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1. Introduction. Denote by N the set of all positive integers and if a
subset A ⊂ N is given, define the ratio set by

R(A) = {a/b : a, b ∈ A}.
The lower and upper asymptotic density of A, denoted by d(A) and d(A)
respectively, are defined as

d(A) = lim inf
x→∞

A(x)
x

, d(A) = lim sup
x→∞

A(x)
x

,

where A(x) = #{a ≤ x : a ∈ A}.
In the present paper we are concerned with certain relations between the

asymptotic densities of a set A as well as with density of R(A) in [0,∞).
T. Šalát [6] showed that d(A) = d(A) > 0 or d(A) = 1 implies that R(A)
is everywhere dense in [0,∞) and for every sufficiently small ε > 0 there
exists a subset A ⊂ N such that d(A) = 1 − ε and R(A) is not everywhere
dense in [0,∞). He gave an example of A ⊂ N for which d(A) = 1/4 and
R(A) ∩ (5/4, 8/5) = ∅.

We prove that 1/2 is the lower bound of γ’s for which d(A) ≥ γ implies
that R(A) is dense in [0,∞) (Theorem 1). The proof is based on the estimate

d(A) ≤ α

β
min(1− d(A), d(A))

where the interval (α, β) ⊂ [0,∞) is disjoint from R(A) (Theorem 2). To
complete our proof we construct an A ⊂ N for which the complement of the
closure of R(A) is formed by infinitely many pairwise disjoint open intervals
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(αn, βn) and d(A)→ 1/2− 0 as a limit over some parameters (Example 1).
On the other hand, we prove that for every given upper and lower asymptotic
density there exists an A ⊂ N possessing these densities and having R(A)
everywhere dense (Theorem 3). As an application we give a new class of sets
A ⊂ N having dense ratio set R(A) (Theorem 4). We also prove that the
complement of the set R(A)l of all limit points of R(A) is either empty or
contains infinitely many open intervals assuming d(A) > 0 (Theorem 5). We
generalize our results for any open set X disjoint from the set R(A)d of all
accumulation points of R(A) (Theorem 6). The paper concludes with some
remarks.

Throughout the paper, without loss of generality, we will use only inter-
vals (α, β) contained in [0, 1].

2. Main results

Theorem 1. For every A ⊂ N, if the lower asymptotic density d(A) ≥
1/2 then the ratio set R(A) is everywhere dense in [0,∞). Conversely , if
0 ≤ γ < 1/2 then there exists an A ⊂ N such that d(A) = γ and R(A) is
not everywhere dense in [0,∞).

The proof immediately follows from the following theorem and example.

Theorem 2. Let A ⊂ N and the interval (α, β), 0 ≤ α < β ≤ 1, be such
that (α, β) ∩R(A) = ∅. Then

(1) d(A) ≤ α

β
min(1− d(A), d(A))

and

(2) d(A) ≤ 1− (β − α).

P r o o f o f (1). Let A ⊂ N be listed in strictly increasing order as a1 <
a2 < . . . < an < . . . If (α, β) ∩R(A) = ∅, then the intervals

(αan, βan), n = 1, 2, . . . ,

cannot intersect A but they may have mutually nonempty intersections. We
can select pairwise disjoint subintervals

(3) (αa[θn], αa[θn] + α), (αa[θn]+1, αa[θn]+1 + α), . . . ,

(αan−1, αan−1 + α), (αan, βan)

for some 0 ≤ θ ≤ 1 (here we put a[θn] = 0 if [θn] = 0). Define B = N−A and
B(x) = #{b ≤ x : b ∈ B}. Counting the number of integer points belonging
to (3) we obtain

B(βan) ≥ (n− [θn])(α− 1) + ((β − α)an − 1) +B(αa[θn])

for all sufficiently large n. To eliminate 1 in α− 1 we replace n with nk and
α with kα. Then (3) transforms into pairwise disjoint subintervals of the
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form

(4) (αa[θn]k, αa[θn]k + kα), (αa([θn]+1)k, αa([θn]+1)k + kα), . . . ,

(αa(n−1)k, αa(n−1)k + kα), (αank, βank).

