Global function fields with many rational places over the quinary field. II

by

HARALD NIEDERREITER (Wien) and CHAOPING XING (Singapore)

1. Introduction. Let q be an arbitrary prime power and K a global function field with full constant field \mathbb{F}_q , i.e., with \mathbb{F}_q algebraically closed in K. We use the notation K/\mathbb{F}_q if we want to emphasize the fact that \mathbb{F}_q is the full constant field of K. By a *rational place* of K we mean a place of K of degree 1. We write g(K) for the genus of K and N(K) for the number of rational places of K. For fixed $g \geq 0$ and q we put

$$N_q(g) = \max N(K),$$

where the maximum is extended over all global function fields K/\mathbb{F}_q with g(K) = g. Equivalently, $N_q(g)$ is the maximum number of \mathbb{F}_q -rational points that a smooth, projective, absolutely irreducible algebraic curve over \mathbb{F}_q of given genus g can have. The calculation of $N_q(g)$ is a very difficult problem, so usually one has to be satisfied with bounds for $N_q(g)$. Upper bounds for $N_q(g)$ that improve on the classical Weil bound can be obtained by a method of Serre [15] (see also [16, Proposition V.3.4]).

Global function fields K/\mathbb{F}_q of genus g with many rational places, that is, with N(K) reasonably close to $N_q(g)$ or to a known upper bound for $N_q(g)$, have received a lot of attention in the literature. We refer to Garcia and Stichtenoth [1], Niederreiter and Xing [10], [11], and van der Geer and van der Vlugt [17] for recent surveys of this subject. The construction of global function fields with many rational places, or equivalently of algebraic curves over \mathbb{F}_q with many \mathbb{F}_q -rational points, is not only of great theoretical interest, but it is also important for applications in the theory of algebraicgeometry codes (see [13], [16]) and in recent constructions of low-discrepancy sequences (see [5], [9], [12]).

In the present paper we concentrate on the case q = 5 and extend the list of constructions of global function fields K/\mathbb{F}_5 with many rational places in [6, Section 5] and [8]. The motivation for this is that the recent tables of

¹⁹⁹¹ Mathematics Subject Classification: 11G09, 11G20, 11R58, 14G15, 14H05.

^[277]

lower and upper bounds for $N_q(g)$ in [11] and [12] cover all genera $g \leq 50$, except in the case q = 5 where they cover only the range $g \leq 22$. We now close this gap by providing constructions for q = 5 and $23 \leq g \leq 50$, and in fact for many other values of the genus. A crucial role in this is played by a general construction principle based on Hilbert class fields.

In Section 2 we review some background on Hilbert class fields and narrow ray class extensions. Section 3 presents the general construction principle mentioned above and a list of examples for q = 5 derived from this principle. Further examples for q = 5 obtained by other methods are given in Section 4.

2. Background for the constructions. First we recall some pertinent facts about Hilbert class fields. A convenient reference for this topic is Rosen [14]. Let F be a global function field with $N(F) \ge 1$ and distinguish a rational place ∞ of F. The Hilbert class field H_{∞} of F with respect to ∞ is the maximal unramified abelian extension of F (in a fixed separable closure of F) in which ∞ splits completely. The extension H_{∞}/F is finite and its Galois group is isomorphic to the fractional ideal class group $\operatorname{Pic}(A)$ of the ring A of elements of F that are regular outside ∞ . In the case under consideration (∞ rational), $\operatorname{Pic}(A)$ is isomorphic to the group $\operatorname{Div}^0(F)$ of divisor classes of F of degree 0. In particular, we have $[H_{\infty} : F] = h(F)$, the divisor class number of F. For each place P of F there is an associated Galois automorphism $\tau_P \in \operatorname{Gal}(H_{\infty}/F)$, and the Artin symbol of P for the extension H_{∞}/F is equal to τ_P . The place P corresponds to the divisor class of F and prime ideals in A.

Next we collect some facts about narrow ray class extensions which can be found in [2, Section 7.5] and [4, Section 16]. Let $F = F/\mathbb{F}_q, \infty$, and A be as above and let ϕ be a sign-normalized Drinfeld A-module of rank 1. By [4, Section 15] we can assume that ϕ is defined over the Hilbert class field H_{∞} , i.e., that for each $z \in A$ the \mathbb{F}_q -endomorphism ϕ_z is a polynomial in the Frobenius with coefficients from H_{∞} . If \overline{H}_{∞} is a fixed algebraic closure of H_{∞} and M a nonzero integral ideal in A, then we write Λ_M for the Asubmodule of \overline{H}_{∞} consisting of the M-division points. Let $E_M := H_{\infty}(\Lambda_M)$ be the subfield of \overline{H}_{∞} generated over H_{∞} by all elements of Λ_M . Then E_M/F is called the narrow ray class extension of F with modulus M. The field E_M is independent of the specific choice of the sign-normalized Drinfeld A-module ϕ of rank 1. Furthermore, E_M/F is a finite abelian extension with

