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Growth of the product
∏n
j=1(1− xaj)

by

J. P. Bell (Waterloo, Ont.), P. B. Borwein (Burnaby, B.C.)
and L. B. Richmond (Waterloo, Ont.)

We estimate the maximum of
∏n
j=1 |1 − xaj | on the unit circle where

1 ≤ a1 ≤ a2 ≤ . . . is a sequence of integers. We show that when aj is jk or
when aj is a quadratic in j that takes on positive integer values, the max-
imum grows as exp(cn), where c is a positive constant. This complements
results of Sudler and Wright that show exponential growth when aj is j.

In contrast we show, under fairly general conditions, that the maximum
is less than 2n/nr, where r is an arbitrary positive number. One consequence
is that the number of partitions of m with an even number of parts chosen
from a1, . . . , an is asymptotically equal to the number of such partitions
with an odd number of parts when ai satisfies these general conditions.

1. Introduction. Let A = {am}∞m=1, a1 < a2 < . . . , denote a sequence
of positive integers. Let qe

A,n(m) denote the number of solutions to

m = aj1 + . . .+ ajr (1 ≤ j1 < . . . < jr ≤ n)

where r is an even natural number and let qo
A,n(n) denote the number of

such solutions with r odd. We consider the generating function for qA,n(m) ≡
qe
A,n(m)− qo

A,n(m):

FA,n(x) =
n∏

j=1

(1− xaj ) =
∑

m≥0

qA,n(m)xm.

The case of aj = j has received a very careful analysis by Sudler [16]
and Wright [17], [18]. Sudler shows that if aj = j and

MA,n = max
m
|qA,n(m)|

then
logMA,n = Kn+O(log n)
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where K is explicitly given (K = .19861 . . .). The fact that Mn grows ex-
ponentially is perhaps surprising since Euler’s pentagonal number theorem
states that

∞∏

k=1

(1− xk) =
∞∑

m=−∞
(−1)mx(3m2+m)/2

(see Hardy and Wright [9]).
Let Ap denote the sequence formed by taking the integers not divisible

by the prime p. P. Borwein [3] has determined the corresponding K for the
sequences Ap for p = 3, 5, . . . , 17.

In this note we first derive upper bounds on MA,n (see Theorem 2.1)
under the general conditions of Roth and Szekeres [14]. We then derive
asymptotic estimates for qo

A,n(m) ∼ qe
A,n(m) for m sufficiently near the

maximum of qo
A,n(m) (see Theorem 2.2).

We next consider lower bounds for MA,n. There is a close analogy be-
tween this problem and the following problem of Erdős and Szekeres [8]:
Estimate M(n) where

M(n) = min
{k1,...,kn}

max
|x|=1

n∏

j=1

|1− xkj |.

Here k1, . . . , kn may be any positive integers, not necessarily the first terms
of a given sequence A.

The best upper bound for M(n) is that of Belov and Konyagin [2]

M(n) ≤ exp(O((log n)4)).

Previously Atkinson [1] and Dobrowolski [6] proved the upper bound of
exp(O(n1/2 log n)), and the upper bound of exp(O(n1/3(log n)4/3)) was ob-
tained by Odlyzko [12]. M. N. Kolountzakis [10] proved the upper bound
exp(O(n1/3 log n)) for M(n).

The strongest lower bound
√

2n is due to Erdős and Szekeres [8]. Erdős [7]
has conjectured that for all large n, M(n) ≥ nk, k any constant. There has
been little progress on this old conjecture. The only non-trivial results are
due to Maltby [11]. These concern the norm of products of length n for
n = 7, 9, 10, 11 and show that the L1 norm of these products exceeds 2n.

Define

‖h(x)‖∞ = max
|x|=1

|h(x)|.

Clearly, any lower bound for M(n) is a lower bound for ‖FA,n(x)‖∞.
We exhibit families of polynomials, p(j), such that if aj = p(j) then

MA,n ≥ cn, c a positive constant. We also exhibit sequences A such that
MA,n ≤ exp(O(n1/2 log n)).



Growth of the product
∏n
j=1(1− xaj ) 157

We further conjecture that MA,n grows exponentially if aj is a polyno-
mial that takes integral values for integral j. (Such a polynomial p(j) is an
integral combination of binomial coefficients.)

