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Parabolic differential-functional inequalities

in viscosity sense

by Krzysztof Topolski (Gdańsk)

Abstract. We consider viscosity solutions for second order differential-functional
equations of parabolic type. Initial value and mixed problems are studied. Comparison
theorems for subsolutions, supersolutions and solutions are considered.

1. Introduction. Let Ω⊆R
n be any open domain and T > 0, τ0, r ∈

R+ = [0,∞) given constants. Define

Ωr = {x ∈ R
n : dist(x,Ω) ≤ r}, δ0Ω = Ωr \Ω, Θ = (0, T ) ×Ω,

Θ0 = [−τ0, 0] ×Ωr, δ0Θ = (0, T ) × δ0Ω, Γ = Θ0 ∪ δ0Θ, E = Γ ∪Θ.

(Note that if Ω = R
n then Ωr = R

n, δ0Θ = δ0Ω = ∅ and Γ = Θ0.) Let
D = [−τ0, 0] × B(r), where B(r) = {x ∈ R

n : |x| ≤ r} and | · | is the
Euclidean norm in R

n. For every z : E → R and (t, x) ∈ Θ we define a
function z(t,x) : D → R by z(t,x)(s, y) = z(t+ s, x+ y) for (s, y) ∈ D.

For every metric space X we denote by C(X) the class of all continuous
functions from X into R and by BUC(X) the class of all uniformly contin-
uous and bounded functions from X into R. We will write ‖ · ‖X for the
supremum norm. Let M(n) stand for the space of n×n real symmetric ma-
trices. Recall that A ≥ B if for all ξ ∈ R

n we have 〈Aξ, ξ〉 ≥ 〈Bξ, ξ〉 where
〈·, ·〉 denotes the standard inner product. For A ∈ M(n) we denote by ‖A‖
the norm of A. Let F : Θ × R × C(D) × R

n ×M(n) → R be a continuous
function of the variables (t, x, u,w, p,A) and g ∈ C(Γ ) be a given function.

We write C1,2(Θ) (resp. C1,2(E)) for the set of all functions from Θ

(resp. E) into R with continuous derivatives Dtu,Dxu,D
2
xu.

We consider the initial-boundary value problem

Dtz + F (t, x, z(t, x), z(t,x) ,Dxz(t, x),D
2
xz(t, x)) = 0 in Θ,(1)

z(t, x) = g(t, x) in Γ.(2)
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Even though we say “initial-boundary value problem” it is an initial value
problem for Θ = (0, T ) × R

n.
Problem (1), (2) contains as a particular case equations with retarded

argument and a few kinds of differential-integral equations.

Definition 1. A function u ∈ C(E) is called F -subparabolic (resp.
F -superparabolic) provided for all ψ ∈ C1,2(Θ), if u − ψ attains a local
maximum (resp. minimum) at (t0, x0) ∈ Θ then

F (t0, x0, u(t0, x0), u(t0,x0),Dxψ(t0, x0), A)

≥ F (t0, x0, u(t0, x0), u(t0,x0),Dxψ(t0, x0), B)

whenever A ≤ B.
A function u ∈ C(E) is called F -parabolic if u is both F -subparabolic

and F -superparabolic.

Definition 2. A function u ∈ C(E) is a viscosity subsolution (resp.
supersolution) of (1), (2) if u is F -subparabolic (resp. F -superparabolic)
and provided for all ϕ ∈ C1,2(Θ), if u − ϕ attains a local maximum (resp.
minimum) at (t0, x0) ∈ Θ then

(3) Dtϕ(t0, x0) + F (t0, x0, u(t0, x0), u(t0,x0),Dxϕ(t0, x0),D
2
xϕ(t0, x0) ≤ 0

(resp. Dtϕ(t0, x0)+F (t0, x0, u(t0, x0), u(t0,x0),Dxϕ(t0, x0),D
2
xϕ(t0, x0) ≥ 0)

and

(4) u(t, x) ≤ g(t, x) (resp. u(t, x) ≥ g(t, x)) in Γ

Definition 3. A function u ∈ C(E) is a viscosity solution of (1), (2) if
u is both a viscosity subsolution and supersolution of (1), (2).

We denote by SUB(F, g), SUP(F, g), SOL(F, g) the sets of all viscosity
subsolutions, supersolutions and solutions of problem (1), (2).

