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1. Introduction. In problems he submitted to the Journal of the In-
dian Mathematical Society [16], in his notebooks [15], and in his lost note-
book [17], Ramanujan established many intriguing equalities between rad-
icals. In particular, in his extensive calculations of more than 100 class in-
variants, he frequently needed to establish difficult radical equalities; see two
papers [3], [5] by the authors dedicated to the calculation of Ramanujan’s
class invariants, and Berndt’s book [2, Chap. 34]. Ramanujan had an un-
canny ability in discerning radical equalities, but sometimes we can obtain
a peek into Ramanujan’s thinking by observing that units play a key role.

In Section 2 of this brief note, we reexamine the radical identities that
Ramanujan submitted as problems to the Journal of the Indian Mathemati-
cal Society . We will see how units come into play, and we will also put some
of the radical equalities in more general settings.

In Section 3, we examine some material in Ramanujan’s notebooks [15]
and lost notebook [17], mostly pertaining to class invariants and singular
moduli. So that we may define the class invariants of Ramanujan and Weber
[19], set

χ(q) :=
∞∏
n=0

(1 + q2n+1), |q| < 1.

If q = exp(−π√n), where n is a positive rational number, the two class
invariants Gn and gn are defined by

Gn := 2−1/4q−1/24χ(q) and gn := 2−1/4q−1/24χ(−q).
It is customary to study Gn for odd n and gn for even n. As usual, in the
theory of elliptic functions, let k := k(q), 0 < k < 1, denote the modulus.
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The singular modulus kn is defined by kn := k(e−π
√
n), where n is a natural

number. After Ramanujan, set αn = k2
n. Except for possibly a power of 2,

Gn, gn, and kn are units [2, p. 184, Theorem 1.1]. The authors have verified
many of Ramanujan’s formulas for class invariants and singular moduli [3],
[5], [4], [2], [20]. These calculations are often very difficult, but with the
observation that certain algebraic expressions are units or have the char-
acter of units, seemingly very difficult calculations can be transformed into
considerably easier ones.

In Section 4, we briefly examine some elementary radical identities found
in Ramanujan’s lost notebook.

Radicals arise in other problems that Ramanujan submitted to the Jour-
nal of the Indian Mathematical Society, and we encourage readers to examine
them in Ramanujan’s Collected Papers [16, pp. 322–334]. See also Berndt’s
book [1, Chap. 22] for an assortment of beautiful elementary algebraic iden-
tities, many involving radicals.

Lastly, some of the ideas here are briefly touched in our paper [6].

2. Elementary equalities between radicals
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Equalities (a) and (b) constitute Question 525 [11], [16, p. 329]. Equal-
ities (c)–(f) comprise Question 1070 [13], [16, p. 334]. Parts (g) and (h)
are found in Question 1076 [14], [16, p. 334]. Lastly, equality (i) is part of
Question 682 [12], [16, p. 331].

Each identity can be easily verified by taking an appropriate power of
each side above and then simplifying the right side. Both the left and right
sides of each equality in Theorem 2.1 are units in some algebraic num-
ber field. Although Ramanujan never used the term unit, and probably did
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not formally know what a unit was, he evidently recognized their essential
essence. He then recognized that taking certain powers of units often led to
elegant identities.

We will briefly explain why these expressions are units. It suffices to
examine the left sides. First observe that if x = 3

√
a− 3
√
a− 1, then

x3 = 1− 3 3
√
a(a− 1)x.

We thus see that x is a unit if a = t/3, for some algebraic integer t. Secondly,
observe that if x = 5

√
a− 5
√
a− 1 and y = 5

√
a(a− 1), then

x5 + 5x3y + 5xy2 − 1 = 0.

Thus, x is a unit if a = t/5, for some algebraic integer t. More generally, it
is not difficult to check that n

√
1 + a− n

√
a is a unit whenever n is a positive

integer and na is an algebraic integer. Similar arguments can be given for
other expressions appearing on the left sides above.

For identities (a), (b), (e), (g), and (i) we provide generalizations below.
For (c), we establish general analogues.

Proposition 2.2. For 1
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P r o o f. It is easy to verify that
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√
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√
4,

which is equivalent to (2.1) for the given values of a.

If a is a real number lying outside the interval specified in Proposition 2.2,
then (2.1) is still valid if the right side is multiplied by −1.

