r}, \ldots$ be the a_{j} 's which occur more than once with $n+i_{r} d=b_{r} x_{i_{r}}^{2}$ for $r \geq 1$ and such that $x_{i_{r}}$ is minimal, i.e., if $a_{i}=b_{r}$ with $i \neq i_{r}$, then $x_{i}>x_{i_{r}}$. For any b_{r} with $r \geq 1$, we say that b_{r} is repeated at the hth place if there exists some $j, 0 \leq j \leq k-1$, such that $a_{j}=b_{r}, j \neq i_{r}$, $x_{j}=x_{i_{r}}+h$ with $h \geq 1$. We observe that j is uniquely determined. We set $W_{h}=\left\{a_{j} \mid 0 \leq j \leq k-1, a_{j}=b_{r}, j \neq i_{r}\right.$ and $x_{j}=x_{i_{r}}+h$ for some $\left.r\right\}$. In order to get a lower bound for the number of distinct a_{j} 's, we need to get an upper bound for $\sum_{h \geq 1}\left|W_{h}\right|$. We observe that $\left|W_{h}\right|$ is equal to the number of b_{r} which are repeated at the h th place. We proceed to find an upper bound for this number.

Suppose b_{r} is repeated at the h th place. Then by its definition, we obtain for some $j, 0 \leq j \leq k-1, j \neq i_{r}$,

$$
\begin{align*}
(k-1) d & \geq\left(j-i_{r}\right) d=b_{r}\left(x_{j}^{2}-x_{i_{r}}^{2}\right)=b_{r}\left(2 h x_{i_{r}}+h^{2}\right) \tag{14}\\
& >2 h b_{r}^{1 / 2}\left(b_{r} x_{i_{r}}^{2}\right)^{1 / 2} \geq 2 h b_{r}^{1 / 2} n^{1 / 2}>h b_{r}^{1 / 2} \frac{(k-1) d}{\sqrt{\varrho}} .
\end{align*}
$$

Thus

$$
\begin{equation*}
b_{r} h^{2}<\varrho . \tag{15}
\end{equation*}
$$

Hence $h<\sqrt{\varrho}$, i.e., the number of places at which b_{r} can be repeated is at most $[\sqrt{\varrho}]$. Further, we note from (14), (10) and (15) that h is even whenever d is even and that $b_{r} \in V_{h}$. Also we observe that $h\left(2 x_{i_{r}}+h\right) \equiv 0(\bmod d)$ from which it follows that $x_{i_{r}} \equiv c\left(\bmod \frac{d}{\varepsilon_{h} \operatorname{gcd}(d, h)}\right)$ where c depends only on h and d with ε_{h} as in (13). Thus $n \equiv b_{r} c^{2}\left(\bmod \frac{d}{\varepsilon_{h} \operatorname{gcd}(d, h)}\right)$. Further, we observe that $\operatorname{gcd}\left(c, \frac{d}{\varepsilon_{h} \operatorname{gcd}(d, h)}\right)=1$ since $\operatorname{gcd}(n, d)=1$.

If $b_{s} \neq b_{r}$ is such that b_{s} is repeated at the h th place, then by the foregoing argument, we have $b_{s} h^{2}<\varrho$ and $n \equiv b_{s} c^{2}\left(\bmod \frac{d}{\varepsilon_{h} \operatorname{gcd}(d, h)}\right)$. Thus $b_{r} \equiv b_{s}\left(\bmod \frac{d}{\varepsilon_{h} \operatorname{gcd}(d, h)}\right)$ since $\operatorname{gcd}\left(c, \frac{d}{\varepsilon_{h} \operatorname{gcd}(d, h)}\right)=1$. Hence b_{r}, b_{s} belong to
$V_{h i}$ for some i. Thus the number of b_{r} which are repeated at the h th place is $\leq \delta_{h}$. Since $h<\sqrt{\varrho}$, we have

$$
\sum_{h \geq 1}\left|W_{h}\right| \leq \sum_{h<\sqrt{\varrho}} \delta_{h}=\delta(d) .
$$

Hence the number of distinct a_{j} 's is at least $k-\delta(d)$.
As a consequence of Lemma 1, we have
Corollary 1. Let $k \geq 2(2 d-7)$. If (9) holds, then $t^{\prime} \geq k-\delta(d)$ where $\delta(d)$ is computed with $\varrho=\frac{1}{3} d^{2}$.

Proof. By (11) and $k \geq 2(2 d-7)$, we see that

$$
n \geq(k+1)^{2}-(k-1) d>(k+1)^{2}-\frac{(k-1)(k+14)}{4}>\frac{3}{4}(k-1)^{2} .
$$

Now the result follows immediately from Lemma 1.
Let $1=s_{1}<s_{2}<\ldots$ be the sequence of all square-free integers and $1=s_{1}^{\prime}<s_{2}^{\prime}<\ldots$ be the sequence of all odd square-free integers.

Lemma 2. We have
(i) $s_{i} \geq(1.5) i$ for $i \geq 39$.
(ii) $s_{i} \geq(1.6) i$ for $286 \leq i \leq 570$.
(iii) $s_{i}^{\prime} \geq(2.25) i$ for $i \geq 12$.

Proof. (i) We first check that $s_{i} \geq(1.5) i$ for $39 \leq i \leq 70$. Further, we check that for $0 \leq r<36, r \notin S_{0}=\{0,4,8,9,12,16,18,20,24,27,28,32\}$ we can choose an $s_{i_{r}}$ with $39 \leq i_{r} \leq 70$ such that $s_{i_{r}} \equiv r(\bmod 36)$. Now we consider any s_{i} with $i>70$. Then $s_{i} \equiv r(\bmod 36)$ for some r with $0 \leq r<36, r \notin S_{0}$. Thus $s_{i} \equiv s_{i_{r}}(\bmod 36)$ with $39 \leq i_{r} \leq 70$. Hence

$$
\begin{equation*}
s_{i}-s_{i_{r}}=36 f \tag{16}
\end{equation*}
$$

for some positive integer f. We know that in any set of 36 consecutive integers, the number of square-free integers is ≤ 24. Thus the number of square-free integers $\leq 36 f$ is at most $24 f$. Also we observe from (16) that this number is equal to $i-i_{r}$. Therefore $i-i_{r} \leq 24 f \leq \frac{2}{3}\left(s_{i}-s_{i_{r}}\right)$ by (16). Hence $s_{i} \geq \frac{3}{2}\left(i-i_{r}\right)+s_{i_{r}} \geq(1.5) i$ since $s_{i_{r}} \geq(1.5) i_{r}$.
(ii) The inequality follows by direct checking.
(iii) We check that $s_{i}^{\prime} \geq(2.25) i$ for $12 \leq i \leq 35$. Also we check for $0 \leq r<36$ with $r \equiv 1(\bmod 2)$ and $r \notin S_{0}$ that we can choose an $s_{i_{r}}^{\prime}$ with $12 \leq i_{r} \leq 35$ such that $s_{i_{r}}^{\prime} \equiv r(\bmod 36)$. Further, we observe that the number of odd square-free integers in any set of 36 consecutive integers is ≤ 16. Now we repeat the argument in (i) for any s_{i}^{\prime} with $i>35$ to obtain (iii).