$$\operatorname{Gal}(E_M/F) \simeq \operatorname{Pic}_M(A) := \mathcal{I}_M(A)/\mathcal{P}_M(A),$$

where $\mathcal{I}_M(A)$ is the group of fractional ideals of A that are prime to M and $\mathcal{P}_M(A)$ is the subgroup of principal fractional ideals that are generated by

elements $z \in F$ with $z \equiv 1 \mod M$ and $\operatorname{sgn}(z) = 1$ (here sgn is the given sign function). We have $\operatorname{Gal}(E_M/H_\infty) \simeq (A/M)^*$, the group of units of the ring A/M. Thus, if $\Phi_q(M)$ denotes the order of the latter group, then

$$[E_M : F] = |\operatorname{Pic}_M(A)| = h(F)\Phi_q(M).$$

If $M = Q^n$ with a nonzero prime ideal Q in A and $n \ge 1$, then

$$\Phi_q(Q^n) = (q^d - 1)q^{d(n-1)},$$

where d is the degree of the place of F corresponding to Q. Again in this situation, E_M/F is unramified away from ∞ and Q. Furthermore, the decomposition group (and also the ramification group) D_{∞} of ∞ in E_M/F is the subgroup $D_{\infty} = \{c + M : c \in \mathbb{F}_q^*\}$ of $(A/M)^*$, and every place of H_{∞} lying over Q is totally ramified in E_M/H_{∞} .

In the special case where F is the rational function field $\mathbb{F}_q(x)$ over \mathbb{F}_q , the theory of narrow ray class extensions reduces to that of cyclotomic function fields as developed by Hayes [3]. In this case it is customary to take for ∞ the unique pole of x in $\mathbb{F}_q(x)$. We will use the convention that a monic irreducible polynomial P over \mathbb{F}_q is identified with the place of $\mathbb{F}_q(x)$ which is the unique zero of P, and we will denote this place also by P.

3. Examples from Hilbert class fields. We first establish a general construction principle for global function fields with many rational places that is based on Hilbert class fields.

THEOREM 1. Let q be odd, let S be a subset of \mathbb{F}_q , and put n = |S|. Choose a polynomial $f \in \mathbb{F}_q[x]$ such that $\deg(f)$ is odd, f has no multiple roots, and f(c) = 0 for all $c \in S$. For the global function field $F = \mathbb{F}_q(x, y)$ with $y^2 = f(x)$, assume that its divisor class number h(F) is divisible by $2^n m$ for some positive integer m. Then there exists a global function field K/\mathbb{F}_q such that

$$g(K) = \frac{h(F)}{2^{n+1}m} (\deg(f) - 3) + 1 \quad and \quad N(K) \ge \frac{(n+1)h(F)}{2^n m},$$

with equality if n = q.

Proof. Note that F is a Kummer extension of the rational function field $\mathbb{F}_q(x)$ with

$$g(F) = \frac{1}{2}(\deg(f) - 1)$$

by [16, Example III.7.6]. For each $c \in S$ the place x - c of $\mathbb{F}_q(x)$ is totally ramified in $F/\mathbb{F}_q(x)$, and so is the pole of x in $\mathbb{F}_q(x)$. Let ∞ denote the unique place of F lying over the pole of x in $\mathbb{F}_q(x)$. For the principal divisor (x - c) of F we thus have

$$(x-c) = 2P_c - 2\infty,$$

where all P_c , $c \in S$, are rational places of F. Consequently, the divisor class of $P_c - \infty$ has order 1 or 2 in the group $\text{Div}^0(F)$, and so the subgroup Jof $\text{Div}^0(F)$ generated by the divisor classes of all $P_c - \infty$, $c \in S$, has order dividing 2^n . It follows that there exists a subgroup of G of $\text{Div}^0(F)$ with $|G| = 2^n m$ and $G \supseteq J$. Let H_∞ be the Hilbert class field of F with respect to the rational place ∞ and let K be the subfield of the extension H_∞/F fixed by G, viewed as a subgroup of $\text{Gal}(H_\infty/F)$. Then

$$[K:F] = \frac{h(F)}{2^n m}$$

By construction, the places ∞ and P_c , $c \in S$, split completely in the extension K/F, and this yields the desired lower bound for N(K). Furthermore, K/F is an unramified extension, and so the formula for g(K) follows immediately from the Hurwitz genus formula.

