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An example in Beurling’s theory of primes
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1. Introduction. Let P = {pl,pg, .. } be a set of numbers satisfying
the following three conditions:

1<p1i, pr<prs, lim p; = oo.
k—oo

Let N be the set of numbers which are finite products of elements of P.
Following A. Beurling [1], we call P a set of generalized primes (g-primes)
and N a set of generalized integers (g-integers). We denote by P(z) and N (x)
the counting functions of the sets P and N. Two interesting problems arise.
First, we have the Inverse Problem: given the knowledge of the distribution
of the set N of g-integers, obtain information about the distribution of the
set P of g-primes. The classical Prime Number Theorem is an example of
an inverse problem. See also the above cited reference to Beurling [1], as
well as H. G. Diamond [2], where the Prime Number Theorem is proved in
the setting of the Theory of Generalized Numbers. We also have the Direct
Problem: given the knowledge of the distribution of the elements in P, obtain
information about the distribution of those of N. The Direct Problem has
been studied by (among others) P. Malliavin [4] and H. G. Diamond [3]. We
now summarize their results.
Assume that the distribution of the primes is given by

(1) P(z) = Li(z) + O(ze~V'87),

We are interested in estimating N (x). P. Malliavin [4] proved that
N(z) = cx 4+ O(z exp{—0(log )*?})

for some positive constants ¢ and 6. If we let

A=1lubfa: N(z) =cx+ O(zexp{—0(logx)*})},
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122 E. P. Balanzario

then the following estimates are true:
A>02 (Malliavin, 1961),
A>0.333... (Diamond, 1970).

In this article we construct a generalized number system to prove that
A < 0.5. That is, we prove the following

THEOREM. There ezists a continuous distribution P(x) of prime numbers
for which (1) holds and furthermore

(2) N(z) = cx 4+ 2(ze Vo8 ®)
for some positive constants ¢ and 6.

The words “continuous distribution” in the theorem deserve an expla-
nation. They are to mean that there exists a measure dP (see (4) below)
whose integral Sf dP is a continuous function in the interval (1, 00). We use
this measure as input in the exponential formula

dP«dp  (dP)"

51 + 3 +...,
where 0 is the Dirac measure placed at the point 1 and * is the multiplicative
(Dirichlet) convolution for measures; the measure dP * dP assigns to each
Borel set £/ the numerical value

SS dP(s) - dP(t).

(3) dN = e =54 dP +

Moreover, the “set of integers” N is given by N(z) = Sf e We will also
make use of the zeta function of this “set of integers” as given by

oo

C(s) = S x *dN(z) = Ogoa:sedp = exp { OSO:US dP(x)}.
i i i

Finally, we point out that the exponential formula (3) gives the counting
measure for the set of ordinary integers when we take dP to be the measure
dIl where

II(z) = n(z) + %w(wlm) + %ﬂ(xl/g’) +...,

and m(z) is the number of ordinary primes not greater than z. For a more
detailed treatment of these notions see Diamond [3].

2. The example. We start by letting

T

ok
@) Pla) = |~

logt

v(t) dt,
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where

cos(by, logt)
5 t)=1- I =2 > 1.
(5) W =1- 3 Lo
n>ng
We think of k, ng, {a,}, {a,} and {b,} as parameters to be chosen. The
following constants serve our purposes (however, we will carry out some of

our calculations for an arbitrary choice of these parameters):

k =4, ng = 3,

bn = exp{(logz,)'/?},  an =1/logb, = 1/\/logzn,
z = el?, Ty = exp{(logz,)?},
T, = exp{(logz,)*/*}, a, = 2/n%

We also define a« = Zn>n0 oy, and forn > ng welet a_, = a,, a_,, = a,
and b_,, = —b,,. We make constant use of this notation.

In order that we may consider P(x) to be a counting function, it is
necessary that it be non-decreasing. This is a consequence of the following
easy lemma.