2. Theorems and proofs. We shall use the following two conditions of
Roth and Szekeres [14] on a sequence A = {ak}:

(I) limk→∞ log ak/ log k = s exists, s > 0.
(II) If

Jk = inf
(2ak)−1≤α≤1/2

1
log k

k∑

i=1

‖αai‖2,

then Jk →∞ as k →∞ (here ‖x‖ denotes the distance of x from the nearest
integer).

Roth and Szekeres [14] showed that the following sequences satisfy (I)
and (II):

(i) The sequence aj = f(j), where f(x) is a polynomial which only
takes integral values for integral x and has the property that corresponding
to every p there exists an integer x such that p - f(x).

(ii) The sequence aj = f(pj), where f(x) is a polynomial as in (i) and pj
denotes that jth prime.

Note that (ii) includes the case aj = pj . Also note that each of the above
f(x) is an integral combination of binomial coefficients

(
x
k

)
.

Theorem 2.1. Suppose A is a non-decreasing sequence of positive inte-
gers in which infinitely many members are even, and infinitely many mem-
bers are odd. Let Ao = {ajk}∞k=1, ak1 < ak2 < . . . , be the subsequence of A
formed by all the odd elements. Moreover , suppose that A and Ao satisfy (I)
and (II) above. Then

‖FA,n(x)‖∞ ≤ 2nn−r for any constant r > 0.

In [8] Erdős and Szekeres show that ‖FA,n(x)‖∞ = o(2n) for a certain A.
Theorem 2.1 shows that this is true for a quite general class of A.

P r o o f (of Theorem 2.1). We suppose that log aj ∼ t log j and log ajk ∼
s log k, where s and t are positive constants. Now notice that if x = exp(πi+
2πiθ),−1/2 ≤ θ ≤ 1/2 and aj ∈ Ao then

|1− xaj | = |1 + e2πiajθ| = 2|cos(2πajθ)| ≤ 2 exp(−c‖ajθ‖2).

Letting a dash indicate a product over elements of Ao, we combine (I) and
(II) to obtain∣∣∣
∏′

j≤m
(1− xaj )

∣∣∣ ≤ 2m1m−r1 for each r > 0, m1 = the number of factors,
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provided |θ| ≥ (2am)−1. Thus if

M1 = M1(n) = |{aj | 1 ≤ j ≤ n, aj ∈ A−Ao}|,
we have

‖FA,n(x)‖∞ ≤ 2n−M1(n−M1)−r2M1 for all r > 0.

Since n−M1 = |{aj | aj ∈ Ao, aj ≤ an}|, and since A and Ao satisfy (I) we
have n−M1 ≥ a(1−ε)/s

n ≥ n(1−ε)/(st) for |θ| ≥ 2/am, and

‖FA,n(x)‖ ≤ 2nn−r for each r > 0.

Suppose now |θ| ≤ 2/am. If aj ∈ A−Ao then

|1− xajθ| ≤ caj/am.
Thus if Ae = {aj | aj ∈ A−Ao, aj ≤ a1/2

m } and M2 = |Ae| then
∣∣∣
n∏

j=1

(1− xajθ)
∣∣∣ ≤

( ∏

aj∈Ae

al

)( c

am

)M2

2n−M2

and since am ≥ n(1−ε)/s we again have if M1(n)→∞ as n→∞
∣∣∣
n∏

j=1

(1− xaj )
∣∣∣ ≤ 2nn−r for each r > 0,

proving Theorem 2.1.

Now Odlyzko and Richmond [13] prove

Theorem 2.2. Suppose A satisfies (I) and (II) above. Let

N =
n∑

j=1

aj , B =
n∑

j=1

a2
j .

Let L > 0 be any constant. Then if |m−N/2| ≤ L√B log n and
n∏

j=1

(1 + xaj ) =
∑

m≥1

qA,n(m)xm

we have

qA,n(m) ∼ 2m
√

2√
πB

e−2(m−N/2)2/B .