Setting a = 5 in (2.1), we deduce (a) above. One can deduce further
interesting radical identities by giving a special values in (2.1). For example,
setting a = 14, we find that
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Proposition 2.3. For a outside the interval
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P r o o f. It is easy to verify that

( 3
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4a− 1)2 = (a+ 2) 3
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from which (2.2) follows for the given values of a.

If a lies in the interior of the interval specified in Proposition 2.3, then
the right side must be multiplied by −1.
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Setting a = 7 in (2.2), we deduce (b) of Theorem 2.1. Other interesting
identities can be deduced by specializing (2.2). For example, setting a = 25
in (2.2), we find that

(3 3
√

100− 11)1/2 = 1
3 (5 3
√

10− 3
√

100− 1).

The proofs of (a) and (b) given by N. S. Aiyar [11] proceed along com-
pletely different lines.

Proposition 2.4. For each real number a,

(2.3) {(3a+ 1) + (3− a) 5
√
a− 5 5

√
a3}1/3 = 1 + 5

√
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√
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P r o o f. Raising each side of (2.3) to the third power, we readily verify
the truth of (2.3).

Setting a = 3 in (2.3) and dividing both sides by 5
√

25, we deduce (e) in
Theorem 2.1.

Proposition 2.5. If a is any real number , then

(2.4) {(9a+ 15) 3
√
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a(a+ 1)2 − (18a(a+ 1)− 1)}1/6

= 3
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P r o o f. Taking the sixth power of each side of (2.4) and simplifying, we
complete the proof.

If we set a = 2/3 in (2.4), we deduce (g) of Theorem 2.1. Note that if
3a is an algebraic integer in (2.4), we obtain units on each side. Giving a
other values in (2.4), we can establish further interesting radical identities.
For example, letting a = 1 and a = 1/3, we deduce that

(24 3
√

2 + 3 3
√

4− 35)1/6 = 3
√

2− 1
and

(6 3
√

4− 2 3
√

2− 7)1/6 = 3
√

4
3 − 3

√
1
3 ,

respectively.
In both the original formulation of Question 1076 [14] and Ramanujan’s

Collected Papers [16, p. 334], the exponent 1/6 on the left side of (g) is
incorrectly printed as 1/8. In fact, the powers 1/6 and 1/8 are permuted on
the left sides of (g) and (h) in both the original statements and the Collected
Papers. In contrast to (g), we do not have a generalization of (h). However,
we offer a simple proof of (h) below.

P r o o f o f (h). It is easy to see that (h) is equivalent to the equality
(
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which can be written in the alternative form
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which can be verified by expanding the left side.
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We next establish a general identity which has (i) as a special case.

Proposition 2.6. For any real number a,

(2.6) ((a2 − 7a+ 1) + (6a− 3) 3
√
a+ (6− 3a) 3

√
a2)1/3 = 3

√
a2 − 3

√
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P r o o f. Cubing both sides of (2.6) we readily establish its truth.

As an example, set a = 2 in (2.6) and divide both sides by 32/3 to deduce
that

( 3
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9 ,

which is (i).
We do not have any generalizations of (c) and (d). Identity (c) can

be verified by taking the tenth power of each side, expanding both sides,
and simplifying. Likewise, (d) can be verified by squaring both sides. S. D.
Chowla, N. B. Mitra, and S. V. Venkataraya Sastri established (c) in the
same way [13]. However, their proof of (d) is rather ingenious. Let a, b, c,
and d be numbers satisfying the relations

a5 = 2b5 = 8c5 = 16d5.

Then it is easily proved by squaring that
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√

(c2 + 2ab) + (d2 + 2ac).

Putting
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we deduce (d).
Although we have no generalization for (c), we have found two new

analogues of (c), namely,
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both of which can be readily verified by taking the sixth powers of both
sides.