Thus, we have

B(βank)
βank

≥ (n− [θn])(kα− 1)
βank

+
((β − α)ank − 1)

βank
+
B(αa[θn]k)
αa[θn]k

· α
β
· a[θn]k

ank
.

To compute the lim sup of the left and right hand sides, respectively, use
the fact that

(i) lim supn→∞B(βank)/(βank) ≤ d(B) = 1− d(A),
(ii) lim supn→∞ nk/ank = d(A),

(iii) lim infn→∞B(αa[θn]k)/(αa[θn]k) ≥ d(B) = 1− d(A), and

(iv) by selecting indices n for which limn→∞ nk/ank = d(A) we have
(assuming d(A) > 0)

lim inf
n→∞

a[θn]k

ank
= lim inf

n→∞
a[θn]k

[θn]k
lim
n→∞

[θn]k
ank

≥ 1

d(A)
d(A)θ.

Thus, letting k →∞ we get

1− d(A) ≥ (1− θ)α
β
d(A) +

β − α
β

+ (1− d(A))
α

β
θ.

Computing the maximum of the right hand side for 0 ≤ θ ≤ 1 yields

1− d(A) ≥ β − α
β

+
α

β
max(d(A), 1− d(A)),

which justifies (1).

P r o o f o f (2). Every infinite set A ⊂ N with infinite complement N−A
can be expressed as the set of the integer points lying in the intervals

(5) [b1, c1], [b2, c2], . . . , [bn, cn], . . . ,

whose endpoints form two integer sequences ordered as

b1 ≤ c1 < b2 ≤ c2 < . . . < bn ≤ cn < . . .

Clearly

d(A) = lim inf
n→∞

1
bn

n−1∑

i=1

(ci − bi + 1),(6)

d(A) = lim sup
n→∞

1
cn

n∑

i=1

(ci − bi + 1).(7)
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The points of A∩ [1, cn] divided by i, i ∈ [bn, cn], form a subset Rn ⊂ R(A);
we obtain the intervals[

b1
i
,
c1
i

]
,

[
b2
i
,
c2
i

]
, . . . ,

[
bn−1

i
,
cn−1

i

]
,

[
bn
i
,
cn
i

]

which have the following property: the distance of any two neighbouring
points of Rn lying in [bn−k/i, cn−k/i] is less than 1/bn and the same holds
for the union

cn⋃

i=bn

[
bn−k
i

,
cn−k
i

]
=
[
bn−k
cn

,
cn−k
bn

]
.

Thus, for sufficiently large n, every interval (α, β) ⊂ [0, 1] satisfying (α, β)∩
R(A) = ∅ must lie in the complement of [bn−k/cn, cn−k/bn], k = 0, 1, . . . ,
n− 1, which is formed by the pairwise disjoint intervals

(8)
(
cn−k
bn

,
bn−k+1

cn

)
, k = 1, . . . , n− 1,

some of which may be empty. Hence, a necessary condition for (α, β) ∩
R(A) = ∅ is the existence of an integer sequence kn, kn < n, such that

(9) (α, β) ⊂
(
cn−kn
bn

,
bn−kn+1

cn

)

for all sufficiently large n. This also gives
bn−kn+1

cn
− cn−kn

cn
≥ β − α.

Now we can express the upper asymptotic density as

(10) d(A) = lim sup
n→∞

(
cn − b1
cn

+
n

cn
−
(
b2 − c1
cn

+
b3 − c2
cn

+. . .+
bn − cn−1

cn

))

whence

(11) d(A)− d(C) ≤ 1− (β − α),

where C is the range of cn.
For sufficiency of (9) we need the set R(A)l of all limit points of R(A)

(cf. Section 4). By the above reasoning we see that (α, β)∩R(A)l = ∅ if and
only if there exists kn < n satisfying (9) for all sufficiently large n. Thus,
inequality (11) holds for (α, β) satisfying (α, β) ∩R(A)l = ∅ as well.

Now, for a positive integer k, transform

[bn, cn]→ [kbn, kcn + k − 1]

and denote by Ak the set of all integer points lying in [kbn, kcn + k − 1],
n = 1, 2, . . . Similarly, Ck is the set of all kcn + k − 1. Evidently

d(Ak) = d(A), d(Ck) = d(C)/k, R(Ak)l = R(A)l,

which gives d(A)− d(C)/k ≤ 1− (β − α) and (2) follows.
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Using (2) and the part d(A) ≤ (α/β)(1− d(A)) of (1) we have

Corollary. For every subset A ⊂ N, if d(A) + d(A) ≥ 1 then R(A) is
everywhere dense in [0,∞).