Theorems 2.1 and 2.2 give

Theorem 2.3. Suppose A satisfies (I) and (II) above. Suppose also that
Ao = {aj | aj ≡ 1 (mod 2)} satisfies (I) and (II) above and A − Ao is
infinite. With N and B defined in Theorem 2.2 and∣∣∣∣m−

N

2

∣∣∣∣ ≤
√
B logn,
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one has
qe
A,n(m) = qo

A,n(m)(1 +O(n−M )) for any r > 0.

P r o o f. Since ‖FA,n(x)‖∞ ≤ 2nn−r from Theorem 2.1 it follows from
Cauchy’s integral formula with |x| = 1 that

|qe
A,n(m)− qo

A,n(m)| ≤ 2nn−r

for all r > 0. Theorem 2.3 follows immediately from this and Theorem 2.2
for |m−N/2| ≤ B1/2(logm)1/2 since

qe
A,n(m) + qo

A,n(m) = qA,n(m).

We now give an example to show that we cannot in general expect ex-
ponential growth of ‖Fn,k(x)‖∞. This is in Borwein and Ingalls [4] but it is
very simple and we reproduce some of it here.

Lemma 2.1. Let 1 ≤ β1 ≤ β2 ≤ . . . and let

Wn(z) =
∏

1≤i<j≤n
(1− zβj−βi).

Then
‖Wn(z)‖∞ = max

|z|=1
|Wn(z)| ≤ nn/2.

P r o o f. We explicitly evaluate the Vandermonde determinant

Dn(z) =
∏

1≤i<j≤n
|zβj − zβi | =

∣∣∣∣∣∣

1 zβ1 . . . z(n−1)β1

...
...

...
1 zβn . . . z(n−1)βn

∣∣∣∣∣∣
.

As each entry of the matrix has modulus ≤ 1 in the unit disc, by Hadamard’s
inequality, we have ‖D(z)‖∞ ≤ nn/2. Thus∥∥∥

∏

1≤i<j≤n
(1− zβj−βi)

∥∥∥
∞

= ‖Dn(z)‖∞ ≤ nn/2.

Observe, as Dobrowolski did in [6], that if we take βi = i we have
∥∥∥
n−1∏

i=1

(1− zi)n−i
∥∥∥
∞
≤ nn/2,

a result first proved by Atkinson [1] using Fourier series.

Theorem 2.4. Let A = {βj}∞j=1 be the sequence formed by taking the
set {2n − 2m | n > m ≥ 0} in increasing order. Then for all n:

‖FA,n(x)‖∞ ≤ (32n)
√
n/8.

Clearly, any α ≥ 2 could play the role of 2 in the construction of the βi’s
with the same conclusion. Indeed, we have
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Theorem 2.5. Let {δi} be any sequence of integers and let {βi} be the
sequences of differences in the following order :

{δ1 − δ0, δ2 − δ1, δ2 − δ0, . . . , δn − δn−1, . . . , δn − δ0, . . .}.
(So the nth block is {δn − δn−1, . . . , δn − δ1, δn − δ0}.) Then

∥∥∥
n∏

i=1

(1− zβi)
∥∥∥
∞
≤ (32n)

√
n/8.

We now turn to the study of lower bounds for ‖FA,n(x)‖∞.
Let A = {aj}∞j=1 be a sequence of positive integers. For p a prime let

In,p = IA,n,p be defined by

In,p = {aj | p | aj , 1 ≤ j ≤ n}.
Lemma 2.2 (Szekely). Let A = {aj}∞j=1 be a sequence of positive integers.

For 1 ≤ α ≤ p− 1, let

G(α, p) =
∏

aj 6∈In,p
(1− e2πajα/p).

Define n0 = |In,p|. Then there is an α such that

|G(α, p)| ≥ p(n−n0)/(p−1).

P r o o f. Note that

max
1≤a≤p−1

|G(α, p)| ≥ 1
p

p−1∑
α=1

∏

aj 6∈In,p
|1− e2πiajα/p|

≥
p−1∏
α=1

∏

aj 6∈In,p
|1− e2πiajα/p|1/(p−1)

=
∏

aj 6∈In,p

p−1∏
m=1

|1− e2πim/p|1/(p−1).

Since the inside product is ∣∣∣∣ lim
x→1

(
1− xp
1− x

)∣∣∣∣ = p

the lemma follows.