LEMMA 1. With 7 as in (5), we have y(t) > 0.
3. Estimation of P(x). Now we show that (1) holds. In fact we have a
slightly better estimate for P(x).
PROPOSITION 2. If P(x) is given by (4) and k > 1, then
P(z) = Li(z) + O(ze 2VIe™),

Proof. We have

1—tF cos(by, logt)
1-— n———— | dt
e (- 2

1—t=% cos(b,logt)
dt — n . dt 1
2 an logt tan +0(1)

n>ng e
T

dt cos(by, logt)
—_— — Z anSWClt_’_O(l),

because k£ > 1. Now we show that

T

b, logt
Z oy, S 7008( ogt) dt = O(xe_2\/@).
tan logt

n>ng
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To this end, notice that

cos(byt)

S

1

. log x
|:Sln(bnt) et(l—an):| ¢
bt

’ :§ cos(by, logt)

ptl—an) gy
tan logt

1

log x t(1—an)
1 . e n 1
— 5 § sin(b,t) " <1 — Gy — t) dt’

l—an 1 log et(l—an)

<2 dt.

bnlog:r+bn J t

To estimate the last integral we notice that e*!=97) /¢ reaches a minimum
value at t = 1/(1 —a,) — 1 as n — oo. After attaining its minimum the
integrand increases to infinity, thus, the largest value of the integrand is
achieved when ¢t = log z. Hence

l—an 1 xlfan ‘,L‘lfan

¢ cos(by, logt) x
——= 2 dt| <2 . 1 <
‘S fan log ¢ <2 Gogz by, Togw BT S3 T

By the definition of a,, and b,, we have

pl=an log x
—_— = I e—— 1 n .
b x exp{ Tos o v/1ogx }

Let A2 = logz and B? = logz,. From (A — B)? > 0, we deduce that
—A%/B — B < —2A. Hence

gl A? 24 2/log @
=T exp fffB < zxe M = ge TVIOBT,

bn
Therefore
X
by, logt
Z o, SCOS(Og)dt' < Z 3anze 2VIoBT — 3 e 2Vioe T
n>no e gon logt n>ng

This proves Proposition 2. =

4. Estimation of N(z). We now define our zeta function for s = o + it
with o > 1 as

o o0

(6) ((s) = S x”%dN(z) = exp{ X x_SdP(ac)}.
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By inverting the first equation in (6) we get
1 b-+ioco e
N(x) = — —d b> 1.
(@) =g | C)pds 0>
b—ioco

Furthermore, if

then
b+ico
1 $S+1
7 M(x) = — —d b>1.
To prove that (2) is true it suffices to show that for some 6* < 6,
(8) M(x) = gxz + Q(x2e 0 ViosT),

Indeed, if (2) is not true then
N(z) =cx+ o(xe_e‘/m),
so that

M(z) = S{ct + o(t 6_9\/@)} dt = g$2 + 0(5626—9*\/@).
i
This is a contradiction.

125

We will prove that (8) is true for §* = 3+ ¢ and hence that (2) holds for

0 > 3.

The next proposition is important for our purposes because it expresses
our zeta function as defined in (6) as an infinite product, from which we can
read off its singularities. As a matter of fact, we have chosen the parameters
{a,} and {b,} in such a way as to give us a distribution of the singularities
of {(s) in the complex plane, from which we can deduce the oscillation
statement (8). In order to state it recall that for n > ng, we have a_,, = ay,

b_,, = —b, and a_,, = .
ProproSITION 3. Consider the zeta function
((s) = exp { | 27" aP(@)},

1
where dP is given by (4) above. Then, for R(s) > 1,

s+k—1 k on/?
S N 1- .
©) ¢(s) s—1 |1:[ < 5—1+an—ibn+k>
LEMMA 4. If we define v(t) by (5) and
cos(b,, logt
’YN(t):l_ Z an(t%g>a t>1,

nog<n<N
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then yn(t) converges uniformly to ~(t) for t > 1 and in fact |y(t) — yn(t)]
< 2/N.
Proof (of Proposition 3). Notice first that

blogt 1 . , 1 . .
COS( 0og ) _ 7(ezblogt _|_e—zblogt) _ 5(t—a—i-zb _{_t—a—zb)‘

ta ~2ta
Hence
blogt) 1—tF 1 1—tFk
COS( og ) . dt = (t—a ib +t—a+zb) dt.
te logt 2 logt

Thus, for R(s) > 1, we have
d Ogot_s cos(blogt) 1—t=F

— dt
ds ] ta logt

oo
S t s—a—1ib 4t s—a+ib _tfsfafz’bfk _tfsfa+ib7k) dt
1

d i 1/2 I 1/2
=—log||1— - 1-— - .
ds s—14+a+ib+k s—14+a—ib+k

Therefore, we have

L\D\»—t

dt

OSotscos(blog t) 1—t*

) ta logt

k 1/2 L 1/2
—log{ (1 1 Const.
Og{< s—1+a+ib+k‘> ( s—l—l—a—ib—i—k) }+ ons

By taking the limit as R(s) tends to infinity we see that the constant of
integration is zero.