REMARK. It is obvious that there is an analog of Theorem 1 with base fields F that are general Kummer extensions of $\mathbb{F}_q(x)$ with arbitrary q, but Theorem 1 is of sufficient generality for our purposes.

From now on we take q = 5. In Table 1 we list examples of global function fields K/\mathbb{F}_5 with many rational places that are obtained from Theorem 1. The table contains the following data: the value of the genus g(K), the value or a lower bound for the number N(K) of rational places, the values of n and m, the polynomial f(x), and the value of the divisor class number h(F) of $F = \mathbb{F}_5(x, y)$ with $y^2 = f(x)$. In the cases where the exact value of N(K) is indicated, it can be obtained from Theorem 1 or by other simple arguments. The divisor class numbers h(F) have been calculated by the standard method based on the results in [16, Section V.1] and with the help of the software package Mathematica. Table 1 contains entries for g(K) =15, 19, and 21 that improve on earlier examples in [8].

$\overline{g(K)}$	N(K)	n	m	f(x)	h(F)
15	= 35	4	1	$x(x+1)(x+2)(x-1)(x^3+x^2+x-2)$	112
19	≥ 45	4	1	$x(x+1)(x+2)(x-2)(x^3-2x^2+2x-2)$	144
21	= 50	4	1	$(x^5 - x)(x^2 - x + 1)$	160
23	= 55	4	1	$x(x+1)(x+2)(x-1)(x^3+x^2-2x+1)$	176
24	= 46	1	1	$x(x^4 + x^3 + 2x^2 + x - 2)$	46
27	= 52	1	1	$x(x-1)(x^3 - x + 2)$	52
28	= 54	5	2	$(x^5 - x)(x^2 - 2x - 2)(x^2 - 2x - 1)$	576
29	≥ 56	3	1	$x(x+1)(x+2)(x-1)(x^3+x^2+x-2)$	112
30	= 58	1	1	$x(x^4 + x^2 + 2)$	58
32	= 62	1	1	$x(x^4 + 2x^3 - 2x^2 - 2x + 2)$	62

Table 1

Table 1 (cont.)

g(K)	N(K)	n	m	f(x)	h(F)
35	≥ 68	3	1	$x(x+1)(x+2)(x^4+x^2-2x-2)$	136
37	= 72	3	1	$x(x+1)(x+2)(x^4 - 2x - 1)$	144
39	= 76	3	1	$x(x+1)(x+2)(x^4+x^3-2x^2+2x+1)$	152
40	= 65	4	3	$x(x+1)(x+2)(x-2)(x^5+2x^2-2x+1)$	624
41	= 80	3	1	$x(x+1)(x+2)(x^4+x-1)$	160
43	= 84	3	1	$x(x+1)(x+2)(x^4 - 2x^2 - 2)$	168
45	= 88	3	1	$x(x+1)(x+2)(x^4+2x^2+2x+1)$	176
46	≥ 75	4	4	$x(x+1)(x+2)(x-2)(x^3 - x^2 - x + 2)(x^2 + x + 2)$	960
47	= 92	3	1	$x(x+1)(x+2)(x^4 - 2x^2 - x - 2)$	184
49	= 96	3	1	$x(x+1)(x+2)(x^4+x^3+2x^2+2)$	192
52	= 102	5	1	$(x^5 - x)(x^4 + x^2 + 2x + 2)$	544
53	= 104	3	1	$x(x+1)(x+2)(x^{2}+x+2)(x^{2}-x+1)$	208
55	= 108	3	1	$x(x+1)(x+2)(x^4+x^2+2x+2)$	216
57	= 112	3	1	$x(x+1)(x+2)(x^4 - 2x^2 + x + 1)$	224
58	≥ 95	4	3	$x(x+1)(x+2)(x-2)(x^{5}+2x^{2}+1)$	912
61	= 120	5	1	$(x^5 - x)(x^4 + x^2 + 2)$	640
64	≥ 105	4	2	$x(x+1)(x+2)(x-2)(x^{2}+x+1)(x^{3}-x^{2}-2)$	672
67	= 132	3	1	$x(x+1)(x+2)(x^4+x^3+x-2)$	264
70	≥ 115	4	2	$x(x+1)(x+2)(x-2)(x^{2}+2x-1)(x^{3}-2x^{2}-1)$	736
76	= 150	5	1	$(x^5 - x)(x^4 + 2)$	800
85	= 140	4	1	$x(x+1)(x+2)(x-2)(x^3-x^2-1)(x^2+x+1)$	448
91	≥ 150	4	2	$x(x+1)(x+2)(x-2)(x^3-x^2-x+2)(x^2+x+2)$	960
94	= 155	4	1	$x(x+1)(x+2)(x-2)(x^{5}+x^{2}-2x+2)$	496
97	= 160	4	1	$x(x+1)(x+2)(x-2)(x^{2}+x+2)(x^{3}-x^{2}-x-1)$	512
100	= 165	4	1	$x(x+1)(x+2)(x-2)(x^{5}+x^{2}+2x-1)$	528
103	≥ 170	4	1	$(x^5 - x)(x^4 + x^2 + 2x + 2)$	544
109	≥ 180	4	1	$(x^5 - x)(x^2 - 2x - 2)(x^2 - 2x - 1)$	576
118	= 195	4	1	$x(x+1)(x+2)(x-2)(x^{5}+2x^{2}-2x+1)$	624
121	= 200	4	1	$(x^5 - x)(x^4 + x^2 + 2)$	640
127	= 210	4	1	$x(x+1)(x+2)(x-2)(x^{2}+x+1)(x^{3}-x^{2}-2)$	672
139	= 230	4	1	$x(x+1)(x+2)(x-2)(x^{2}+2x-1)(x^{3}-2x^{2}-1)$	736
151	= 250	4	1	$(x^5 - x)(x^4 + 2)$	800
172	= 285	4	1	$x(x+1)(x+2)(x-2)(x^5+2x^2+1)$	912
181	= 300	4	1	$x(x+1)(x+2)(x-2)(x^3-x^2-x+2)(x^2+x+2)$	960
199	= 330	4	1	$x(x+1)(x+2)(x-2)(x^5+x^2-x-2)$	1056