To complete our proof of Theorem 1 consider

Example 1. Let γ, δ and a be given positive real numbers satisfying
γ < δ and a > 1. Let A be the set of all integer points lying in the intervals

(γ, δ), (γa, δa), (γa2, δa2), . . . , (γan, δan), . . .

For this A we see from (5) of A that bn = [γan] + 1, cn = [δan] and in
order that cn < bn+1 we need δ/γ < a. In this case, for the intervals in (8)
we have (

δ

γak
,

γ

δak−1

)
⊂
(
cn−k
bn

,
bn−k+1

cn

)
, k = 1, . . . , n− 1;

further, cn−k/bn → δ/(γak), bn−k+1/cn → γ/(δak−1) as n → ∞. Conse-
quently, the closure of R(A) is R(A)l. Thus, [0, 1] − R(A) =

⋃∞
i=1(αi, βi),

where (αi, βi) = (α1/a
i−1, β1/a

i−1) and

(α1, β1) =
(
δ

γa
,
γ

δ

)
.

This implies that

[0, 1]−R(A) 6= ∅ ⇔ δ/γ <
√
a.

By (6) and (7) we have

d(A) =
δ − γ
γ
· 1
a− 1

, d(A) =
δ − γ
δ
· a

a− 1
.

We can also see that for such A the ratio set R(A) is everywhere dense in
[0,∞) if and only if d(A) + d(A) ≥ 1.

Now, if δ/γ → √a then d(A) → 1/(
√
a+ 1) and if

√
a → 1 + 0 then

d(A)→ 1/2− 0. This completes the proof of Theorem 1.
Note that since d(A)/((α1/β1)d(A)) → 1 as γ/δ → 1 and d(A)/(1 −

(β1 − α1))→ 1 as a→∞, we cannot extend (1) and (2) to

d(A) ≤ c(α/β) min(1− d(A), d(A)) and d(A) ≤ c(1− (β − α))

for some positive constant c < 1.

In the sequel we demonstrate that (1) and (2) are necessary but not
sufficient conditions for (α, β) ∩R(A) = ∅.

Theorem 3. For every pair (γ, γ′) satisfying 0 ≤ γ ≤ γ′ ≤ 1 there
exists an A ⊂ N such that d(A) = γ, d(A) = γ′ and the ratio set R(A) is
everywhere dense in [0,∞).
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P r o o f. For any infinite set B ⊂ N and λ ≥ 1 define [λB] as

[λB] = {[λa] : a ∈ B}.
Clearly,

(i) either both R(B) and R([λB]) are everywhere dense in [0,∞) or
neither is;

(ii) d([λB]) = d(B)/λ, d([λB]) = d(B)/λ.

If γ′ > 0, put λ = 1/γ′ and then use the well-known fact that for
every pair (δ, δ′) satisfying 0 ≤ δ ≤ δ′ ≤ 1 there exists B ⊂ N such that
d(B) = δ and d(B) = δ′. Applying this for (δ, δ′) = (λγ, λγ′), bearing in
mind that λγ′ = 1 and using [6, Th. 1] we find that R(B) is dense in [0,∞).
Accordingly, A = [λB] is the desired set.

If γ′ = 0 we can put A = P, the set of all primes, since by A. Schinzel
(cf. [7, p. 155]) R(P) is everywhere dense in [0,∞).

3. Applications. Applying Theorem 1 we give some new classes of
A ⊂ N having dense R(A).

Theorem 4. Let f(t), t ≥ 1, be a strictly increasing continuous function
with inverse function f−1(t). Assume that

(i) limt→∞ f(t) =∞,
(ii) limn→∞(f−1(n+ 1)− f−1(n)) =∞,

(iii) limn→∞
f−1(n+x)−f−1(n)
f−1(n+1)−f−1(n) = ψ(x) exists for every x ∈ [0, 1],

and for x ∈ [0, 1] put

(iv) lim infn→∞ f−1(n)/f−1(n+ x) = χ(x),
(v) Ax = {n ∈ N : {f(n)} ∈ [0, x)}, where {f(n)} is the fractional part

of f(n).