It can be checked that
$\prod_{i=1}^{63} s_{i} \geq(1.5)^{63}(63)!, \quad \prod_{i=1}^{286} s_{i} \geq(1.6)^{286}(286)!, \quad \prod_{i=1}^{51} s_{i}^{\prime} \geq(2.25)^{51}(51)!$.
By Lemma 2 and from an induction argument we derive
Corollary 2. We have
(i) $\prod_{i=1}^{\nu} s_{i} \geq(1.5)^{\nu} \nu$! for $\nu \geq 63$.
(ii) $\prod_{i=1}^{\nu=1} s_{i} \geq(1.6)^{\nu} \nu$! for $286 \leq \nu \leq 570$.
(iii) $\prod_{i=1}^{\nu} s_{i}^{\prime} \geq(2.25)^{\nu} \nu$! for $\nu \geq 51$.

The inequality in (i) of the above corollary has already appeared in [5].
Lemma 3. Let $7 \leq d \leq 22$. Suppose (9) holds. Then $k \leq k_{0}(d):=k_{0}$ where k_{0} is as given in Table 1.

Proof. Suppose $k>k_{0}$. Then $k>2(2 d-7)$. Hence Corollary 1 is valid. Thus $t^{\prime} \geq k-\delta(d)$ where $\delta(d)$ is computed with $\varrho=\frac{1}{3} d^{2}$. We note from Table 1 that $\delta(d) \leq 20$. Thus $t^{\prime} \geq k-20$. From now onwards we shall assume that $k \geq 83$. Since a_{i}^{\prime} for $1 \leq i \leq t^{\prime}$ are square-free integers, we use Corollary 2(i) to obtain

$$
\begin{equation*}
\prod_{i=1}^{t^{\prime}} a_{i}^{\prime} \geq \prod_{i=1}^{k-20} a_{i}^{\prime} \geq \prod_{i=1}^{k-20} s_{i} \geq(1.5)^{k-20}(k-20)!. \tag{17}
\end{equation*}
$$

On the other hand, by (10), we have

$$
\begin{equation*}
a_{1}^{\prime} \ldots a_{t^{\prime}}^{\prime} \mid(k-1)!\prod_{p \leq k} p . \tag{18}
\end{equation*}
$$

We put $g_{q}=\operatorname{ord}_{q}\left(a_{1}^{\prime} \ldots a_{t^{\prime}}^{\prime}\right)$ and $h_{q}=\operatorname{ord}_{q}\left((k-1)!\prod_{p \leq k} p\right)$ for any prime $q \leq k$. Then it follows from Marszałek [7, p. 221] that

$$
g_{q} \leq \frac{k}{q+1}+\frac{\log k}{\log q}+1 \quad \text { and } \quad h_{q} \geq \frac{k-1}{q-1}-\frac{\log k}{\log q} .
$$

Thus

$$
\begin{equation*}
g_{q}-h_{q} \leq \frac{-2 k}{q^{2}-1}+\frac{q}{q-1}+\frac{2 \log k}{\log q} . \tag{19}
\end{equation*}
$$

Further, from (18) we get

$$
\begin{equation*}
a_{1}^{\prime} \ldots a_{t^{\prime}}^{\prime} \mid(k-1)!\left(\prod_{p \leq k} p\right)\left(\prod_{q \leq 19} q^{g_{q}-h_{q}}\right) \tag{20}
\end{equation*}
$$

where in the product signs p, q run over primes. Now by (20) and (19), we have

$$
\begin{equation*}
a_{1}^{\prime} \ldots a_{t^{\prime}}^{\prime} \leq(k-1)!\left(\prod_{p \leq k} p\right) k^{16}\left(\prod_{q \leq 19} q^{q /(q-1)}\right)\left(\prod_{q \leq 19} q^{2 /\left(q^{2}-1\right)}\right)^{-k} . \tag{21}
\end{equation*}
$$

We find that

$$
\left\{\begin{array}{l}
\prod_{q \leq 19} q^{q /(q-1)} \leq 153819970, \quad \prod_{q \leq 19} q^{2 /\left(q^{2}-1\right)} \geq 2.8819 \tag{22}\\
\prod_{p \leq k} p \leq(2.78)^{k} \quad(\text { see }[13, \text { p. } 71])
\end{array}\right.
$$

Using (22) in (21) and comparing with (17), we get

$$
(1.5549)^{k} \leq(153819970)(1.5)^{20} k^{35}
$$

This inequality is not valid for $k \geq 570$. Thus we obtain $k<570$. Now let $k \geq 485$. We use Corollary 2(ii) to get

$$
\prod_{i=1}^{t^{\prime}} a_{i}^{\prime} \geq(1.6)^{k-20}(k-20)!
$$

Comparing this lower bound with the upper bound in (21), we get

$$
(1.6586)^{k} \leq(153819970)(1.6)^{20} k^{35}
$$

This inequality is not valid for $k \geq 485$. Thus we conclude that $k<485$.
We shall bring down the value of k to k_{0} in all cases except $d=19$ by a counting argument which will be presented in the next paragraph. When $d=19$ the counting argument fails. But a refinement of the above argument itself enables us to bring $k<315$. When $d=19$ we observe that $g_{19}=0$ and we rewrite (20) as

$$
a_{1}^{\prime} \ldots a_{t^{\prime}}^{\prime} \leq(k-1)!\left(\prod_{p \leq k} p\right)\left(\prod_{q \leq 17} q^{g_{q}-h_{q}}\right)(19)^{-h_{q}}
$$

On the other hand, by Corollary 2(ii), we have for $485>k \geq 303, a_{1}^{\prime} \ldots a_{t^{\prime}}^{\prime} \geq$ $(1.6)^{k-17}(k-17)$! since $\delta(d)=17$. Now we combine the preceding estimates for $a_{1}^{\prime} \ldots a_{t^{\prime}}^{\prime}$ to conclude that $k<315$ whenever $d=19$.