4. Further examples. In this section we construct examples of global function fields K/\mathbb{F}_5 with many rational places that are obtained by principles other than Theorem 1. In particular, we close all gaps in Table 1 in the range $23 \leq g \leq 50$. We summarize all our examples from [6], [8], and the present paper in Table 2. We list the value g of the genus, a lower bound N for $N_5(g)$, and a reference to either [6], [8], Table 1 of the present paper (abbreviated "Tb. 1"), or one of the following examples ("Ex.n" stands for Example n).

\mathbf{Ta}	ble	2

	_	g	1	2	3	4	5 - 6	7	8	9	10 1	1 1	12 13	8 14	15	16	
		N	10	12	16	18 2	20 21	1 22	22	26	27 3	23	30 36	5 39	35	40	
	F	Ref	[6]	[6]	[6]	[6] [6] [6]] [8]	[6]	[8]	[8] [8	3] [6] [8]	[8]	Tb.1	[8]	
	_																
g	17	18	19	20) 21	22	23	24	25	2	6 2	7	28	29	30	31	32
N	42	32	45	30	50	51	55	46	52	4	5 5	2	54	56	58	72	62
Ref	[8]	[8]	Tb.	1 [8]] Tb.	1 [8]	Tb.1	Tb.1	Ex.	l Ex	.2 TI	o.1	Tb.1	Tb.1	Tb.1	Ex.3	Tb.
g	33	3	4	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Ν	64	7	6	68	64	72	78	76	65	80	60	84	60	88	75	92	82
Ref	Ex.4	4 E>	с.5 Т	ГЬ.1	Ex.6	Tb.1	Ex.7	Tb.1	Tb.1	Tb.1	Ex.8	Tb	.1 Ex.	9 Tb.	$1\mathrm{Tb.1}$	Tb.1	Ex.

g $120 \ 105 \ 132 \ 115 \ 150 \ 140$ $102 \ 104 \ 108$ 112 95 N ${\rm Ref\ Tb.1\ Ex.11\ Ex.12\ Tb.1\ Tb.1\$

g170 180 N

EXAMPLE 1. g(K) = 25, $N(K) \ge 52$. Consider the function field $F = \mathbb{F}_5(x, y)$ with

$$y^2 = x(x-1)(x-2)$$

Then g(F) = 1, h(F) = 8, and the place $x^2 - 2x - 2$ is inert in $F/\mathbb{F}_5(x)$. Let Q be the unique place of F lying over $x^2 - 2x - 2$. Then $\deg(Q) = 4$. We distinguish the rational place ∞ of F which is the unique pole of x, and we denote by A the ring of elements of F that are regular outside ∞ . Let E_Q/F be the narrow ray class extension of F with modulus Q. Then