We have nothing to add about (f), which is easily verified.
On page 344 in his lost notebook [17], Ramanujan offers the (corrected)

equalities
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The factor 6
√

3 after the first equality was omitted by Ramanujan. It can
be shown that the far left side of (2.7) equals each of the three remaining
radicals by taking the square, cube, and fifth powers of each, respectively.
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3. Radicals appearing in the calculation of class invariants, sin-
gular moduli, and continued fractions. The authors have devoted much
effort in recent years to the calculation of Ramanujan’s class invariants. In
particular, in [5] 13 class invariants were proved. After our paper was pub-
lished, we noticed that in 12 of our 13 calculations, we used (sometimes in
somewhat altered form) special cases of one of the two identities
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√
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These identities can be verified by raising each side to the fourth and sixth
powers, respectively. For example, setting a = (5 +
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utilized in the calculation of the invariant G65. Setting b = (4 + 3
√
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(3.2), we find that
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used to determine the class invariant G69. Some of the determinations in [20]
also depend on (3.1) and (3.2).

We are very grateful to Bruce Reznick for informing us that, in fact, (3.1)
and (3.2) are special cases of a theorem about Chebyshev polynomials. Recall
that the nth Chebyshev polynomial Tn(x) is defined by Tn(x) = cos(nθ),
where θ = cos−1 x. We now state and prove Reznick’s theorem.

Theorem 3.1. If x ≥ 1/2 and n is a positive integer , then
(√
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√
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2

)2n
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√
T 2
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P r o o f. Put x = (1/2) cos θ, so that θ is purely imaginary when x > 1/2.
Then
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√
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For example, if n = 2, then T2(2x) = 8x2 − 1, and so Theorem 3.1
yields (3.1); if n = 3, then T3(2x) = 32x3−6x, and Theorem 3.1 yields (3.2).
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After Reznick gave us Theorem 3.1, we learned that T. J. Osler also had
observed the connection between Chebyshev polynomials and the problem
of simplifying radicals, although Theorem 3.1 is not explicitly given in his
paper [10].

In Section 1, we gave one definition of a singular modulus. We offer an
alternative definition here. Let 2F1(a, b; c; z) denote the ordinary hyperge-
ometric series. For each positive rational number n, a singular modulus is
the unique number

√
αn satisfying the equation

2F1
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1
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1
2 ; 1; 1− αn

)
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1
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1
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) =
√
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In his second letter to G. H. Hardy [16, p. xxix], [7, p. 60], Ramanujan
asserted that√
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√
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This was first proved by Watson [18] using H. Weber’s value for the class
invariant g210 [19, p. 725], where

(3.3) 2g12
n =

1√
αn
−√αn,

and the following remarkable lemma found in Ramanujan’s first notebook
[15, Vol. 1, p. 320].

Lemma 3.2. Let (as in (3.3))

2g12
n =

1√
αn
−√αn.

If g6
n = uv and

u2 +
1
u2 = 2U, v2 +

1
v2 = 2V,

√
U2 + V 2 − 1 = W, U + V +W + 1 = 2S,

then

αn = {
√
S −
√
S − 1}2{

√
S − U −

√
S − U − 1}2

× {
√
S − V −

√
S − V − 1}2{

√
S −W −

√
S −W − 1}2.

Lemma 3.2 was also proved in Watson’s paper but his proof does not
shed any light on how Ramanujan might have discovered the formula. A
more natural proof is now available [2, pp. 277–280]. The latter proof is
based on the simple observation in Lemma 3.3 below.

To obtain elegant representations of αn from Lemma 3.2, we express g6
n

as a product of two units, for when n ≡ 2 (mod 4), gn is indeed a unit. Since
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u and v are units, U, V,W , and S are algebraic integers. Thus, Lemma 3.2
gives a representation of αn in terms of elegant and relatively simple radicals.

Lemma 3.3. The number

x = (
√
a−√a− 1)(

√
b+ 1−

√
b)

is a solution of the equation

(3.4)
1
x
− x = 2(

√
ab+

√
(b+ 1)(a− 1)).

Lemma 3.3 is applicable whenever we encounter an expression involving
x−1 − x. For example, by determining a and b in the expression

1
x
− x =

1− 2y2 + y3 +
√

1− 4y − 10y3 − 4y5 + y6

2y
,

S.-Y. Kang [9, Theorem 3.2, eq. (3.15)] established an explicit formula for the
Rogers–Ramanujan continued fraction found in Ramanujan’s lost notebook
[17, p. 208].

The simple analogue of Lemma 3.3 for the expression x−1 + x is given
in the next lemma.

Lemma 3.4. The number

x = (
√
a−√a− 1)(

√
b−
√
b− 1)

is a solution of the equation

(3.5)
1
x

+ x = 2(
√
ab+

√
(a− 1)(b− 1)).