Let $7 \leq d \leq 22, d \neq 19$ and $k<485$. Since a_{i}^{\prime} for $1 \leq i \leq t^{\prime}$ are distinct and square-free we have

$$
\begin{equation*}
g(k, m, d) \leq 1+\binom{m}{1}+\ldots+\binom{m}{m}=2^{m} \tag{23}
\end{equation*}
$$

Thus if $g_{0}(k, m, d) \geq 2^{m}+1$, we get a contradiction by (12). Since $t^{\prime} \geq$ $k-\delta(d)$, we replace t^{\prime} in (12) by $k-\delta(d)$ and using Table 1 for the values of $\delta(d)$ we check that $g_{0}(k, m, d) \geq 2^{m}+1$ for a proper choice of m whenever $k_{0}<k<485$. For example, when $d=13$ we observe from $p_{6}^{(d)}=17$ and the definition of $g_{0}(k, m, d)$ that $g_{0}(k, 5,13) \geq 33$ for $120 \leq k<485$. The other cases are checked similarly. See Table 1 for the choices of m when different values of d and k are considered. This completes the proof.

Table 1

d	$\delta(d)$	Range for k	m	k_{0}	d	$\delta(d)$	Range for k	m	k_{0}
7	6	$27-310$	3	26	14	5	$43-349$	2	42
		$311-484$	4				$350-484$	3	
8	4	$19-20$	2	18	15	14	$47-484$	3	46
		$21-106$	3		16	11	$51-238$	3	50
		$107-318$	4				$239-484$	4	
9	7	$319-484$	5		17	15	$255-484$	6	254
		$40-285$	3	39	18	6	$59-102$	1	58
10	2	$286-484$	4				$103-348$	2	
		$27-136$	1	28			$349-484$	3	
		$137-383$	2		19	17	-	-	314
11	9	$55-484$	3		20	8	$67-318$	2	66
12	4	$35-372$	4	54			$319-484$	3	
		$373-484$	3	34	21	20	$100-484$	3	99
13	12	$120-484$	5	119	22	7	$75-310$	3	74

We see from Table 1 that $\delta(d) \leq 20$ for $7 \leq d \leq 22$. In the following lemma we give an upper bound for $\delta(d)$ whenever $d \geq 23$.

Lemma 4. For $d \geq 23$ and $\varrho=\frac{1}{3} d^{2}$, we have

$$
\delta(d) \leq \begin{cases}\frac{1}{4} d \log d+(.8323) d & \text { if } d \text { is odd } \\ \frac{1}{3} d \log d+(.118) d & \text { if } d \text { is even }\end{cases}
$$

Proof. By the definition of $\delta(d)$, we obtain

$$
\begin{equation*}
\delta(d) \leq \sum_{h<d / \sqrt{3}}\left(\left[\frac{d^{2}}{3 h^{2}} \cdot \frac{\varepsilon_{h} \operatorname{gcd}(d, h)}{d}\right]+1\right) \tag{24}
\end{equation*}
$$

where the sum is taken over even values of h whenever d is even. We observe from (13) that $\varepsilon_{h} \leq 2$. Thus from (24) we get

$$
\begin{equation*}
\delta(d) \leq \frac{d}{3} \sum_{h<d /(2 \sqrt{3})} \frac{1}{h}+\frac{d}{2 \sqrt{3}} \quad \text { if } d \text { is even. } \tag{25}
\end{equation*}
$$

Let d be odd. Then by $(13), \varepsilon_{h}=1$. Further, $\operatorname{gcd}(d, h) \leq h / 2$ whenever h is even. Hence from (24) we get

$$
\begin{aligned}
\delta(d) & \leq \frac{d}{3} \sum_{h<d / \sqrt{3}, h \text { odd }} \frac{1}{h}+\frac{d}{3} \sum_{h<d / \sqrt{3}, h \text { even }} \frac{1}{2 h}+\frac{d}{\sqrt{3}} \\
& \leq \frac{d}{3} \sum_{h<d / \sqrt{3}} \frac{1}{h}-\frac{d}{6} \sum_{h<d / \sqrt{3}, h \text { even }} \frac{1}{h}+\frac{d}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{d}{3} \sum_{h<d / \sqrt{3}} \frac{1}{h}-\frac{d}{12} \sum_{h<d /(2 \sqrt{3})} \frac{1}{h}+\frac{d}{\sqrt{3}} \\
& \leq \frac{d}{4} \sum_{h<d /(2 \sqrt{3})} \frac{1}{h}+\frac{d}{3} \sum_{d /(2 \sqrt{3})<h<d / \sqrt{3}} \frac{1}{h}+\frac{d}{\sqrt{3}} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\delta(d) \leq \frac{d}{4} \sum_{h<d /(2 \sqrt{3})} \frac{1}{h}+\frac{d}{3}+\frac{d}{\sqrt{3}}+\frac{2}{\sqrt{3}} \quad \text { if } d \text { is odd. } \tag{26}
\end{equation*}
$$

We use $\sum_{h<x} 1 / h<\log x+\gamma+1 / x$ where $x>1$ and γ is Euler's constant whose value is $<.5773$ (see [1, p. 55] and [13, pp. 65-66]) and $d \geq 23$ in the estimates (25) and (26) to prove the assertion of the lemma.