If ψ(x) + 1 − χ(x)(1 − ψ(x)) ≥ 1, then R(Ax) is everywhere dense in
[0,∞).

P r o o f. Observe that d(Ax) and d(Ax) have the same meaning as the
lower and upper distribution functions of f(n) mod 1 (cf. [5, Def. 7.1, p. 53]),
hence the theorem follows from [5, Th. 7.7, p. 58] and our Corollary.

Applying Theorem 4 to f(t) = log t we deduce that x ≥ 1/2 implies the
density of R(Ax). Since in this case the set Ax has the form described in
Example 1 with γ = 1, δ = ex and a = e, it follows that x ≥ 1/2 is also
necessary for the density of R(Ax) to hold.

For another application of Theorem 1 we make use of [4]. Let a > 1 be
an integer and A consist of all A ⊂ N containing no 3-term progressions of
the form k, kq, kq2, where k ∈ N and q ∈ {a, a2, a3, a4}. It is proved in [4,
Ex. 2] that supA∈A d(A) ≥ (1 − a−1)(1 + a−1 + a−3 + a−4)(a9/(a9 − 1)),
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which, together with our Theorem 1, implies that R(A) is everywhere dense
in [0,∞) for some A ∈ A.

4. Complement of the limit points of the ratio set. As before,
assume that A ⊂ N is ordered into the sequence a1 < a2 < . . . and consider
the ratio set R(A) as a double sequence am/an, m,n = 1, 2, . . . We introduce
two further sets:

(i) R(A)l is the set of all limit points x = limi→∞ ami/ani of R(A).
(ii) R(A)d is the set of all accumulation points of R(A), i.e. the points

x which can be expressed as a limit x = limi→∞ ami/ani of a one-to-one
sequence ami/ani .

Clearly, R(A)l and R(A)d are closed. It is shown in [1] that for every
system of pairwise disjoint open intervals (αi, βi), i ∈ I, there exists A ⊂ N
such that [0, 1]−R(A)d =

⋃
i∈I(αi, βi) and the same proof applies to R(A)l.

To extend the above result of [1] we prove

Theorem 5. If d(A) > 0 and [0, 1]−R(A)l 6= ∅, then

[0, 1]−R(A)l =
∞⋃

i=1

(αi, βi),

where αi < βi and (αi, βi) ∩ (αj , βj) = ∅ for i 6= j.

P r o o f. We divide the proof into three steps.
1. Let γ > 0 be a limit point of the form

(12) γ = lim
n→∞

ag(n)/an,

where g(n) is a suitable integer sequence. Then

(13) (α, β) ∩R(A)l = ∅ ⇒ (γα, γβ) ∩R(A)l = ∅ = (α/γ, β/γ) ∩R(A)l.

Indeed, assuming γα < δ < γβ and

δ = lim
i→∞

ami/ani

we have
δ

γ
=

limi→∞ ami/ani
limi→∞ ag(ni)/ani

= lim
i→∞

ami
ag(ni)

,

which is a contradiction. Repeating (13) yields (γkα, γkβ) ∩ R(A)l = ∅ for
all k ∈ Z.

2. Using all points γ, δ, η, . . . of the form (12) we can define a group

G(A) = {γiδjηk . . . : i, j, k, . . . ∈ Z}.
Let [0, 1]−R(A)l =

⋃
i∈I(αi, βi). Applying (13) for t ∈ G(A)∩ [0, 1] and i ∈

I, we get some j, k ∈ I such that (tαi, tβi) ⊂ (αj , βj) and (t−1αj , t
−1βj) ⊂
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(αk, βk). This implies i = k and

(tαi, tβi) = (αj , βj).

For a fixed (αi0 , βi0), the intervals (tαi0 , tβi0), t ∈ G(A)∩(0, 1), are nonover-
lapping, which implies that I is infinite. Moreover, G(A) must be discrete
and thus cyclic.