$$[E_Q:F] = |\operatorname{Pic}_Q(A)| = h(F)\Phi_5(Q) = 8 \cdot 624$$

For $c = 0, 1, 2 \in \mathbb{F}_5$ we have the principal divisors $(x - c) = 2P_c - 2\infty$ in F. Let J be the subgroup of $\operatorname{Pic}_Q(A)$ generated by the residue classes of P_0, P_1, P_2 modulo $\mathcal{P}_Q(A)$. Since $P_c^2 = (x - c)A$ for c = 0, 1, 2 and the residue class of x modulo $x^2 - 2x - 2$ generates the group $(\mathbb{F}_5[x]/(x^2 - 2x - 2))^*$ of order 24, the order of J divides $24 \cdot 8 = 192$. Let G be a subgroup of $\operatorname{Pic}_Q(A)$ with |G| = 384 and $G \supseteq J$. Now let K be the subfield of E_Q/F fixed by G. Then

$$[K:F] = \frac{8 \cdot 624}{384} = 13.$$

By considering the Artin symbols, we see that P_0, P_1, P_2 split completely in K/F, and ∞ also splits completely in K/F, hence $N(K) \ge 52$. The only ramified place in K/F is Q, and it is totally and tamely ramified. Thus, the Hurwitz genus formula yields $2g(K) - 2 = (13 - 1) \cdot 4$, that is, g(K) = 25.

EXAMPLE 2. g(K) = 26, $N(K) \ge 45$. Consider the function field $F = \mathbb{F}_5(x, y)$ with

$$y^2 = x^5 - x + 1.$$

The place $x^5 - x + 1$ is totally ramified in $F/\mathbb{F}_5(x)$. Let Q be the unique place of F lying over $x^5 - x + 1$. Then $\deg(Q) = 5$. We distinguish the rational place ∞ of F which is the unique pole of x, and we denote by A the ring of elements of F that are regular outside ∞ . Let E_M/F be the narrow ray class extension of F with modulus $M = Q^2$. Then the 5-rank of the group $\operatorname{Pic}_M(A) \simeq \operatorname{Gal}(E_M/F)$ is at least 5 by the proof of [7, Theorem 3]. For $c \in \mathbb{F}_5$ we have the principal divisors $(x - c) = P_c + P'_c - 2\infty$ in F, with different rational places P_c and P'_c . The subgroup J of $\operatorname{Pic}_M(A)$ generated by the residue classes of P_0, P_1, P_2, P_3 modulo $\mathcal{P}_M(A)$ has 5-rank at most 4. Thus, there exists a subgroup G of $\operatorname{Pic}_M(A)$ with $[\operatorname{Pic}_M(A) : G] = 5$ and $G \supseteq J$.

Now let K be the subfield of E_M/F fixed by G. Then [K:F] = 5. Since for each $c \in \mathbb{F}_5$ we have $P_c P'_c = (x - c)A$ and

$$(x-c)^{5^{5}-1} \equiv 1 \mod M,$$

we see that G contains also the residue classes of P'_0, P'_1, P'_2, P'_3 modulo $\mathcal{P}_M(A)$. Therefore the places $P_0, P'_0, P_1, P'_1, P_2, P'_2, P_3, P'_3$, and ∞ split completely in K/F, hence $N(K) \geq 45$. The only ramified place in K/F is Q, and it is totally ramified. By [11, Theorem 1 and Lemma 3] the different exponent of Q in K/F is 8. Using also g(F) = 2, we conclude from the Hurwitz genus formula that $2g(K) - 2 = 5 \cdot (4-2) + 8 \cdot 5$, that is, g(K) = 26.

EXAMPLE 3. g(K) = 31, N(K) = 72. Let L/\mathbb{F}_5 be the function field in [6, Example 5.4] with g(L) = 4 and N(L) = 18. Then $[L : \mathbb{F}_5(x)] = 9$ and all rational places of L lie over the zero of x or the pole of x in $\mathbb{F}_5(x)$. The only ramified places in $L/\mathbb{F}_5(x)$ are those lying over $x^2 + 2$ or $x^2 - 2$, each with ramification index 3.

Now let K = L(y) with

$$y^4 = (x^2 + 2)(x^2 - 2).$$

Then all rational places of L split completely in the Kummer extension K/L, and so N(K) = 72. The only ramified places in K/L are those lying over $x^2 + 2$ or $x^2 - 2$, and g(K) = 31 follows from the genus formula for Kummer extensions (see [16, Corollary III.7.4]).

EXAMPLE 4.
$$g(K) = 33, N(K) = 64, K = \mathbb{F}_5(x, y_1, y_2)$$
 with
 $y_1^4 = 2 - x^4, \quad y_2^4 = 2(x^4 + 2).$

The places x - 1, x - 2, x + 1, and x + 2 split completely in $K/\mathbb{F}_5(x)$, thus N(K) = 64. The field $L = \mathbb{F}_5(x, y_1)$ is as in [6, Example 5.3], so g(L) = 3. The only ramified places in the Kummer extension K/L are those lying over $x^4 + 2$, and g(K) = 33 follows from the genus formula for Kummer extensions.