Lemma 5. Let $k=3$. Suppose (9) holds. Then $\left(a_{0}, a_{1}, a_{2}\right) \in S$ where $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$ with $S_{1}=\{(1,1,1)\}, S_{2}=\{(2,1,2)\}, S_{3}=\{(1,2,3)$, $(2,3,1),(3,1,2),(6,1,2),(1,1,2)\}$ and $S_{4}=\{(1,3,2),(2,1,3),(3,2,1)$, $(2,1,6),(2,1,1)\}$. Further, we have

$$
d \equiv \begin{cases}0(\bmod 8) & \text { if }\left(a_{0}, a_{1}, a_{2}\right) \in S_{1} \\ \pm 1(\bmod 8) & \text { if }\left(a_{0}, a_{1}, a_{2}\right) \in S_{2} \\ 1(\bmod 8) & \text { if }\left(a_{0}, a_{1}, a_{2}\right) \in S_{3} \\ -1(\bmod 8) & \text { if }\left(a_{0}, a_{1}, a_{2}\right) \in S_{4}\end{cases}
$$

Proof. From (9), we see that (10) holds and therefore $\left\{a_{0}, a_{1}, a_{2}\right\} \subset$ $\{1,2,3,6\}$. Also $\operatorname{gcd}(n, n+d)=\operatorname{gcd}(n+d, n+2 d)=1$ and $\operatorname{gcd}(n, n+2 d)=1$ or 2 since $\operatorname{gcd}(n, d)=1$. Thus we find that there are 20 possible values for the triple $\left(a_{0}, a_{1}, a_{2}\right)$, viz., $(1,1,1),(1,1,2),(1,1,3),(1,1,6),(1,2,1),(1,2,3)$, $(1,3,1),(1,3,2),(1,6,1),(2,1,1),(2,1,2),(2,1,3),(2,1,6),(2,3,1),(2,3,2)$, $(3,1,1),(3,1,2),(3,2,1),(6,1,1),(6,1,2)$.

We use without mentioning that x_{0}, x_{1}, x_{2} are pairwise coprime and $a_{0} x_{0}^{2}+a_{2} x_{2}^{2}=2 a_{1} x_{1}^{2}$. We exclude the possibilities $(1,1,3)$ and $(1,1,6)$ since $2 x_{1}^{2}-x_{0}^{2} \not \equiv 0(\bmod 3) ;(1,3,1),(1,6,1),(2,3,2)$ since $x_{0}^{2}+x_{2}^{2} \not \equiv 0(\bmod 3)$; $(3,1,1)$ and $(6,1,1)$ since $2 x_{1}^{2}-x_{2}^{2} \not \equiv 0(\bmod 3) ;(1,2,1)$ since $x_{0}^{2}+x_{2}^{2} \not \equiv 0$ $(\bmod 4)$. The remaining 12 possibilities are given by S.

We take $\left(a_{0}, a_{1}, a_{2}\right)=(1,1,1) \in S_{1}$. Then $n=x_{0}^{2}, n+d=x_{1}^{2}, n+2 d=x_{2}^{2}$, implying x_{0} and x_{2} are odd since n and $n+2 d$ are both odd or both even and $\operatorname{gcd}(n, n+2 d)=1$ or 2 . Thus $2 d=x_{2}^{2}-x_{0}^{2} \equiv 0(\bmod 8)$, yielding $d \equiv 0,4(\bmod 8)$. If $d \equiv 4(\bmod 8)$, then $x_{1}^{2}=n+d \equiv 5(\bmod 8)$, which is not possible. Thus $d \equiv 0(\bmod 8)$.

Next we consider $\left(a_{0}, a_{1}, a_{2}\right)=(2,1,2) \in S_{2}$. Then x_{1} is odd and $n \equiv 0$ or $2(\bmod 8)$ according as x_{0} is even or odd. Hence $1 \equiv x_{1}^{2}=n+d \equiv d$ or $d+2(\bmod 8)$, which implies that $d \equiv 1$ or $7(\bmod 8)$.

Now we take $\left(a_{0}, a_{1}, a_{2}\right)=(1,2,3) \in S_{3}$. Then x_{0}, x_{2} are odd and $d=$ $2 x_{1}^{2}-x_{0}^{2} \equiv-1$ or $1(\bmod 8)$ according as x_{1} is even or odd. If $d \equiv-1$ $(\bmod 8)$, then $d=3 x_{2}^{2}-2 x_{1}^{2} \equiv 3-0 \equiv 3(\bmod 8)$, a contradiction. Thus $d \equiv 1(\bmod 8)$. Similarly we prove for other possibilities in S_{3} that $d \equiv$ $1(\bmod 8)$.

Lastly, we consider $\left(a_{0}, a_{1}, a_{2}\right)=(1,3,2) \in S_{4}$. Then x_{0} is even and hence x_{1}, x_{2} are odd. Thus $d=2 x_{2}^{2}-3 x_{1}^{2} \equiv 7(\bmod 8)$. Likewise we prove for other possibilities in S_{4} that $d \equiv 7(\bmod 8)$.

Lemma 6. Let $k=3$. Suppose (9) holds. Then one of the following possibilities holds: (i) $d=1$, (ii) $d \geq 23$, (iii) $(n, d) \in\{(2,7),(18,7),(64,17)\}$.

Proof. Let $1<d<23$. We shall show that (iii) holds. By Lemma 5, we need to consider $\left(a_{0}, a_{1}, a_{2}\right) \in S_{1}$ with $d=8,16 ;\left(a_{0}, a_{1}, a_{2}\right) \in S_{2} \cup S_{3}$ with $d=9,17$ and $\left(a_{0}, a_{1}, a_{2}\right) \in S_{2} \cup S_{4}$ with $d=7,15$.

Let $\left(a_{0}, a_{1}, a_{2}\right) \in S_{1}$ with $d=8,16$. Since $x_{1}^{2}-x_{0}^{2}=d$ we find that $x_{0}=1, x_{1}=3$ and $x_{0}=3, x_{1}=5$ and hence $x_{2}^{2}=17$ and 41, respectively. This is not possible.

Let $\left(a_{0}, a_{1}, a_{2}\right) \in S_{2}$ with $d=7,9,15,17$. Then $x_{2}^{2}-x_{0}^{2}=d$ implies that $(n, d)=(18,7)$.

Let $\left(a_{0}, a_{1}, a_{2}\right) \in S_{3}$ with $d=9,17$. Let $d=9$. In the first 4 possibilities in S_{3} we observe that 3 divides one of $n, n+d, n+2 d$. Hence $3 \mid n$, which is a contradiction since $\operatorname{gcd}(n, d)=1$. Let $\left(a_{0}, a_{1}, a_{2}\right)=(1,1,2)$. Then $x_{1}^{2}-x_{0}^{2}=$ 9 gives $x_{0}=4$ and hence $n+2 d=2 x_{2}^{2}=34$, which is impossible. Let $d=17$ and $\left(a_{0}, a_{1}, a_{2}\right)=(1,2,3)$. Then $n+34 \equiv 0,3(\bmod 9)$, implying $x_{0}^{2}=n \equiv 2,5(\bmod 9)$, a contradiction. The next three possibilities are excluded similarly. Let $\left(a_{0}, a_{1}, a_{2}\right)=(1,1,2)$. Then $x_{1}^{2}-x_{0}^{2}=17$ implies that $\left(x_{0}, x_{1}, x_{2}\right)=(8,9,7)$. Thus $(n, d)=(64,17)$.