The expression x−1 + x appears in Ramanujan’s evaluations of singular
moduli αn when n is divisible by 8 or 16. Using Lemma 3.4, we now sketch
new proofs of two results first proved in [2, p. 285, Theorem 9.5; p. 287,
Theorem 9.6].

Theorem 3.5. If
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√
1− 1/m2

2
,

then
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√
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√
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√
2
√
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√
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√
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}4
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2
√
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√
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P r o o f. From [2, p. 286], it suffices to solve the equation

x−1 + x = 2(
√
m+ 1 +

√
m)2(

√
m+

√
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= 2(
√
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√
m)2(2m− 1 + 2

√
m(m− 1)),
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where x = α
1/4
16n. Set

(3.6)
√
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√
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√
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and
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√
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√
m(m− 1).

Since (a− 1)(b− 1) = ab− a− b+ 1, we may conclude from (3.6) and (3.7)
that

(3.8) a+ b− 1 = (
√
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√
m+ 1)4 =: s2.

Substituting (3.8) into (3.6), we find that

(3.9) b(s2 − b+ 1) = s2(2m− 1)2,

which implies that
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√
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2
.

Since a and b are both solutions of (3.9) and a 6= b, we may set
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√
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2
=
s

2

(
1
s

+ s+ 4
√
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)
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√

2m) = s(
√
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This implies that the other solution of (3.10) is

(3.12) a = s(
√

2m− 1)2.

Substituting (3.11) and (3.12) into Lemma 3.4 yields Theorem 3.5.

To illustrate Theorem 3.5, we find that, for n = 1 [2, p. 286],

α16 = (
√

2 + 1)4(21/4 − 1)8.

Theorem 3.6. If

α2n = (
√
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√
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√
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2
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√
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√
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√
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(
√
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√
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√
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P r o o f. From [2, p. 288], we find that

1√
x

+
√
x = 2(

√
m+ 1 +

√
m)(
√
m+

√
m− 1),
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where x =
√
α8n. Set

(3.13)
√
ab = (

√
m+ 1 +

√
m)
√
m

and

(3.14)
√

(a− 1)(b− 1) = (
√
m+ 1 +

√
m)
√
m− 1.

These yield

a =
(√

m+
√
m+ 1 + 1√
2

)2

and b =
(√

m+
√
m+ 1− 1√
2

)2

and the expressions for α8n then follows from Lemma 3.4. The derivations
of a and b from (3.13) and (3.14) are similar to that given in the proof of
Theorem 3.5, and we therefore omit the details.

As an illustration of Theorem 3.6, if we set n = 3, we find that
[2, p. 287]

α24 =
(√

6 + 3
√

3−
√

5 + 3
√

3
)4(√

2 +
√

3−
√

1 +
√

3
)4
.

We end this section with a simple observation about Lemma 3.2, namely,
that it is independent of the definitions of class invariant and singular mod-
ulus. Hence, we may restate Lemma 3.2 in the spirit of Lemma 3.3 as

Lemma 3.7. Suppose x−1 − x = 2uv where u and v are preferably units
in some algebraic number fields. Let

u+
1
u

= 2U, v +
1
v

= 2V,
√
U2 + V 2 − 1 = W, U + V +W + 1 = 2S.

Then

x = {
√
S −
√
S − 1}{

√
S − U −

√
S − U − 1}

× {
√
S − V −

√
S − V − 1}{

√
S −W −

√
S −W − 1}.

In [8], Chan and S.-S. Huang showed that if

H(q) :=
q1/2

1 + q +
q2

1 + q3 +
q4

1 + q5 + . . .
,

then

(3.15)
1

H(e−π
√
n)
−H(e−π

√
n) = 2α−1/4

4n .