EXAMPLE 5. g(K) = 34, N(K) = 76. Consider the cyclotomic function field E_M with modulus $M = x^5 \in \mathbb{F}_5[x]$. With the rational places $P_1 = x + 1$ and $P_2 = x - 1$ of $\mathbb{F}_5(x)$, let K be the subfield of the extension $E_M/\mathbb{F}_5(x)$ constructed in [19, Theorem 1] (see also [18, Théorème 1]). Then in the notation of [19, Theorem 1] we have

$$s = s_5(2,5) = \lceil \log_5 5 \rceil + \lceil \log_5 \frac{5}{2} \rceil = 2$$

and so $[K : \mathbb{F}_5(x)] = 25$ and $N(K) \ge 25 \cdot 3 + 1 = 76$. To calculate g(K), we proceed as in [19] and consider

$$S = \{ f \in \mathbb{F}_5[x] : f(x) = (x+1)^h (x-1)^{2j}, \ h, j = 0, 1, \ldots \}$$

and

$$S_r = \{ f \in S : x^r \parallel (f(x) - 1) \}$$
 for $r = 1, 2, ...$

We have to determine the three least values of r, called $i_1 < i_2 < i_3$, for which S_r is nonempty. It is trivial that S_1 and S_5 are nonempty. From $(x+1)^2(x-1)^2 = x^4 - 2x^2 + 1$ we conclude that S_2 is nonempty. Put

$$S(5) = \{ \bar{f} \in (\mathbb{F}_5[x]/(x^5))^* : f \in S \},\$$

where \overline{f} is the residue class of f modulo x^5 . Then S(5) is generated by $\overline{x+1}$ and $\overline{x^2-2x+1}$, and so $|S(5)| \leq 25$. If we had $i_3 < 5$, then $|S(5)| \geq 125$ by [19, Lemma 3], a contradiction. Therefore $i_1 = 1$, $i_2 = 2$, $i_3 = 5$. In [19, Theorem 1] we thus have $j_1 = 1$ and $j_2 = 2$, and this yields

$$g(K) = 1 + \frac{1}{2} \cdot 25 \cdot 3 - \frac{1}{2} \left(1 + 1 + \frac{25 - 1}{4} + 1 \right) = 34.$$

From $N_5(34) \leq 83$ it follows that N(K) = 76.

284

EXAMPLE 6. g(K) = 36, N(K) = 64, $K = \mathbb{F}_5(x, y_1, y_2, y_3)$ with

$$y_1^2 = x(x^2 - 2), \quad y_2^5 - y_2 = \frac{x^4 - 1}{y_1 - 1}, \quad y_3^2 = x^3 - 2x^2 - x - 2.$$

The field $L = \mathbb{F}_5(x, y_1, y_2)$ is as in [8, Example 4], so g(L) = 11 and N(L) = 32. All rational places of L split completely in the Kummer extension K/L, hence N(K) = 64. The only ramified places in K/L are those lying over $x^3 - 2x^2 - x - 2$, and g(K) = 36 follows from the genus formula for Kummer extensions.

EXAMPLE 7. g(K) = 38, N(K) = 78. Consider the cyclotomic function field E_Q with $Q = x^4 - 2 \in \mathbb{F}_5[x]$. Let G be the cyclic subgroup of $(\mathbb{F}_5[x]/(x^4-2))^* \simeq \operatorname{Gal}(E_Q/\mathbb{F}_5(x))$ generated by the residue class of x modulo $x^4 - 2$. Then |G| = 16. Now let K be the subfield of $E_Q/\mathbb{F}_5(x)$ fixed by G. Then $[K : \mathbb{F}_5(x)] = 39$. The zero of x and the pole of x in $\mathbb{F}_5(x)$ split completely in $K/\mathbb{F}_5(x)$, thus $N(K) \ge 78$. The only ramified place in $K/\mathbb{F}_5(x)$ is Q, and it is totally and tamely ramified. Therefore the Hurwitz genus formula yields $2g(K) - 2 = 39 \cdot (-2) + (39 - 1) \cdot 4$, that is, g(K) = 38. From $N_5(38) \le 91$ it follows that N(K) = 78.