We now give a demonstration of the fact that given a positive integer k,
the maximum value of the product

∏m
j=1 |1 − xj

k |, as x takes on values
on the unit circle, grows at an exponential rate with respect to m, as m
grows large. From this fact, it follows in a straightforward manner that the
maximal coefficient of this product (when considered as a polynomial in
x) grows at an exponential rate with respect to m. It is known that the
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product being considered grows at an exponential rate with respect to m,
when k = 1 (see Sudler [16] and Wright [17], [18]). Thus we will restrict our
attention to the case when k is an integer that is at least two. In order to
obtain the desired results, we will have to appeal to some results from basic
group theory and introduce some notation as well.

First, note that if k is an integer that is greater than or equal to 2, and
p is a prime with p ≡ 1 (mod k), then the set {jk + pZ | 0 < j < p} forms
a subgroup of (Z/pZ)∗ of index k. We denote this group by Rk, as it is the
subgroup of kth power residues. Note that if φ : (Z/pZ)∗ 7→ Rk, is given by
the assignment j + pZ 7→ jk + pZ, then φ is a group homomorphism, and
hence Card(φ−1({jk + pZ})) = k. Also note that if (p − 1)/k is even, then
−1+pZ is an element of Rk. We now proceed to prove the result mentioned
earlier.

Lemma 2.3. Suppose k ∈ N, and p = 1 + 2kM is prime. Then there is
an integer q such that

p−1∏
s=1

|1− e2πiskq/p| ≥
(
p

k

)k
.

P r o o f. Choose integers β1, . . . , βk such that β1 + pZ, . . . , βk + pZ gives
a complete set of representatives of the k cosets of Rk in (Z/pZ)∗. As
(p−1)/k is even, it follows that we can choose integers α1, . . . , αM such that
α1+pZ,−α1+pZ, . . . , αM+pZ,−αM+pZ forms the complete set of elements
of Rk. Thus we have

p−1∏
s=1

|1− e2πiskq/p| =
( M∏

j=1

(|1− e2πiαjq/p| · |1− e−2πiαjq/p|)
)k

(∗)

=
( M∏

j=1

(1− e2πiαjq/p)(1− e−2πiαjq/p)
)k
.

Now let R(x) ∈ Z[x, x−1] be given by
∏M
j=1(1 − xαj )(1 − x−αj ). It follows

easily from (∗) that R(e2πiq/p) > 0 if 1 ≤ q ≤ p − 1, and that R(1) = 0.
Moreover, it is easily shown that for any Laurent polynomial L over Z and
any prime p, one has the fact that

∑p−1
j=0 L(e2πij/p) is an integral multiple

of p. Hence from our previous remarks we have
∑p−1
j=1 R(e2πij/p) = ps for

some positive integer s. Notice

(∗∗)
k∑

j=1

R(e2πiβj/p) =
k

p− 1

p−1∑
s=1

R(e2πis/p) =
ksp

p− 1
.

Also note that
∑k
j=1R(e2πiβj/p) is an algebraic integer. From (∗∗), we see

that this sum is also rational. Thus this sum is in fact an integer, and so
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(p− 1)/k must divide s. It follows that
∑k
j=1R(e2πiβj/p) ≥ p. In particular,

there exists some l with 1 ≤ l ≤ k such that R(e2πiβl/p) ≥ p/k. And so from
(∗) we see that

p−1∏

j=1

|1− e2πiqjk/p| ≥
(
p

k

)k

for some integer q, as required.

Lemma 2.4. Let M ≥ 2 and let p ≡ 1 (mod k) be prime. Then, given
q ∈ Z, q 6≡ 0 (mod p), we have

p−1∏
s=1

(
1− |1− e

πi/(pM)|
|1− e2πiqsk/p|

)
≥ (pe/2)(−kπ log 2)/M .

P r o o f. Notice that

|1− eπi/(pM)|
|1− e2πiqsk/p| ≤

|1− eπi/(2p)|
|1− e2πi/p| =

1
|1 + eπi/(2p) + eπi/p + e3πi/(2p)| ≤

1
2

for 1 ≤ s ≤ p − 1. Furthermore, it is easy to see that 1 − x ≥ 4−x for
0 ≤ x ≤ 1/2. Thus

p−1∏
s=1

(
1− |1− e

πi/(pM)|
|1− e2πiqsk/p|

)
≥ 4−|1−e

πi/(pM)|(∑p−1
s=1 |1−e2πiqs

k/p|
−1

)(1)

≥ 4−(π/(pM))(
∑p−1
s=1 |2 sin(πqsk/p)|−1).