Similarly, we have
o0

St_sl—tk s+k‘—1'

dt =1
logt o8 s—1

Thus, from the definition of vy, we get

P R
St 1 (1) dt
1 Og

s+k—1 k 1/2
=1 _— nl 1-—
og( s—1 )+ Z “ 0g< s—1+an—ibn+k)

no<|n|<N

s+k—1 k n/?
=1 —_— 1- .
og{ s—1 H < s—l—l—an_ibn—{—k) }

no<|n|<N

Taking the limit as N — oo yields the assertion. m
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The infinite product representation of ((s) given in (9) holds not only
in the half plane R(s) > 1, but in a larger region. To show this, we prove
the following proposition, which will also give us a useful upper bound for
|C(s)| in the extended domain of definition.

PROPOSITION 5. If s =0 +it is such that 0 > —k+2, a =3 ap,
and if
k an/2
= 1—
#(s) H < s—l—i—an—ibn—i—k)
[n|>ng
then

lp(s)] < (k+1)e.
Proof. Let s = o 4 it be given. Since b,, = exp{+/logx,,} we have

bpt1 — by = exp{/log w11} — exp{y/log z, }
= exp{log z,} — exp{/logzn} > xn — \/zn, > 4k

for all n, since z, > x; = e'© and k < 5000. Therefore the interval
(t — 2k, t + 2k) contains at most one element of {b,}. Denote this element
(if it exists!) by by(¢). We now write

lo(s)]
k an(t)/z k an/2
=|1- 1—
‘ s =1+ ape) — by +k > ’ s—1+a,—ib, +k
n;én(t(j
Since a, > 0, we have 0 — 1 +a, + k>0 — 1+ k > 1 and hence
k QA (t) /2 k QA (t) /2
1— : <|1+—— <1+k.
S_1+an(t)_an(t)+k c—1+k

On the other hand, when n # n(t),

op /2

B k
s—1+a, —ib, +k

= ex %l 1-— K
TPy 8 s—1+a, —ib, +k

o, k
_eXp{2%10g<1_8—1+an—ibn—|—k>}

2 3
:exp{?%<—z—2—2—...)},
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where
k k k k 1
2| = . < = <—=-.
sl+anzbn+k“ IS(s) —bn|  [t—0bn| =~ 2k 2
Therefore
lo(s)| < (k+1) H exp{an<|z|—|—‘z|2+z‘3+...>}
- im0 2 2 3
nn(t)
§(1~c+1)exp{3l > an<1+;+i+...>}

[n|>ng
1 (6%
:(k—i—l)exp{Q%: an} =(k+1)e
n no

as claimed. =

For the particular case k = 4, ng = 3, and «a,, = 2n~2 we have

1
lo(s)| < 5exp{22 n2} <9 ifo>-2.

n>3
Let D be the region defined by
Di={s=0+iteC:0>—-k+2,
s# & —an+iby) + (1 =81 —ay,+ib, — k)
for any 0 < € <1, |n| > no}.
By a theorem of Weierstrass on the uniform convergence of analytic
functions, we know that ¢(s) is analytic on D¢. The equation
s+k—1
((8) = ——7—wls), o>1,
s—1
gives us an analytic continuation of ((s) to D¢ with s = 1 removed, where
((s) has a simple pole. Notice that, since the zeros of ¢(s) are of fractional

order, we avoid problems of multiple-valuedness by restricting the domain
of definition of {(s) to D.

COROLLARY 6. For s € D¢ such that |s — 1| > 1 we have |((s)| < 45.

Proof. We have
s+k—1 k 4
=== = <9l1+—|<9(1 .
C(s)] 9’ + 9( +‘S_1‘> .

s—1
Our next step is to estimate M (x) (cf. (7)) where

61
(10) x—mn<1+1ogxn>, 61| < 1.