Let $\left(a_{0}, a_{1}, a_{2}\right) \in S_{4}$ with $d=7,15$. Let $d=7$ and $\left(a_{0}, a_{1}, a_{2}\right)=(1,3,2)$. Then $n+7 \equiv 0,3(\bmod 9)$. Hence $x_{0}^{2}=n \equiv 2,5(\bmod 9)$, a contradiction. The next three possibilities are excluded similarly. Let $\left(a_{0}, a_{1}, a_{2}\right)=(2,1,1)$. Then $x_{2}^{2}-x_{1}^{2}=7$ gives $\left(x_{0}, x_{1}, x_{2}\right)=(1,3,4)$. Thus $(n, d)=(2,7)$. Let $d=15$. The first four possibilities in S_{4} are excluded since 3 divides one of $n, n+d, n+2 d$. Let $\left(a_{0}, a_{1}, a_{2}\right)=(2,1,1)$. Then $x_{2}^{2}-x_{1}^{2}=15$ implies that $x_{1}=7$ or 1 , giving $2 x_{0}^{2}=n=34$ or -14 , which are impossible.

Lemma 7. Let $7 \leq d \leq 22$ and $(n, d) \notin\{(2,7),(18,7),(64,17)\}$. Assume that $t^{\prime}=k$. Then (9) does not hold.

Proof. Suppose (9) holds. Then by Lemmas 3, 6 and Table 1, we have $4 \leq k \leq k_{0} \leq 314$. We observe that (10) holds and a_{0}, \ldots, a_{k-1} are all distinct since $t^{\prime}=k$. We often use these facts and the property that
$\operatorname{gcd}\left(a_{i}, d\right)=1$ for $0 \leq i<k$ without any reference. We check that

$$
\begin{cases}g_{0}(k, 1, d) \geq 3 & \text { for } 4 \leq k \leq 8 \text { if } 2 \text { or } 3 \text { divides } d \tag{27}\\ g_{0}(k, 2,7) \geq 5 & \text { for } k=7,8 \\ g_{0}(k, 2, d) \geq 5 & \text { for } 9 \leq k \leq 22 \\ g_{0}(k, 3, d) \geq 9 & \text { for } 23 \leq k \leq 78 \\ g_{0}(k, 4, d) \geq 17 & \text { for } 79 \leq k \leq 276 \\ g_{0}(k, 5, d) \geq 33 & \text { for } 277 \leq k \leq 314\end{cases}
$$

But (27) contradicts (23), by (12). Thus we may assume that $4 \leq k \leq 6$ if $d=7$ and $4 \leq k \leq 8$ if $d \in\{11,13,17,19\}$.

Let $k=4$ and $d \in\{7,11,13,17,19\}$. We know that $P\left(a_{i}\right) \leq 3$ and hence $a_{i} \in\{1,2,3,6\}$. Thus $n(n+d)(n+2 d)(n+3 d)$ is a square. But this is impossible by a well known result of Euler (see Dickson [3, p. 635] and Mordell [9, p. 21, Corollary]). We also use this fact without reference when we deal with other values of k.

Let $k=5$. Since a_{i} 's are distinct, we need only consider the case when 5 divides one and only one of $n, n+d, n+2 d, n+3 d, n+4 d$ and hence at most one a_{i}. The values of the other a_{i} 's belong to $\{1,2,3,6\}$. We may assume that 5 divides one of $n+d, n+2 d, n+3 d$. Suppose $5 \mid n+d$. Then $\{n, n+2 d, n+3 d, n+4 d\} \in\left\{y_{1}^{2}, 2 y_{2}^{2}, 3 y_{3}^{2}, 6 y_{4}^{2}\right\}$ for some positive integers $y_{1}, y_{2}, y_{3}, y_{4}$. We explain the case $d=7$. Then $n \equiv 3(\bmod 5)$. Hence $n=2 y_{2}^{2}$ or $3 y_{3}^{2}$. Let $n=2 y_{2}^{2}$. Then $n+14=3 y_{3}^{2}, n+21=y_{1}^{2}$ and hence $n+28=6 y_{4}^{2}$, which gives $3 \mid 14$, a contradiction. When $n=3 y_{3}^{2}$, we get $n+14=2 y_{2}^{2}$, $n+21=y_{1}^{2}$ and hence $n+28=6 y_{4}^{2}$, implying $3 \mid 28$, a contradiction. As another example, we take $d=11$. Then $n \equiv 4(\bmod 5)$. We find that $n=6 y_{4}^{2}, n+22=y_{1}^{2}, n+33=3 y_{3}^{2}, n+44=2 y_{2}^{2}$. Here we observe that y_{1} is even, y_{2}, y_{3}, y_{4} are odd. Hence $n \equiv 6(\bmod 8)$ and $n+33 \equiv 7(\bmod 8)$. But $n+33=3 y_{3}^{2} \equiv 3(\bmod 8)$, a contradiction. By a similar argument, we exclude all the cases $5|n+d, 5| n+2 d, 5 \mid n+3 d$ for $d \in\{7,11,13,17,19\}$. Thus $k \neq 5$.

Let $k=6$. Then $P\left(a_{i}\right) \leq 5$ and we may assume that $5 \nmid n$. Hence 5 divides only one of $\{n+d, n+2 d, n+3 d, n+4 d\}$. Therefore five of the a_{i} 's belong to $\{1,2,3,6\}$. This is not possible since a_{i} 's are all distinct. Thus $k \neq 6$.

Let $k=7$ and $d \in\{11,13,17,19\}$. Then $P\left(a_{i}\right) \leq 7$ and we may assume that there exist distinct i_{1}, i_{2} and i_{3} between 0 and 6 such that $7 \mid n+i_{1} d$, $5\left|n+i_{2} d, 5\right| n+i_{3} d$ since otherwise $g_{0}(k, 2, d) \geq 5$ leading to a contradiction. There are 8 possibilities for $\left(i_{1}, i_{2}, i_{3}\right)$ for each d. We check the case $7 \mid n+d$, $5|n, 5| n+5 d$ for $d=17$. Then $n+2 d=6 y_{4}^{2}, n+3 d=y_{1}^{2}, n+4 d=2 y_{2}^{2}$ and hence $n+6 d=3 y_{3}^{2}$, which implies $3 \mid 4 d$, a contradiction. The other cases are excluded similarly.