Now let β1, . . . , βk be integers such that β1+pZ, . . . , βk+pZ forms a complete
family of representatives of the k cosets of Rk in (Z/pZ)∗. Then there is some
i with 1 ≤ i ≤ k such that

p−1∑
s=1

∣∣∣∣2 sin
(
πqsk

p

)∣∣∣∣
−1

=
p−1∑
s=1

∣∣∣∣2 sin
(
πβis

k

p

)∣∣∣∣
−1

.

Hence
p−1∑
s=1

∣∣∣∣2 sin
(
πqsk

p

)∣∣∣∣
−1

≤
k∑

j=1

p−1∑
s=1

∣∣∣∣2 sin
(
πβjs

k

p

)∣∣∣∣
−1

=
k

p− 1

p−1∑

j=1

p−1∑
s=1

∣∣∣∣2 sin
(
πjsk

p

)∣∣∣∣
−1

= k

p−1∑
m=1

∣∣∣∣2 sin
(
πm

p

)∣∣∣∣
−1

(by changing the order of summation)
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= k

(p−1)/2∑
m=1

(
sin
(
πm

p

))−1

≤ k
(p−1)/2∑
m=1

p

2m
(by Schwarz’s inequality)

≤
(
pk

2

)(
1 + log

(
p− 1

2

))
≤ pk log

(
ep

2

)/
2.

By Schwarz’s inequality we mean the inequality x/2 ≤ sinx ≤ x for 0 ≤ x
≤ π/2.

Thus, by (1), we have
p−1∏
s=1

(
1− |1− e

πi/(pM)|
|1− e2πiqsk/p|

)
≥ 4−(π/(pM))(pk log(ep/2)/2) =

(
ep

2

)(−kπ log 2)/M

as required.

Theorem 2.6. If k is an integer greater than or equal to two then there
exists a constant c > 1 such that

max
x∈S1

∣∣∣
m∏
n=1

(1− xnk)
∣∣∣ > cm

for all m sufficiently large.

P r o o f. Choose a prime p with p ≡ 1 (mod 2k) and p > 1
64 (k3e4/8)k.

By Lemma 2.3, we can choose an integer q ∈ Z such that
p−1∏

j=1

|1− e2πiqjk/p| ≥
(
p

k

)k
.

Let εN = 1/(7p(pN)k) and ΘN = q/p+ εN for all N ∈ N. Notice that

(1)
Np∏
n=1

|1− e2πiΘNnk |

=
N−1∏

j=0

p−1∏
m=1

|1− e2πi(pj+m)kεN e2πiqmk/p|
N∏
s=1

|1− e2πiεN (ps)k |.

Now
N∏
s=1

|1− e2πiεN (ps)k |

=
N∏
s=1

|2 sin(πεN (ps)k)| ≥
N∏
s=1

2
π

2πεN (ps)k (by Schwarz’s inequality)

=
(4pk)NN !kN

7NpN (pN)kN
≥ 4N

7NpNekN
(by Stirling’s approximation).
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Thus, by (1), we have

(2)
Np∏
n=1

|1− e2πiΘNnk | ≥
(

4
7pek

)N N−1∏

j=0

p−1∏
m=1

|1− e2πimkq/pe2πiεN (pj+m)k |.

Now

|1− e2πimkq/pe2πiεN (pj+m)k |
≥ |1− e2πimkq/p| − |e2πiqmk/p| · |e2πiqmk/pe2πiεN (pj+m)k |

= |1− e2πimkq/p|
(

1− |1− e
2πiεN (pj+m)k |

|1− e2πimkq/p|

)

≥ |1− e2πimkq/p|
(

1− |1− e
2πi/(7p)|

|1− e2πimkq/p|

)

for 0 ≤ j ≤ N − 1 and 1 ≤ m ≤ p− 1 and so
N−1∏

j=0

p−1∏
m=1

|1− e2πimkq/pe2πiεN (pj+m)k |

≥
N−1∏

j=0

p−1∏
m=1

|1− e2πimkq/p|
N−1∏

j=0

p−1∏
m=1

(
1− |1− e

2πi/(7p)|
|1− e2πimkq/p|

)

≥
(
p

k

)kN(
ep

2

)(−kNπ log 2)/7

(by Lemma 2.4).