©(s)
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REMARK. It would be more accurate to write w,, for example, in place
of x. We prefer to write = in order to keep our formulas simple. We will
choose 6; (and hence ) in such a way that M (z) equals the main term cz,
plus a large “error term”.

r ; s
4 1T
Cnh
1- anifh
C
n-1
r O
3
: |
K+2 |32 0 1 b
Con+1 O
Con
r .
2 14T
1
i
Fig. 1

We deform the vertical path of integration in the inversion formula (7)
from the path (s) = b > 1 to a path IT UILUI3 Uy UIs C D¢ (see
Figure 1). Here I} joins b—ioco to b—iT},, where T}, = exp{(logx,)%/*}. The
points b — T}, to —3/2 + 4T, are joined by Is. The segments I'5 and Iy are
symmetric to I} and I3 with respect to the horizontal axis. We denote by I'5
a comb formed by horizontal loops C,,, ng < |m| < n, each going around
the singular point 1 — a,, + ib,,,. The collection of vertical line segments
joining one loop to the next one is denoted by I3. The points on I3 have
real part equal to —3/2. Furthermore, each C,, is made up of two horizontal
line segments joined at the right hand side by a small circle with center at
1 — aym, + ib,,. The two horizontal line segments of C,,, are extended to the
left until they meet I3.

Now we write

Mz)=h+...4+Is+J_n+...4+ Jpp + {residues at s =0, 1}
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where
1 xs—i—l
I, = — —— ds, =1,...,5,
omi FS Gernd ™
1 .ZL‘S+1
- e < n.
m= 5 CS ¢(s) ST D) ds, mng<|m|<n

Here, as above, (), is the mth horizontal loop with imaginary part equal
to by,.

Consider first the integral I3. As a matter of fact, in this case we do
not have just one integral but many of them. This is because the vertical
segment I3 is broken at each horizontal loop C,,,. However, on each vertical
component of I'5 the integrand is bounded by the same constant: 45. Thus,
since R(s) = —3/2 on I3, we have

| /241 8

dt < —
] T

dt

L] < @
15| 1/4 + 2

<o _80045\(—3/2 /2 + i)

ol fu T8 -2

1/2

O€/=8

Let b = 1+ 1/logx,. Then |I5| and |I4] are both less than 58(x/T;,)?.
Indeed, each is at most

14+(log )t -1
1:2+(10g Tn)

—3/2
g 1+1/10
-1
< ﬁx2—‘,—(10g:}cn) S do
n —3/2

X 2 1 91
<21 — 1 nl1
<au(g) ol (= (1 5)))
x 2 1 2 x 2
<21 — 1 < — ] .
B <Tn> eXp{ * (10gxn> } B 58<Tn>

Now we consider the integrals I; and I5: each of |I;| and |I5| is at most

1 *° 2+ (log z,,) ™t 1 2 1
S45xdt§8x2exp{1+< ) }

2 . t2 log ., T,

2 2

X X
<80 <99
=°rc =

n n
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From the above estimates we get

(11)  M(z) = ko) 32> + (1= k)p(0)z + Y Jom +O0(z*/T,),

m=—n

where the O-constant is less than 2(58 4 22) + 32 = 192 (because 1/y/z <
22/T,,). Let us examine the expression

2* /T, = 2* exp{—(log z,,)*/*}.

We want to write z in place of x,, in the above expression. To do this notice
first that, since z; > e'°, we have Tpt1 = x}fg Tn > 307110 so that
T, > x}bo_l > xilo_z > ... > asqll(f(:_l) > el
Thus we get log z,, > 10™ and hence n < loglog x,,.
LEMMA 7. If x, is as in (10) then |logz — log xz,| < 2/10™.

Proof. We have

logazzlog[azn<1+ 2l >], |01] < 1,
log .,

0
= logx,, + log <1+ ! )
log x,,

Thus

0 0 6] \°
llogx — log z,,| < 1] 1+ al + al +...
log x,, log ., log x,,

e (i (Y )2 o2
~ logxy, 10 10 _logmn_lonll

By the mean value theorem of differential calculus, there is a number &,
between x and z,, such that

’(Ing)BM — (log xn)3/4| = 3 ! 1/4|log$ —logz,| < i
4\ logé&, - 107

Hence
2?/T, < 22 exp{—(logz)3/* +2/10"}
< 2% exp{—(log z)*/* +2/10} < 952¢~(log2)*/*
From this and from equation (11) we get

(12) M(z) = kp(1)32? + 3 Jp + O(a2e (082,

m=—n

where the implied O-constant is less than 2-192+ |1 —k|p(0) < 384+3-45 =
519.
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Now we show that all the terms in the sum (12) other than J_,, and J,
can be put into the error term.