Finally, let $k=8$ and $d \in\{11,13,17,19\}$. Then $P\left(a_{i}\right) \leq 7$ and we may assume that $7|n, 7| n+7 d, 5|n+d, 5| n+6 d$ for otherwise $g_{0}(k, 2, d) \geq 5$,
which is a contradiction. Then $(n+2 d)(n+3 d)(n+4 d)(n+5 d)$ is a square, which is impossible.

The following lemma deals with the integral solutions of certain Diophantine equations.

LEMMA 8. (i) There are infinitely many integral solutions in x and y of the equation $x^{2}-2 y^{2}=1$ with x odd and of the equation $x^{2}-3 y^{2}=1$ with x odd as well as with x even.
(ii) All solutions of the equation $3 x^{2}+y^{2}=z^{2}$ in integers x, y, and z are given by

$$
x=\varrho_{0} u s, \quad y=\frac{1}{2} \varrho_{0}\left(\alpha u^{2}-\beta s^{2}\right), \quad z=\frac{1}{2} \varrho_{0}\left(\alpha u^{2}+\beta s^{2}\right)
$$

where $\alpha \beta=3, u$ and s are positive integers with $\operatorname{gcd}(u, s)=1$ and ϱ_{0} is any integer when u and s are odd but ϱ_{0} is even when one of u and s is even and the other is odd.
(iii) The only solutions in non-zero integers of $x^{4}+y^{4}=2 z^{2}$ with $\operatorname{gcd}(x, y)=1$ are $x^{2}=1, y^{2}=1$ and $z^{2}=1$. There is no solution in non-zero integers of the equation $x^{4}-y^{4}=2 z^{2}$ with $\operatorname{gcd}(x, y)=1$.

Lemma 8(i) is a well known result in continued fraction theory. We refer to [10, Theorem 7.25, pp. 173-174] from where the result in Lemma 8(i) can be derived easily using the facts that $\sqrt{2}=\langle 1, \overline{2}\rangle$ and $\sqrt{3}=\langle 1, \overline{1,2}\rangle$. Lemma 8(ii) can be found in [2, pp. 40-41]. The first assertion in Lemma 8(iii) is proved in [11, p. 38]. It also follows from A14.4 of [11, p. 171]. In fact, the statement given therein should be corrected as: If $m \geq 0$ and $x^{4}+y^{4}=2^{m} z^{2}$ with $\operatorname{gcd}(x, y)=1$, then $m=1$ and $x^{2}=y^{2}=z^{2}=1$. The second assertion in Lemma 8(iii) follows from A14.5 of [11, p. 172].
3. An algorithm. In this section, we modify the algorithm given in $[14, \S 4]$.

Algorithm. Let d and $k \geq 4$ be given. Also let $\mu>0$.
STEP 1. Find all primes $q_{1}, \ldots, q_{\theta}, q_{\theta+1}, \ldots, q_{\theta+\eta}$ which are coprime to d and such that $q_{1}<\ldots<q_{\theta} \leq k<q_{\theta+1}<\ldots<q_{\theta+\eta}$ and $q_{i}^{2}<k^{2} d^{2} / \mu$ for $1 \leq i \leq \theta+\eta$.

STEP 2. Set $D=\left\{q_{1}^{\alpha_{1}} \ldots q_{\theta}^{\alpha_{\theta}} q_{\theta+1}^{2 \beta_{1}} \ldots q_{\theta+\eta}^{2 \beta_{\eta}} \mid q_{1}^{\alpha_{1}} \ldots q_{\theta}^{\alpha_{\theta}} q_{\theta+1}^{2 \beta_{1}} \ldots q_{\theta+\eta}^{2 \beta_{\eta}}\right.$ $<k^{2} d^{2} / \mu$ for non-negative integers $\alpha_{i}, \beta_{j}, 1 \leq i \leq \theta, 1 \leq j \leq \eta$ and $\beta_{1}, \ldots, \beta_{\eta}$ not all zero $\}$.

STEP 3. For every $q \in D$, find the smallest $j_{0} \geq 1$ such that $d<$ $q /\left(k-j_{0}\right)$. Then find some $j=j(q)$ with $j_{0} \leq j \leq k-1$ such that $P(q+j d)$ and $P(q-(k-j) d)$ are $>q_{\theta+\eta}$.

In our application, it is always possible to find j_{0} in Step 3 because $d \leq 22$ and $q \geq q_{\theta+1}^{2} \geq 25$. Also $q-(k-j) d$ is positive since $d<q /\left(k-j_{0}\right)<$
$q /(k-j)$ as $j \geq j_{0}$. We derive from the above Algorithm the following result.
Lemma 9. Let d, k and $\mu>0$ be given such that $n+(k-1) d<k^{2} d^{2} / \mu$. If (9) and Step 3 hold, then (8) does not hold.

Proof. Since $n+(k-1) d<k^{2} d^{2} / \mu$, every term $n+i d$ for $0 \leq i \leq k-1$ is of the form $q \in D$ or q with $P(q) \leq q_{\theta}$. Now we follow the proof of [14, Lemma 11] to obtain the assertion of the lemma.
4. Proof of Theorem 2. Let $1<d \leq 22$ and $(n, d, k) \notin\{(2,7,3)$, $(18,7,3),(64,17,3)\}$. We assume that (9) holds and arrive at a contradiction. We apply Lemma 6 to get $k \geq 4$. Next we use Theorem 1 of [14] to derive that $d \geq 7$. Then by Lemma 3 , we may assume that $k \leq k_{0}$ where k_{0} is as given in Table 1.