Thus, by (2), we have
Np∏
n=1

|1− e2πiΘNnk| ≥
(

4
pek

)N(
p1−(π log 2)/7

k

)kN(2
e

)(kNπ log 2)/7

≥ 4N

pNekN
· p

2kN/3

kkN

(
2
e

)kN/3
≥
[(

4p1/3

ekkk

(
2
e

)k/3)1/p]pN
.

Now let

C =
(

4p1/3

ekkk

(
2
e

)k/3)1/p

.

Note that C > 1 as p > 1
64 (k3e4/8)k. Now let ε > 0. Choose c satisfying

C > c > 1. Then notice that given m ∈ N, we can find a positive integer N
such that (N − 1)p < m ≤ Np. Then

m∏

j=1

|1− e2πiΘN jk | =
( Np∏

j=1

|1− e2πiΘN jk |
)/( Np∏

j=m+1

|1− e2πiΘN jk |
)

≥ CNp/2Np−m ≥ 2−pCm ≥ cm (for sufficiently large m).
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We now consider sequences {mj} in which mj = aj2 + bj + c for all
j ∈ N, where a, b, and c are elements of Q such that mj ∈ N for all j ∈ N.
We show that for such sequences, the maximum obtained by

∏n
j=0 |1− zmj |

on the unit circle of the complex plane grows at an exponential rate with
respect to n, as n tends to infinity. Note that it is no loss of generality to
assume that {mj} forms an increasing sequence of natural numbers, as our
sequence must be eventually increasing.

Lemma 2.5. Let p ≡ 61 (mod 120) and let k be a quadratic non-residue
modulo p and let ε > 0. Then

p−1∏
s=0

ks2 6≡−2 (mod p)

|1− e2πi(ks2+2)/p| > ep
1/2−ε

for all sufficiently large primes p.

P r o o f. As p ≡ 61 (mod 120), it follows that ±1,±3,±4,±5 are quadra-
tic residues mod p. Thus if ks2 6≡ ±2 (mod p), then

|1− e2πiks2/p| > |1− e12πi/p|,
and so

|1− e2πi(ks2+2)/p|
|1− e2πiks2/p| ≥

(
1− |1− e

4πi/p|
|1− e12πi/p|

)
≥ 1

2
.

Recall that 1− x ≥ 4−x for 0 ≤ x ≤ 1/2, and so we have

(∗)
p−1∏
s=1

ks2 6≡±2 (modp)

(
1− |1− e4πi/p|
|1− e2πiks2/p|

)
≥ 4−(4π/p)

∑p−1
s=1 |2 sin(πks2/p)|−1

.

Notice that given an integer j, as s runs through the values 1, . . . , p, the
congruence ks2 ≡ j (mod p) has at most 2 solutions. We may use this fact
and equation (∗), to obtain

(∗∗)
p−1∏
s=1

ks2 6≡±2 (mod p)

(
1− |1− e4πi/p|
|1− e2πiks2/p|

)

≥ 4−(4π/p)
∑(p−1)/2
j=1 (|sin(πj/p)|−1+|sin(−πj/p)|−1)

≥ 4−(4π/p)
∑(p−1)/2
j=1 (p/(2j)) (by Schwarz’s inequality)

≥ 4−4π(log(p/2)+1)

=
(
pe

2

)−4π log 4

.
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Notice that the congruences ks2 ≡ 0 (mod p) and ks2 ≡ 2 (mod p) have
respectively 1 solution and 2 solutions mod p. Thus

(†)
p−1∏
s=0

ks2 6≡−2 (mod p)

|1− e2πi(ks2+2)/p|

≥
∣∣∣∣2 sin

(
2π
p

)∣∣∣∣ ·
∣∣∣∣2 sin

(
4π
p

)∣∣∣∣
2

×
p−1∏
s=1

ks2 6≡±2 (mod p)

|1− e2πiks2/p|
(

1− |1− e4πi/p|
|1− e2πiks2/p|

)