)3/4

PROPOSITION 8. | Jm| < 12022e (og®

no<|m|<n—1

Proof. It is easy to see that the contribution to the integral J,, due to
the loop circle centered at 1 — a,,, + b, tends to zero as the radius tends to
zero. Hence we can write

1 xs—i—l
L
2mi s(s+1)

m

‘Jm’ == ds

1-am 2—a
x m
S 45 =
-3/2 m

do < E:CQ@*‘I’” logz
=R

IA

™
But if |m| <n — 1 then

—am logx < efanfl log x

e
log x < oy { 108 TR +2/107
= eX _ X
P (logzn)t/4 | — P (log z,,)1/4
< exp{—(logzn)** +2/10"} < exp{—(log z)*/* + 4/10™}
< exp{—(logz)3/* + 4/10} < 9p—(logz)*/*
Hence
J 1 <30 2 —(logz)%/* 1
Z m| > T e Z bT
no<|m|<n—1 |m|>no "

We finish the proof by noting that the last sum is finite:
BRI SRS S D SR T
[m|>ng m |m|>ng m>ng m>ng
Therefore we now see that
(13) M(z) = kp(1)22% + (J_p + Jp) + O(22e~ 0z 2)*"),

where the implied O-constant is less than 519 4 120 = 639.

It remains to study the expression J_, + J,.

Denote by J;, and J// the integrals along the line segments C], and C/
lying respectively above and below the branch cut C, so that J,, = J), + J/'.
Now, if we write

s=1—a, +ib, +te?, —m<0<m,

then the line segment C!/ is obtained by letting § = —m and ¢ run from 0 to
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1 —a, + 3/2. In this way we obtain C]/ with its direction reversed:

0 =—m,
n ) s=1—ay+ib, —t,
Cn ds = —dt,

0<t<1-—an+3/2.

Hence

(14) g,
B 1 (Ing§_1/4 N l—an+3/2 } C(l —an, + an _ t)xQ*an‘Fibn*t ( dt)
= 5 \ g )1/ (1 — an + iby — )(2 — apn + iby — t)

) 1/4 )
(log z) C(l — ay, +ib, — t) 2= antibn—t

1
2mi § (1 —an +ib, —t)(2 — a, +ib, — t)

with the O-constant less than 1. Indeed, since b2 > 10,

l1—an+3/2
1

21
(logz)—1/4

2 b2

dt + O(z2e~ o8 ﬂ”)3/4),

4 —1/4
1 ...dt’ < L B atosn ™ (1 g, 1 3/2 — (logx) 4

<5 B exp{_bg«’v} < 22— og )",
47

b7, (log 2)*/4

Let us rewrite the integrand in expression (14):

C(s) = s+k—-1 B k
s(s+1)  s(s—1)(s+1) H (1 s—1+ay —ib, +k

[m|>no

(1 k w2 s pk—1
B s—1+a, —ib, +k s(s—1)(s+1)

k am /2
1—
% H < 3—1+am—ibm+k‘)

|m|>ng
m#n

= (s — 1+ ay, — ib,)*"/?

k
(s+k-1) H <1_5—1+am—ibm—|—k

[m|>ng
m#n

)am/2

> Oém/2

s(s=1)(s+1)(s—1+an —ib, + k)on/?

= (s — 14 an — ibp)*"% f(s),
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where f, is an analytic function at s = 1 — a,, + ¢b,, with a power series
expansion having a radius of convergence greater than one:

oo
fn(s) = Zan,j(s — 1+ a, —ib,).
§=0
The integrand in (14) can now be written as
x2*“"+ib”*t(te*”)a”ﬂf”(l — ay, + b, — t)