Suppose $n \geq(k-1)^{2} d^{2} / 4$. Then we take $\varrho=1$ in Lemma 1 and observe that $\delta(d)=0$. Thus from Lemma 1 , we derive that $t^{\prime}=k$ and hence it follows from Lemma 7 that (9) does not hold. Thus our supposition $n \geq$ $(k-1)^{2} d^{2} / 4$ is false. We assume from now onwards that $n<(k-1)^{2} d^{2} / 4$ and hence

$$
\begin{equation*}
n+(k-1) d<\frac{k^{2} d^{2}}{4} \quad \text { for } 4 \leq k \leq k_{0} \text { and } 7 \leq d \leq 22 \tag{28}
\end{equation*}
$$

Suppose $k \geq 27$. Then from Table 1 we have $d \geq 9$. Assume that $n \geq$ $(k-1)^{2} d^{2} / 36$. Then we take $\varrho=9$ in Lemma 1. Thus $h \leq 2$. Suppose $d=9$. Then $V_{1}=\{1,2,4,5,7,8\}, V_{2}=\{1,2\}, \varepsilon_{1}=1, \varepsilon_{2}=1, \delta_{1}=1$ and $\delta_{2}=1$. Hence $\delta(d) \leq 2$. Similarly, for other values of d we find that $\delta(d) \leq 2$. Hence by Lemma $1, t^{\prime} \geq k-2$. We check that $g(k, 3, d) \geq 9$ for $27 \leq k \leq 66$. This contradicts (23). Thus we derive that

$$
\begin{equation*}
n+(k-1) d<\frac{(k-1)^{2} d^{2}}{36}+(k-1) d<\frac{k^{2} d^{2}}{32} \tag{29}
\end{equation*}
$$

$$
\text { for } 27 \leq k \leq 66 \text { and } 9 \leq d \leq 22 \text {. }
$$

Let $k>66$. Then we see from Table 1 that $d \in\{13,17,19,21,22\}$ and the corresponding upper bound for k, viz., k_{0} is large. We use the idea in the preceding paragraph in order to get a good upper bound for $n+(k-1) d$ in different ranges of k. First we assume that $n+(k-1) d \geq k^{2} d^{2} / \mu$ for some positive integer μ. Then we find a lower bound for t^{\prime}, say t_{0}, and a range of k, say $R_{1} \leq k \leq R_{2}$, in which by (12), we check that $g(k, m, d) \geq 2^{m}+1$ for a suitable choice of m. Since this is a contradiction we derive that

$$
\begin{equation*}
n+(k-1) d<\frac{k^{2} d^{2}}{\mu} \quad \text { for } R_{1} \leq k \leq R_{2} \tag{30}
\end{equation*}
$$

In Table 2, we tabulate the choice of μ, values of t_{0}, R_{1}, R_{2} and m when $d \in\{13,17,19,21,22\}$.

Table 2

d	μ	t_{0}	$R_{1}-R_{2}$	m
13	92	$k-5$	$67-119$	4
17	92	$k-5$	$67-119$	4
	135	$k-7$	$120-159,160-174$	4,5
	184	$k-8$	$175-215,216-233$	5,6
	240	$k-10$	$234-254$	6
19	32	$k-2$	$67-80$	4
	132	$k-6$	$81-143,144-174$	4,5
	185	$k-8$	$175-302$	5
21	165	$k-7$	$67-99$	2
22	32	$k-1$	$67-74$	2

For a given d, k, we use (28)-(30) with Table 2 and construct the set D mentioned in Step 2 of the Algorithm in Section 3. Next we proceed to check that Step 3 holds for the given d, k and $q \in D$. This would contradict (8) by Lemma 9 . The verification of Step 3 is done as follows. First, we delete from D all the integers q for which both $P(q+j d)$ and $P(q-(k-j) d)$ exceed $q_{\theta+\eta}$ with $j=j_{0}$. We denote the set of remaining integers of D by D_{1}. Secondly if $D_{1} \neq \emptyset$, we delete from D_{1} those integers for which both $P(q+j d)$ and $P(q-(k-j) d)$ exceed $q_{\theta+\eta}$ with $j=j_{0}+1$. The remaining set of integers from D_{1} is denoted by D_{2}. The above process is continued till we reach $j=k-1$ or until D_{i} becomes an empty set for some integer $i \geq 1$. For the values of d and k under consideration, we find that we need only take j with $j_{0} \leq j \leq \min (k-1,25)$.

There are triples (d, k, q) for which the Algorithm fails, i.e., we are unable to find some j with $j_{0} \leq j<k$ such that both $P(q+j d)$ and $P(q-(k-j) d)$ exceed $q_{\theta+\eta}$. In all, we find 207 triples which are not covered by the Algorithm. For each d, we give below a few examples of such triples. For a given d, we have chosen as examples those triples for which either k or q is maximum among all the triples $(d, k, q):(7,4,25),(8,5,49)$, $(9,12,169),(10,6,49),(11,12,169),(12,4,49),(13,13,1058),(14,5,363)$, $(14,13,361),(15,5,578),(16,7,361),(16,12,169),(17,7,1058),(17,25,961)$, $(18,5,289),(18,9,121),(19,9,1681),(19,25,961),(20,10,867),(20,16,289)$, $(21,15,361),(21,16,289),(22,6,637),(22,16,289)$.

We observe that in all the 207 cases k and q are not very large. For all these triples (d, k, q), we factorize the product $n(n+d) \ldots(n+(k-1) d)$ directly with $n \in\{q, q-d, \ldots, q-(k-1) d\}$ to find a prime exceeding k which divides the product to an odd power. This completes the proof of Theorem 2.
5. Proof of Theorem 3. Suppose that $d \geq 23$ and $k \geq 4 d(\log d)^{2}$ if d is odd and $k \geq(1.3) d(\log d)^{2}$ if d is even. Then $k>2(2 d-7)$. Also
by equation (2), we may assume that (9) holds. Thus we conclude from Corollary 1 that $t^{\prime} \geq k-\delta(d)$ where $\delta(d)$ is computed with $\varrho=\frac{1}{3} d^{2}$. By Lemma $4, \delta(d) \leq(.52) d \log d$ for d odd, $\delta(d) \leq(.38) d \log d$ for d even and hence $k-\delta(d) \geq 63$. Hence by Corollary 2(i), we have

$$
\begin{equation*}
\prod_{i=1}^{t^{\prime}} a_{i}^{\prime} \geq \prod_{i=1}^{k-\delta(d)} a_{i}^{\prime} \geq \prod_{i=1}^{k-\delta(d)} s_{i} \geq(1.5)^{k-\delta(d)}(k-\delta(d))! \tag{31}
\end{equation*}
$$

We use (31), (21) and (22) to get

$$
\begin{equation*}
1.5549 \leq(153819970)^{1 / k}(1.5)^{\delta(d) / k} k^{(15+\delta(d)) / k} \tag{32}
\end{equation*}
$$