≥ |2 sin(2π/p)| · |2 sin(4π/p)|2
|2 sin(2π/p)|2|2 sin(−2π/p)|2

(
pe

2

)−4π log 4 p−1∏
s=1

|1− e2πiks2/p| (by (∗∗))

≥
(
pe

2

)−4π log 4 (8/p)(16/p)2

(4π/p)2(4π/p)2

( p−1∏
n=1

(np )=−1

2 sin
(
πn

p

))2

,

where the last step again follows by the Schwarz inequality.
Let L(s, χp) denote the sum

∑∞
j=1

(
j
p

)
/js for <s ≥ 1. It is known from

the work of Dirichlet (see Davenport [5]) that for p ≡ 1 (mod 4),

(i)
( p−1∏

n=1
(np )=−1

2 sin
(
πn

p

))/( p−1∏
r=1

( rp )=1

2 sin
(
πr

p

))
= exp(

√
pL(1, χp)).

We also note the classical identity:

(ii)
p−1∏
n=1

(np )=−1

2 sin
(
πn

p

) p−1∏
r=1

(np )=1

2 sin
(
πr

p

)
=
p−1∏

j=1

2 sin
(
πj

p

)
= p.

Combining (i) and (ii) yields
p−1∏
n=1

(np )=−1

2 sin
(
πn

p

)
=
√
pe
√
pL(1,χp)/2 for p ≡ 1 (mod 4).

Moreover, Siegel [15] was able to show that given ε > 0, we have L(1, χp) >
p−ε for all primes p sufficiently large. Combining these two facts with (†)
gives the result.

Theorem 2.7. Let f(x) = ax2 + bx + c be a quadratic polynomial such
that {f(n)}n∈N forms a non-decreasing sequence of positive integers. Then
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there exists some c > 1 such that

max
x∈S1

n∏

j=1

|1− xf(j)| > cn

for all n sufficiently large.

P r o o f. As the restriction of f to Z gives a map from the integers into
itself, it follows that 2a, 2b, and c must all be integers. In light of the
previous theorem, we may assume that b2 − 4ac 6= 0. Notice also that
limx→∞ f(x)/x2 = a > 0, and as f(n) > 0 for all n ∈ N, it follows that
there exists some positive constants C1, C2 such that C2n

2 > f(n) > C1n
2

for all n ∈ N.
By Lemma 2.5 we may choose a prime p ≡ 61 (mod 120) such that

p∏

k=1
αk2 6≡−2 (mod p)

|1− e2πi(αk2+2)/p| > e
3√p

whenever α is a quadratic non-residue mod p. We also insist that

C2
1e

3√p

16C2
2p

3e4

(
pe

2

)−π log 2

> 1

and

p 6≡ a, b2 − 4ac (mod p).

Let a∗ be the multiplicative inverse of a mod p. Then

an2 + bn+ c ≡ a
(
n+ ba∗

(
p+ 1

2

))2

+
(
p− 1

4

)
b2a∗ + c (mod p).

It follows that there is some integer d, with p - d, such that the sets

{d, a+ d, 4a+ d, 9a+ d, . . . , (p− 1)2a+ d}
and

{f(0), f(1), f(2), . . . , f(p− 1)}
are just permutations of one another when considered mod p. Now, notice
that if

(
da∗
p

)
= −1, then f(x) has no roots mod p, and so by appealing to

Lemma 2.2 we can see that the result will hold. Thus we may assume that(
da∗
p

)
= +1. Now choose q such that qd ≡ 2 (mod p). Note

(
qa

p

)
=
(
qa

p

)(
a∗d
p

)
=
(
qd

p

)
=
(

2
p

)
= −1.