EXAMPLE 8.
$$g(K) = 42, N(K) = 60, K = \mathbb{F}_5(x, y_1, y_2)$$
 with
 $y_1^2 = (x^2 + 2)(x^4 - 2x^2 - 2), \quad y_2^5 - y_2 = \frac{x^5 - x}{(x^2 + 2)(x^4 - 2x^2 - 2)}.$

The field $L = \mathbb{F}_5(x, y_1)$ is as in [6, Example 5.2], so g(L) = 2 and N(L) = 12. All rational places of L split completely in the Artin–Schreier extension K/L, hence N(K) = 60. The only ramified places in K/L are the unique place of L of degree 2 lying over $x^2 + 2$ and the unique place of L of degree 4 lying over $x^4 - 2x^2 - 2$, thus g(K) = 42 follows from the genus formula for Artin–Schreier extensions (see [16, Proposition III.7.8]).

EXAMPLE 9. $g(K) = 44, N(K) = 60, K = \mathbb{F}_5(x, y_1, y_2)$ with

$$y_1^5 - y_1 = \frac{x^5 - x}{(x^2 + 2)^3}, \quad y_2^2 = (x^2 + 2)(x^8 - x^4 - x^2 - 2).$$

The field $L = \mathbb{F}_5(x, y_1)$ is as in [6, Example 5.12A], so g(L) = 12 and N(L) = 30. All rational places of L split completely in the Kummer extension K/L, hence N(K) = 60. The only ramified places in K/L are the unique place of L of degree 2 lying over $x^2 + 2$ and the places of L lying over $x^8 - x^4 - x^2 - 2$, thus g(K) = 44 follows from the genus formula for Kummer extensions.

EXAMPLE 10. g(K) = 48, N(K) = 82, $K = \mathbb{F}_5(x, y_1, y_2, y_3)$ with

$$y_1^2 = x(x^2 - 2), \quad y_2^5 - y_2 = \frac{x^4 - 1}{y_1}, \quad y_3^2 = x^3 - 2x^2 - x - 2.$$

The field $L = \mathbb{F}_5(x, y_1, y_2)$ is as in [8, Example 9], so g(L) = 17 and N(L) = 42. All rational places of L, except the unique place of L lying over x, split completely in the Kummer extension K/L, hence N(K) = 82. The only ramified places in K/L are those lying over $x^3 - 2x^2 - x - 2$, and g(K) = 48 follows from the genus formula for Kummer extensions.

EXAMPLE 11. g(K) = 50, N(K) = 70. Let L/\mathbb{F}_5 be the function field in Table 1 with g(L) = 15 and N(L) = 35. By the construction in the proof of Theorem 1 we have $[L : \mathbb{F}_5(x)] = 14$, and the rational places of L lie over x, x + 1, x + 2, x - 1 or the pole of x, with each rational place of L having ramification index 2 over $\mathbb{F}_5(x)$. Now let K = L(z) with

$$z^2 = x^3 + 2x^2 - x - 1.$$

Then all rational places of L split completely in the Kummer extension K/L, hence N(K) = 70. The only ramified places in K/L are those lying over $x^3 + 2x^2 - x - 1$, and g(K) = 50 follows from the genus formula for Kummer extensions.

EXAMPLE 12. g(K) = 51, N(K) = 104. Let E_Q/F be the same narrow ray class extension as in Example 1 and let J be the same subgroup of $\operatorname{Pic}_Q(A)$ as in Example 1. Let G be a subgroup of $\operatorname{Pic}_Q(A)$ with |G| =192 and $G \supseteq J$. Now let K be the subfield of E_Q/F fixed by G. Then [K:F] = 26. As in Example 1 we see that the places P_0, P_1, P_2 , and ∞ split completely in K/F, hence $N(K) \ge 104$. The only ramified place in K/Fis Q, and it is totally and tamely ramified. Thus, the Hurwitz genus formula yields $2g(K) - 2 = (26 - 1) \cdot 4$, that is, g(K) = 51. From $N_5(51) \le 115$ it follows that N(K) = 104.

EXAMPLE 13. g(K) = 56, N(K) = 101. Consider the cyclotomic function field E_M with modulus $M = x^7 \in \mathbb{F}_5[x]$. With the rational places $P_1 = x + 1, P_2 = x - 1$, and $P_3 = x + 2$, let K be the subfield of the extension $E_M/\mathbb{F}_5(x)$ constructed in [19, Theorem 1] (see also [18, Théorème 1]). Then in the notation of [19, Theorem 1] we have

$$s = s_5(3,7) = \lceil \log_5 7 \rceil + \lceil \log_5 \frac{7}{2} \rceil + \lceil \log_5 \frac{7}{3} \rceil = 4,$$

and so $[K : \mathbb{F}_5(x)] = 25$ and $N(K) \ge 25 \cdot 4 + 1 = 101$. To calculate g(K), we proceed as in [19] and consider