Let d be even. Then we turn to sharpening (32). Since $\operatorname{gcd}\left(a_{i}^{\prime}, d\right)=1$ for $1 \leq i \leq t^{\prime}$ we find that $a_{1}^{\prime}, \ldots, a_{t^{\prime}}^{\prime}$ are odd. By Corollary 2(iii), we have

$$
\prod_{i=1}^{t^{\prime}} a_{i}^{\prime} \geq\left(\frac{9}{4}\right)^{k-\delta(d)}(k-\delta(d))!
$$

We note that $g_{2}=0$ and we use (20) with (19) for $q \geq 3, g_{2}-h_{2} \leq-k+\frac{\log k}{\log 2}$ to estimate

$$
\prod_{i=1}^{t^{\prime}} a_{i}^{\prime} \leq(38454993)(.7657)^{k} k^{15}(k-1)!
$$

Finally, we combine the upper and lower estimates for $\prod_{i=1}^{t^{\prime}} a_{i}^{\prime}$ to conclude that

$$
\begin{equation*}
2.9384 \leq(38454993)^{1 / k}\left(\frac{9}{4}\right)^{\delta(d) / k} k^{(14+\delta(d)) / k} \quad \text { for } d \text { even } \tag{33}
\end{equation*}
$$

We observe that the right hand sides of the inequalities (32) and (33) are decreasing functions of k. Therefore, we put $k=(3.8) d(\log d)^{2}$ in (32) when d is odd and $k=(1.3) d(\log d)^{2}$ in (33) when d is even. By Lemma 4, we may replace $\delta(d)$ in (32) by $\frac{1}{4} d \log d+(.8323) d$ and $\delta(d)$ in (33) by $\frac{1}{3} d \log d+(.118) d$. The resulting inequalities do not hold for $d \geq 23$.

6. Proofs of Theorems 4 and 5

Proof of Theorem 4. We choose

$$
(n, d, y)= \begin{cases}\left(2, x_{0}^{2}-2,2 x_{0} y_{0}\right) & \text { where } x_{0}^{2}-2 y_{0}^{2}=1 \text { with } x_{0} \text { odd } \\ \left(2, x_{0}^{2}-2,2 x_{0} y_{0}\right) & \text { where } x_{0}^{2}-3 y_{0}^{2}=1 \text { with } x_{0} \text { odd } \\ \left(1, x_{0}^{2} / 2-1, x_{0} y_{0} / 2\right) & \text { where } x_{0}^{2}-3 y_{0}^{2}=1 \text { with } x_{0} \text { even }\end{cases}
$$

Then we observe that (n, d, y) is a solution of equation (6) with $B \in\{2,3,6\}$. Now by Lemma 8(i), there are infinitely many such triples (n, d, y) satisfying equation (6) with $B \in\{2,3,6\}$. This proves Theorem 4 .

Proof of Theorem 5. Let $n \notin\{1,2,48\}$. By the remarks following Theorem 5 in Section 1, we need to consider equation (7) with $B=2,3$. Thus we may assume that (9) holds and we shall arrive at a contradiction. We apply Lemma 5 to assume that $\left(a_{0}, a_{1}, a_{2}\right)=(1,1,2)$ if $B=2$ and $\left(a_{0}, a_{1}, a_{2}\right)=(6,1,2)$ if $B=3$. The first case implies $x_{1}^{2}-x_{0}^{2}=1$, which is not possible. In the second case we have $3 x_{0}^{2}+x_{2}^{2}=x_{1}^{2}$ with x_{0} even, and x_{0}, x_{1}, x_{2} pairwise coprime. Hence by Lemma 8(ii), we have $\varrho_{0}=2$ and $1=x_{1}^{2}-6 x_{0}^{2}=\alpha^{2} u^{4}+\beta^{2} s^{4}-18 u^{2} s^{2}$ with $\alpha \beta=3$. It is no loss of generality to assume that $\alpha=1, \beta=3$ while dealing with this equation. Thus we consider $u^{4}+9 s^{4}-18 u^{2} s^{2}=1$. This implies that $1+8 u^{4}=c_{1}^{2}$ for some integer c_{1}. This immediately reduces to the equation $u_{1}^{4}-2 u_{2}^{4}= \pm 1$ for some integers u_{1} and u_{2} with $u_{1} u_{2}= \pm u$. We apply Lemma 8(iii) to observe that $\left(u_{1}, u_{2}\right)=(\pm 1,0)$ or $(\pm 1, \pm 1)$. Hence $u=0$ or ± 1. Thus we have $9 s^{4}=1$ or $s^{2}\left(9 s^{2}-18\right)=0$. The former is impossible while the latter gives $s=0$, implying that $x_{0}=0$ by Lemma 8(ii) and this is not possible.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[2] L. E. Dickson, Introduction to the Theory of Numbers, Univ. of Chicago Press, 1946.
[3] - History of the Theory of Numbers, Vol. II, Washington, 1919; reprint: Chelsea, New York, 1971.
[4] P. Erdős, Note on products of consecutive integers, J. London Math. Soc. 14 (1939), 194-198.
[5] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
[6] W. Ljunggren, New solution of a problem proposed by E. Lucas, Norsk Mat. Tidsskrift 34 (1952), 65-72.
[7] R. Marszałek, On the product of consecutive elements of an arithmetic progression, Monatsh. Math. 100 (1985), 215-222.
[8] A. Meyl, Question 1194, Nouv. Ann. Math. (2) 17 (1878), 464-467.
[9] L. J. Mordell, Diophantine Equations, Academic Press, 1969.
[10] I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, 1972.
[11] P. Ribenboim, Catalan's Conjecture, Academic Press, 1994.
[12] O. Rigge, Über ein diophantisches Problem, in: 9th Congress Math. Scand., Helsingfors, 1938, Mercator, 155-160.
[13] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[14] N. Saradha, On perfect powers in products with terms from arithmetic progressions, Acta Arith. 82 (1997), 147-172.
[15] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression, in: A Tribute to Paul Erdős, A. Baker, B. Bollobás and A. Hajnal (eds.), Cambridge Univ. Press, 1990, 385-389.
[16] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. 75 (1990), 307-344.
[17] G. N. Watson, The problem of the square pyramid, Messenger Math. 48 (1919), 1-22.

School of Mathematics

Tata Institute of Fundamental Research
Homi Bhabha Road
Mumbai 400005, India
E-mail: saradha@math.tifr.res.in

Received on 15.7.1997
and in revised form on 16.3.1998

[^0]: 1991 Mathematics Subject Classification: Primary 11D61.