Let εN = 1/(4C2p
3N2) and ΘN = q/p+ εN . Then



168 J. P. Bell et al.

(1)
Np∏
s=1

|1− e2πiΘNf(s)|

≥
Np∏

j=1
f(j)≡0 (mod p)

|1− e2πiεNf(j)|

×
Np∏

k=1
f(k)6≡0 (mod p)

|1− e2πiqf(k)/p|
(

1− |1− e
2πif(k)εN |

|1− e2πiqf(k)/p|
)

≥
Np∏

j=1
f(j)≡0 (mod p)

|2 sin(πf(j)εN )|

×
( p∏

k=1
ak2 6≡−d (mod p)

|1− e2πiq(ak2+d)/p|
(

1− |1− e
2πiC2(Np)2εN |

|1− e2πiq(ak2+d)/p|
))N

≥
Np∏

j=1
f(j)≡0 (mod p)

(4f(j)εN )

×
( p∏

k=1
qak2 6≡−2 (mod p)

|1− e2πi(qak2+2)/p|
(

1− |1− e
2πiC2(Np)2εN |

|1− e2πi(qak2+2)/p|
))N

≥
Np∏

j=1
f(j)≡0 (mod p)

(4f(j)εN )
(
e

3√p
p∏

k=1
qak2 6≡−2 (mod p)

(
1− |1− e

2πiC2(Np)2εN |
|1− e2πi(qak2+2)/p|

))N
,

where the penultimate step follows from Schwarz’s inequality. Now notice
that

|1− e2πiC2(Np)2εN |
|1− e2πi(qak2+2)/p| ≤

|1− eπi/(2p)|
|1− e2πi/p| ≤

1
2
.

And so we may again appeal to the fact that 1−x ≥ 4−x for 0 ≤ x ≤ 1/2 and
the fact that for any given integer r, the congruence qak2 + 2 ≡ r (mod p)
has at most two solutions mod p, and use the same type of argument that
was employed in deriving (∗∗) in Lemma 2.5, to obtain

(2)
p∏

k=1
qak2 6≡−2 (mod p)

(
1− |1− e

2πiC2(Np)2εN |
|1− e2πi(qak2+2)/p|

)
≥
(
pe

2

)−π log 2

.
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Substituting the information from (2) into (1), we obtain

(3)
Np∏
s=1

|1− e2πiΘNf(s)| ≥
Np∏

j=1
f(j)≡0 (mod p)

(4f(j)εN )
(
e

3√p
(
pe

2

)−π log 2)N
.

Finally, notice that f(x) has at mod 2 roots mod p, and so

(4)
Np∏

j=0
f(j)≡0 (mod p)

(4f(j)εN )

≥ (4εN )2N
N−1∏
n=0

(C1(1 + pn)2)2

≥ (4C1εN )2N (p−2N−4)
N∏
m=1

(pm)4

≥ (4C1εN )2N (p−2N−4)
(
p4NN4N

e4N

)
(Stirling’s formula)

=
(

C2
1

C2
2p

2e4

)N
p−2N−4 ≥

(
C2

1

16C2
2p

3e4

)N
,

where the last step follows from the inequalities p−2 ≥ p−2N and 2N ≥ N .
We define

C =
(

C2
1e

3√p

16C2
2p

3e4

(
pe

2

)−π log 2)1/p

.

Notice p has been chosen so that C > 1. Choose some c satisfying C > c > 1.
We now combine (3) with (4) to obtain

Np∏
s=1

|1− e2πiΘNf(s)| ≥
((

C2
1e

3√p

16C2
2p

3e4

(
pe

2

)−π log 2)1/p)pN
= CpN .

Let m be a given positive integer. Just as in Theorem 2.7, it is easily shown
that

max
z∈S1

m∏
s=1

|1− zf(s)| ≥ 2−pCm ≥ cm

for all m sufficiently large, as required.
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[15] C. L. S iege l, Über die Classenzahl quadratischer Zahlkörper , Acta Arith. 1 (1935),

83–86.
[16] C. Sudler, An estimate for a restricted partition function, Quart. J. Math. Oxford

Ser. (2) 15 (1964), 1–10.
[17] E. M. Wright, Proof of a conjecture of Sudler , ibid., 11–15.
[18] —, A closer estimation for a restricted partition function, ibid., 283–287.

Pure Mathematics Student
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
E-mail: bell@scylla.math.mcgill.ca

Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1
E-mail: lbrichmond@dragon.uwaterloo.ca

Department of Mathematics and Statistics
Simon Fraser University

Burnaby, British Columbia
Canada V5A 1S6

E-mail: pborwein@math.sfu.ca

Received on 19.8.1997
and in revised form on 20.2.1998 (3245)