3. Assuming d(A) > 0, we prove that G(A) ∩ (0, 1) is nonempty. Let
n/an > θ > 0 for all sufficiently large n. For any u, v satisfying 0 < u < v < θ
we have

a[un]

an
≥ [un]

an
> uθ,

a[vn]

an
≤ a[vn]

n
=
a[vn]

vn
v <

v

θ

for all sufficiently large n. Thus, we obtain

ai
an
∈
(
uθ,

v

θ

)
for i ∈ [[un], [vn]],

which implies the existence of t ∈ G(A) satisfying t ∈ [uθ, v/θ] ⊂ (0, 1).
Note that as the proof of (2) shows, t ∈ G(A) ∩ [0, 1] if and only if

there exists kn < n such that t ∈ [bn−kn/bn, cn−kn/cn] for all sufficiently
large n.

In Example 1 the group G(A) is generated by 1/a and the complement
of R(A)l has a simple structure. For general A the complement of R(A)l

may be more complicated.

Example 2. In this example we abbreviate (γa, δa) as (γ, δ)a. Assume
that

0 < γ1 < δ1 < γ2 < δ2 < aγ1 < aδ1 and a > 1

and let A be the set of all integer points lying in the pairwise disjoint open
intervals

(γ1, δ1), (γ2, δ2), (γ1, δ1)a, (γ2, δ2)a, . . . , (γ1, δ1)an, (γ2, δ2)an, (γ1, δ1)an+1, . . .

Then, in (5) for this A we get two types of intervals [bn, cn], which give
(asymptotically) two types of intervals in (8) and which form two sequences
of pairwise disjoint open intervals

I2a
i−1, I1a

i−1, i = 1, 2, . . . , and J2a
i−1, J1a

i−1, i = 1, 2, . . . ,

where

I2 =
(
δ2
γ2a

,
γ1

δ2

)
, I1 =

(
δ1
γ2
,
γ2

δ2

)
, J2 =

(
δ1
γ1a

,
γ2

δ1a

)
, J1 =

(
δ2
γ1a

,
γ1

δ1

)
.

Moreover, there are inclusions between the intervals in (8) and the above
intervals, respectively. This guarantees R(A) = R(A)l as well as
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[0, 1]−R(A) =
∞⋃

i=1

((I2 ∪ I1) ∩ (J2 ∪ J1))ai−1.

The intersection (I2∪I1)∩(J2∪J1) consists of at most three pairwise disjoint
open intervals (α1, β1), (α′1, β

′
1) and (α′′1 , β

′′
1 ).

In all cases the group G(A) is cyclic with generator 1/a or 1/
√
a depend-

ing on (γ2, δ2) = (γ1, δ1)
√
a.

Applying (6) and (7) we have

d(A) = min
(

(δ1 − γ1) + (δ2 − γ2)
γ1

· 1
a− 1

,

1
γ2

(
(δ1 − γ1)

a

a− 1
+ (δ2 − γ2)

1
a− 1

))
,

d(A) = max
(

(δ1 − γ1) + (δ2 − γ2)
δ2

· a

a− 1
,

1
δ1

(
(δ1 − γ1)

a

a− 1
+ (δ2 − γ2)

1
a− 1

))
.

For example, putting γ1 = 1, δ1 = 2, γ2 = 5 and a = 40, we have

(α1, β1) = (2/5, 1/2), (α′1, β
′
1) = (6/40, 1/6), (α′′1 , β

′′
1 ) = (2/40, 5/80).

Further, d(A) = 2/39, d(A) = 41/78, |[0, 1] − R(A)| = 31/234 and G(A) is
generated by 1/40.

5. Extension of Theorem 2. In this part we extend (1) and (2) to
intervals (α, β) ⊂ [0, 1] satisfying

(α, β) ∩R(A)d = ∅,
which does not follow from Theorem 2 directly. Clearly, if (α, β)∩R(A)d = ∅
then for every ε > 0 there exist finitely many pairwise disjoint open intervals
(αi, βi), i = 1, . . . , s, such that

(i)
⋃s
i=1(αi, βi) ⊂ (α, β),

(ii) β − α−∑s
i=1(βi − αi) < ε,

(iii) ∀(1 ≤ i ≤ s)(αi, βi) ∩R(A) = ∅.
So, Theorem 2 only implies

(14) d(A) ≤ min
1≤i≤s

αi
βi

min(1− d(A), d(A))

and

(15) d(A) ≤ min
1≤i≤s

(1− (βi − αi)).
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Finally, in what follows we will replace the open interval (α, β) with an
open set X ⊂ [0, 1] and prove estimates better than (14) and (15). Here |X|
denotes the Lebesgue measure of X.