Equation (3.15) shows that the Ramanujan–Gordon–Göllnitz continued
fraction H(e−π

√
n) can be evaluated if α4n is known. Since [4]

α
1/4
12 = (

√
3−
√

2)(
√

2− 1),

α
1/4
24 =

(√
6 + 3

√
3−

√
5 + 3

√
3
)(√

2 +
√

3−
√

1 +
√

3
)
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and

α
1/4
28 = (3− 2

√
2)(2
√

2−
√

7),

we conclude from Lemma 3.7 that

H(e−π
√

3) =
(√√

2 +
√

3 + 3
2

−
√√

2 +
√

3 + 1
2

)

×
(√√

2−√3 + 3
2

−
√√

2−√3 + 1
2

)

×
(√−√2 +

√
3 + 3

2
−
√
−√2 +

√
3 + 1

2

)

×
(√√

2 +
√

3− 1
2

−
√√

2 +
√

3− 3
2

)
,

H(e−π
√

6) =
(√

2
√

2 +
√

6 +
√

3 + 3
2

−
√

2
√

2 +
√

6 +
√

3 + 1
2

)

×
(√

2
√

2 +
√

6−√3− 1
2

−
√

2
√

2 +
√

6−√3− 3
2

)

×
(√√

2 +
√

3 + 3
2

−
√√

2 +
√

3 + 1
2

)

×
(√−√2 +

√
3 + 3

2
−
√
−√2 +

√
3 + 1

2

)
,

H(e−π
√

7) =
(√

4 +
√

2−
√

3 +
√

2
)(√

4−√2−
√

3−√2
)

× (
√√

2 + 1− 21/4)(21/4 −
√√

2− 1
)
.

We have eliminated the details, but in each case the parameters U , V ,
W , and S can be routinely calculated.

4. Some radical equalities in the lost notebook. On page 344
in [17], Ramanujan recorded the eight equalities below. Although we have
not seen them before, because they are elementary, it is likely that some, or
all, of them have been heretofore observed. Because of the notation used by
Ramanujan, it might be conjectured that Ramanujan used these equalities
in the calculation of class invariants or similar types of numbers. However,
we have no examples to substantiate this vague feeling.



156 B. C. Berndt et al.

If g4 = 5, then

(4.1)
5
√

3 + 2g − 5
√

4− 4g
5
√

3 + 2g + 5
√

4− 4g
= 2 + g + g2 + g3.

If g5 = 2, then

(4.2)
√
g + 3 +

√
5g − 5√

g + 3−√5g − 5
= g + g2.

If g5 = 2, then

(4.3)

√
g2 + 1 +

√
4g − 3√

g2 + 1−√4g − 3
=

1
5

(1 + g2 + g3 + g9)2.

If g5 = 3, then

(4.4)

√
g2 + 1 +

√
5g − 5√

g2 + 1−√5g − 5
=

1
g

+ g + g2 + g3.

If g5 = 2, then

(4.5)
√

1 + g2 =
1√
5

(g4 + g3 + g − 1).

If g5 = 2, then

(4.6)
√

4g − 3 =
1√
5

(g9 + g7 − g6 − 1).

If g5 = 3, then

(4.7) 3
√

2− g3 =
1
3
√

5
(1 + g − g2).

If g5 = 2, then

(4.8) 5
√

1 + g + g3 =
1

10
√

5

√
1 + g2.

Equalities (4.1)–(4.4) are readily proved if we use the elementary fact
that

(4.9)
A+B

A−B = M if and only if (M − 1)A = (M + 1)B.

As an illustration, we prove (4.1).
If A = 5

√
2g + 3 and B = 5

√
4g − 4, by (4.9), it suffices to prove that

(4.10) (1 + g + g2 + g3) 5
√

2g + 3 = (3 + g + g2 + g3) 5
√

4g − 4.

Since g4 = 5, we have

1 + g + g2 + g3 =
g4 − 1
g − 1

=
4

g − 1
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and

3 + g + g2 + g3 = 2 +
4

g − 1
=

2g + 2
g − 1

.

Thus, (4.10) is equivalent to the equality

2 5
√

2g + 3 = (g + 1) 5
√

4g − 4,

or
8(2g + 3) = (g + 1)5(g − 1),

which is readily verified by again using the hypothesis g4 = 5.
Equalities (4.5)–(4.8) can easily be established by raising each side to an

appropriate power.
Next to (4.7), Ramanujan wrote “g = 3”. Indeed, it is readily verified

that g = 3 is also a root of (4.7).
To the right of (4.8), Ramanujan wrote

(4.11) g5 + 5g3 + 5g + 2 = 0.

Indeed, from (4.8),

0 = g10 + 5g8 + 5g6 − 10g3 − 10g − 4 = (g5 − 2)(g5 + 5g3 + 5g + 2),

which proves (4.11).

We are very grateful to the referee for pointing out several inaccuracies
in our original manuscript.
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