$$S = \{ f \in \mathbb{F}_5[x] : f(0) = 1, \ f(x) = (x+1)^h (x-1)^j (x+2)^k, \ h, j, k = 0, 1, \ldots \}$$

and

and

$$S_r = \{ f \in S : x^r \| (f(x) - 1) \}$$
 for $r = 1, 2, ...$

We have to obtain information on the five least values of r, called $i_1 < i_2 < i_3 < i_4 < i_5$, for which S_r is nonempty. It is trivial that S_1 and S_5 are nonempty. From $(x + 1)^2(x - 1)^2 = x^4 - 2x^2 + 1$ we conclude that S_2 is

nonempty, and from

$$(x+1)(x-1)^8(x+2)^4 = x^{13} + \ldots + 2x^3 + 1$$

we conclude that S_3 is nonempty. Therefore $i_1 = 1, i_2 = 2, i_3 = 3$. Put

 $S(5) = \{ \bar{f} \in (\mathbb{F}_5[x]/(x^5))^* : f \in S \},\$

where \overline{f} is the residue class of f modulo x^5 . Then S(5) is generated by $\overline{1+x}$, $\overline{1-x}$, and $\overline{1-2x}$, and so $|S(5)| \leq 5^3$. If we had $i_4 = 4$, then $|S(5)| = 5^4$ by [19, Lemma 3], a contradiction. Therefore $i_4 = 5$. Put

$$S(7) = \{ \bar{f} \in (\mathbb{F}_5[x]/(x^7))^* : f \in S \},\$$

where $\overline{\overline{f}}$ is the residue class of f modulo x^7 . Then S(7) is generated by $\overline{1+x}$, $\overline{1-x}$, and $\overline{1-2x}$. Since S(7) is contained in the 5-Sylow subgroup of $(\mathbb{F}_5[x]/(x^7))^*$, it follows from [19, Lemma 4(ii)] that $|S(7)| \leq 5^s = 5^4$. If we had $i_5 = 6$, then $|S(7)| = 5^5$ by [19, Lemma 3], a contradiction. Therefore $i_5 \geq 7$. In [19, Theorem 1] we thus have $j_1 = 1$, $j_2 = 2$, $j_3 = 3$, $j_4 = 5$, and this yields

$$g(K) = 1 + \frac{1}{2} \cdot 25 \cdot 5 - \frac{1}{2} \left(1 + 1 + 1 + 5 + \frac{25 - 1}{4} + 1 \right) = 56.$$

From $N_5(56) \leq 125$ it follows that N(K) = 101.

References

- A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563.
- [2] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996.
- D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77–91.
- [4] —, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields,
 D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1–32.
- [5] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, Cambridge, 1996, 269–296.
- [6] —, —, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59–76.
- [7] —, —, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, ibid. 81 (1997), 81–100.
- [8] —, —, Global function fields with many rational places over the quinary field, Demonstratio Math. 30 (1997), 919–930.
- [9] —, —, The algebraic-geometry approach to low-discrepancy sequences, in: Monte Carlo and Quasi-Monte Carlo Methods 1996, H. Niederreiter et al. (eds.), Lecture Notes in Statist. 127, Springer, New York, 1998, 139–160.
- [10] —, —, Algebraic curves over finite fields with many rational points, in: Number Theory, K. Győry, A. Pethő, and V. T. Sós (eds.), de Gruyter, Berlin, 1998, 423–443.

- [11] H. Niederreiter and C. P. Xing, Global function fields with many rational places and their applications, in: Proc. Finite Fields Conf. (Waterloo, 1997), Contemp. Math., Amer. Math. Soc., Providence, to appear.
- [12] —, —, Nets, (t, s)-sequences, and algebraic geometry, in: Pseudo- and Quasi-Random Point Sets, P. Hellekalek and G. Larcher (eds.), Lecture Notes in Statist., Springer, New York, to appear.
- [13] O. Pretzel, Codes and Algebraic Curves, Oxford Univ. Press, Oxford, 1998.
- M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365–378.
- [15] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397–402.
- [16] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
- [17] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry, F. Catanese (ed.), Cambridge Univ. Press, Cambridge, 1997, 169–189.
- [18] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654.
- [19] —, —, Drinfeld modules of rank 1 and algebraic curves with many rational points, Monatsh. Math., to appear.

Institut für Informationsverarbeitung Österreichische Akademie der Wissenschaften Sonnenfelsgasse 19 A-1010 Wien, Austria E-mail: niederreiter@oeaw.ac.at Department of Information Systems and Computer Science The National University of Singapore Lower Kent Ridge Road Singapore 119260 E-mail: xingcp@comp.nus.edu.sg

Received on 22.6.1998

(3412)