Theorem 6. Let X be an open set in [0, 1] and write g(x) = |X ∩ [0, x)|.
If X ∩R(A)d = ∅, then

(16) d(A) ≤ x

y
min(1− d(A), d(A)) +

(y − g(y))− (x− g(x))
y

for every x, y satisfying

(i) 0 ≤ x < y ≤ 1,
(ii) there exist two sequences xk and δk > 0 such that (xk, xk + δk) ∩

R(A)d = ∅ for every k and xk → x as k →∞.

Moreover

(17) d(A) ≤ 1− |X|.
P r o o f. The proof is similar to the proof of Theorem 2. Instead of (3)

we start with the following pairwise disjoint intervals:

(18) (xa[θn], xa[θn] + x), (xa[θn]+1, xa[θn]+1 + x), . . . ,

(xan−1, xan−1 + x), (xan, yan).

First assume that

(ii)′ (x, x+ δ) ∩R(A) = ∅ for some δ > 0.

Then for sufficiently large i, the interval (xai, xai + x) cannot intersect A,
since (xai, xai + δai) ∩A = ∅. Moreover, for all sufficiently small ε > 0, the
set X ∩ (x, y) can be approximated by a finite sequence of pairwise disjoint
open intervals (αi, βi), i = 1, . . . , s, such that

⋃s
i=1(αi, βi) ⊂ X∩(x, y), |X∩

(x, y)−⋃si=1(αi, βi)| < ε and
⋃s
i=1(αi, βi)∩R(A) = ∅. Hence, the number of

terms of B = N−A lying in (xan, yan) is greater than an(g(y)−g(x)−ε)−s
and we have

B(yan) ≥ (n− [θn])(x− 1) + (an(g(y)− g(x)− ε)− s) +B(xa[θn]).

Replacing n by nk and x by xk and letting k →∞ we find (16).
In the general case, since g(x) is continuous, (ii)′ can be replaced by (ii).
To prove (17) note only that (10) can be replaced by

b2 − c1
cn

+
b3 − c2
cn

+ . . .+
bn − cn−1

cn
≥

s∑

i=1

(βi − αi).

Observe that in Example 1 we have αi/βi = δ2/(γ2a) and the minimum
of the right hand side of (16) is the same as in (14) and (1). In Example 2,
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for x = α′′ and y = β′, the right hand side of (16) equals 0.229. . . ; further,
the right hand side of (14) is 0.379. . .

6. Concluding remarks

1. The results of T. Šalát mentioned in the introduction can be proved
directly by using (1) and (2):

(i) Assume (α, β) ∩ R(A) = ∅. If 0 < d(A) = d(A) = d(A) < 1/2 then
by (1) we have d(A) ≤ α

β d(A) which is a contradiction. If d(A) ≥ 1/2, then
in view of (1) we have d(A) ≤ α

β (1 − d(A)) ≤ α
β

1
2 < 1

2 which also gives a
contradiction. Thus (cf. [6, Th. 4]) d(A) > 0 implies that R(A) is everywhere
dense.

(ii) Assuming d(A) = 1, (2) implies a contradiction 1 ≤ 1− (β−α); thus
(cf. [6, Th. 1]) d(A) = 1 implies that R(A) is everywhere dense.

2. It is proved in [3, Th. 2] that if N = A ∪B, then at least one of R(A)
or R(B) is everywhere dense in [0,∞). This can also be proved by using our
basic relations (1) and (2).

Assume that N = A ∪ B, A ∩ B = ∅, (α, β) ∩ R(A) = ∅ and (α′, β′) ∩
R(B) = ∅. Since d(A) = 1 − d(B) and d(A) = 1 − d(B), applying (1) and
(2) we get

(i) (β − α) ≤ d(B),
(ii) d(B) ≤ α′

β′ (1− d(B)),

(iii) 1− d(B) ≤ α
β d(B).

Starting with (i) and then repeatedly applying (ii) and (iii) we get β−α = 0.

3. A related question is studied in [2].
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