oo
= g2t N g, a e 2emmilitan/2),

J=0

Thus, writing E in place of O(x2e’(10g“)3/4), we have

1 (log )~ */* oo
_ 2—an+iby, —tygtan/2 —mi(jtan/2
J;L'—Q—m, S o Zan,jw titan/2e=militen/2) qr 4 |
0 7=0
1 00 (log )~ */*
— = 2—ap+tib, o —mi(jtan/2) —tyjtan/2
27m'$ Zan,]e S 't dt+ FE
7=0 0
1 00 (logz)~*/*
_ = o 2—ap+ib, —Ticy, /2 _1\J ) —typjtan/2
=57 e Z( 1) ay,; S x 't dt + E
7=0 0
_ i$27an+ibn€fwian/2 1 o/
27 log

j (log :17)3/4

%S)
—1 —tyjtan /2
X Zamj <10g$> S e 't dt+E
i=0

0
n/2+1
_ LfoanJribnefTrian/Q 1 “
27 log
(log§)3/4 ) i i\
—tpay, /2
X et an7j<> dt + £
B g log
1 N 1\ 3/1
= me2_an+lbn€_ﬂza"/2 <10gm> S’I’L + O(ZL‘QE_(IOgm) )
with
(log )/ ;
S, = X e tten/2f, <1 — an + ib, — > dt.
log =

0
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In a similar fashion we obtain

1
log z

J"/’L B 2]..$2—an+ibne7rian/2<
™

ap /241
> Sn +O($2e—(10gx)3/4)'

We therefore have
(15) J,=J, +J,
z 1

sin Zov an /241 54
= T2 nxz_an+ibn,< ) Sn _|__ O(x2e—(loga:) / )7
T log

with the O-constant not greater than 10.
When we calculate J_,, we obtain the complex conjugate of J,, (this is
because b_,, = —b, ). Therefore

Jn+Jp=Jdp+ Jp =2R(J,).

Our next step is to estimate the integral S,, appearing in (15). First we
obtain lower and upper bounds for

k Qi /2
1—
|m|1—>[n0< 51+amibm+kz>

_ s+ 3 ) m#n
1) 5l = DT (5= 1+ tn — by + h)n/2

when |s — 1+ a,, —ib,| < 1.
For the upper bound we notice that

|s| > b, — 1.
Thus
s+3 _ bat6 _ 2, 16
GoDEFD| S G207 = G2P B
Also

|s — 1+ ay, — ib, + k|*"/? > (k—|s— 1+an7ibn|)an/2 > 3an/2 > 1,

Now we want to estimate from above the product appearing in the defi-
nition of f,, (equation (16)). As in the proof of Proposition 5 we have

i <1+L<1+£—§
§— 14 am —ibym + k|~ |S(s) — b| — 2k 2

Thus the product in (16) is less than

Qn /2 1/m? 2352, 1/57
3 3 3 g=1
b < — <[ = 4.
H (2> = H (2) = <2> <

|m|>mno [m|>ng

m#n
Thus we have proved
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PROPOSITION 9. For |s — (1 — ay, + ib,)| < 1,
[Fals)] < 64/82.
This and Cauchy’s inequalities give the following
COROLLARY 10. For all j =1,2,...,
| < 64702,
Now for the lower bound:
Is| <|s—14ay —ibp| + |1 —ap +iby| <141+ |ay|+ |ba| <3+ by
Thus

s+3 s+ 3 ls| =3 _b,—1-3 _ 31b, 1

> > > > = :

s(s—1)(s+1) (b +4)3 = (b +4)2 = (bn+4)2 — (2b,)2 1602
Each term in the infinite product in (16) is

k k k 1
1- . >1- . >21l-o-=3.
s—14 ay, —ib, + k |s — 1+ @y — by, + K 2k 2
Therefore
an /2
1T (1- —
s—14+a,, —ib, +k
[m|>ng

e

|m|>0

Il
VR
N =
N———
no
N
38
]L
—
~
3
[V

Il
7 N
N =
N————
3
n
~~
w

V
sl=

Thus we have

PROPOSITION 11. For |s — (1 — a, +iby,)| < 1 we have

111 |
() > s =
) 2 1652 5 70 = 0002

With all these inequalities we can estimate the integral for S,,, the func-
tion occurring in (15), as follows:

(log z)®/* ;
S, = S et /2f (1 = an + by, — dt
2 log x
(Ing)3/4 0 _t ]
S e ()
0 §=0 &
(log x)3/4 oo (log x)3/4

—+\’
_ —tyon /2 ) —tyoy, /2
= Qn,0 (S) e 't dt + Ela,m (S) et (logw) dt.
J:
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For the second term we get, by Corollary 10,

0 (loga:)‘g/4 g oo j/4 oo
S (Y ] 5B e
o B ogx =i bn \logz 3
1/4, , oo j/4
1 64 10
= <lo x) b2 Z <98>
1/4
<148 ! 1
log = b2

Now, since

e~ ton/2 gt < X e 'tdt <2logx 67(10“)3/47
(log z)3/4 (log z)3/4
the integral S,, in (15) is
03
b2 (log x)1/4’
where |03 < 2 and |03| < 148. Since ay, 0 = fn(1—a,+iby,), from Proposition

11 and from F(%an + 1) > 0.8 we find that the modulus of S,, is greater
than

(17) Sy = Q0 (F(%an + 1) + 04 logxe_(loggC)BM) +

—— (0.8 — ~(oga)®/ty _ 148
(18) S0002 (0.8 —2logzxe ) 7 log o117
1 sa 118400 o—2(log @)/
=——(08-21 —(log )% _ >
80062 ( vgre (log x)1/4) 1600

for x > X3, i.e., if x is sufficiently large.
We will use this lower bound for the integral S,, appearing in equation
(15). Now consider the other factor in that equation,

oo an /241
sin T« _ 1 o _ 1/2 1
S5 5 a, <> > 2~ (log )

T log x o 2(log x)?
> ﬁe_(10g$n)l/2 1
o 2(log x)2(loglog x,, )%

From the above and equation (15),
72 673(10gmn)1/2 1075
71600  4(logz)* (log x)*

We would like J,, +J_,, = 2R(J,,) to be large. We already know that |J,,|
is large, but still it can be that R(J,) = 0, say. Let us recall here equation

e~30og2) e > X;.
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(15):

sin Z

an /241
Qy, ) 1
Jn — 2 x2—an+zbn < ) Sn 4 O(.’B26_(10gw)3/4)’

T log =
where z = z,(1 + 61 /log x,,), 61| < 1. Now express this equation as
In

33'2_(1"

A= = Bz + C,

where B and C' have obvious definitions. Dividing by |B| we get

%(ﬁ) = R(exp{ib, log x + iarg B}) = cos(by, logz + arg B)

0
= cos <bn<logxn+log <1—i— ! >>+argB)
log .,

= cos <{bn log z,, + arg B} + b, log (1 + lozlx ))

Notice that arg B is a function of #;. This is because x is a function of 6,
and S, is a function of z. Hence we have

arg B = arg S,, + 7.

The main term on the right hand side of (17) is independent of #;. Since
the other two terms are much smaller, we see that as #; runs from —1 to
+1, the argument of S,, (and hence of B) undergoes a change not greater
than 27.

Therefore, as #; runs from —1 to +1, the argument of the above cosine
runs through an interval centered somewhere in

(bn log x,, — 2, by, log x,, + 27)
and having a length greater than

1+(10gwn)71
1 dt 1 1
bnlog [ 1+ = b, S = >b,
log x,, ) t 1+ (logx,,)~ 1t log x,,
10 1 10 eviem

=711 logx, 11 logm, oo asnToee

Therefore, when n is large we can choose values, 0;(+) and 61(—), of 6;

such that
A-C A-C
3?() =41 and §R(> = —1.
| B| | B

In the first case we get

%( In ):%(A):|B\+§R(C),

xz_an
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or, what is the same,

(19) R(J,) = |B|z? % 4+ R(C)z?
> | Jn| — |Cla? ™% 4+ R(C)2*
= |J.| + O(xQe*(log””)SM)

1 -5 1/2
> 2(1(?g;5)46_3(10gm) / if x> X3 and 0 = 01(+).

In a similar fashion we obtain

1 -5 1/2
(20) R(Jn) < —ﬂlg)wp‘:“b“) iz > X, and 6; = 0 (—).

Notice that the inequalities (19) and (20) hold when
91 2n71
n = ]_O 5 9 — 9 :l: .
o) =10 6= 6()
These inequalities and the equation
(13) M(z) = 2p(1)22 + 2R(J,) + O(a2e~tos ™™™
imply relation (8); in fact we have proved the following stronger statement:

M(z) = 2p(1)x? + Qi(xze_(3+5)(1°gz)l/2) Ve > 0.

x> Xy, x:xn(1+
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