The following is immediate:

Remark 1. If u ∈ C(E) ∩ C1,2(Θ) then u ∈ SOL(F, g) (resp. u ∈
SUB(F, g),SUP(F, g)) if and only if u is a classical solution (resp. subso-
lution, supersolution) of (1), (2).

This notion of solution was first introduced by M. G. Crandall and
P. L. Lions in [4] and [6] for first order differential equations. The best
general reference for second order equations is [3].

There are two ways of estimating solutions for parabolic inequalities.
We can use one-variable or multi-variable comparison functions. The second
method is presented in [5]. This work is devoted to the first. The main result
for classical solutions were announced by J. Szarski in [7] and for functional-
differential equations by the same author in [8, 9]. Sufficient conditions for
the existence of classical solutions for functional-differential equations were
given by Brzychczy in [1, 2].
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2.Viscosity inequalities. A function ω is said to satisfy condition “P”
if ω ∈ C([0, T ]×R+) is nondecreasing, positive and the right-hand maximum
solution of the problem

(5) y′(t) = ω(t, y(t)), y(0) = σ,

exists in [0, T ]. We will denote this solution by µ(t, σ).

Write a+ = max(0, a), a− = max(0,−a) for a ∈ R. For G ⊆ R
n+1 set

Gt = {(s, x) ∈ G : −τ0 ≤ s ≤ t}.

Proposition 1. Let a > 0 and h,H ∈ C([0, a]). Assume that h is a

viscosity solution of h′ ≤ H (i.e. h is a viscosity subsolution of h′ = H) in

(0, a). Then

h(t) ≤ h(s) +

t\
s

H(τ) dτ for 0 ≤ s ≤ t ≤ a.

The proof can be found in [4], p. 12.

We will need the following

Assumption 1. 1) There exists a function ω satisfying condition “P”

such that for all (t, x, u,w) ∈ Θ × R × C(D), if u ≥ 0 then

F (t, x, u,w, 0, 0) ≥ −ω(t,max(u, ‖w+‖D)).

2) For every R > 0 and |u|, ‖w‖D ≤ R,

[F (t, x, u,w, 0, 0) − F (t, x, u,w, p,A)]+ → 0 as p,A→ 0

uniformly with respect to (t, x, u,w) ∈ Θ × R × C(D).

Theorem 1. Suppose that F satisfies Assumption 1 and z ∈ BUC(E)∩
SUB(F, g). Then

(6) ‖z+‖Et
≤ µ(t, ‖g+‖Γt

) for t ∈ [0, T ].

P r o o f. Put

(7) M(t) = ‖z+‖Θt
, M(t) = ‖z+‖Et

, M0(t) = ‖z+‖Γ t
for t ∈ [0, T ].

Since z is uniformly continuous it follows that M,M,M0 are continuous.
(Note that if Ω = R

n then M0(t) ≡ M0(0).) It is evident that it suffices to
show (6) for t = T.

If M(T ) ≤ M0(T ) there is nothing to prove. Suppose that M(T ) >
M0(T ). Since M(0) ≤M0(0) there exists t∗ ∈ [0, T ) such that

(8) M(t∗) = M(t∗) = M0(t
∗) and M(t) > M0(t) for t ∈ (t∗, T ].

We will show that

(9) M ′(t) ≤ ω(t,M(t)) in viscosity sense for t ∈ (t∗, T )
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(i.e. M is a viscosity subsolution of y′ = ω(t, y)). Let η ∈C1((t∗, T )) and
suppose M − η attains a local maximum at t0 ∈ (t∗, T ). Since M is nonde-
creasing it is clear that η′(t0) ≥ 0. We claim that

(10) η′(t0) ≤ ω(t0,M(t0)).

Indeed, if η′(t0) = 0 then (10) is obvious. Let η′(t0) > 0. It follows from
Lemma 1.4 of [4] that we can find a nondecreasing function η ∈ C1([t∗, T ])
such that η′(t0) = η′(t0) and (M−η)(t0)>(M−η)(t) for t 6= t0. To simplify
notation we continue to write η for η.

Put I = [t∗, T ]. Define Φ : I ×Ω → R by

(11) Φ(t, x) = z(t, x)+ − η(t).

Let δ > 0 and let (t′, x′) ∈ I ×Ω be such that Φ(t′, x′) > supΦ− δ. Put

(12) Ψ(t, x) = Φ(t, x) + 2δξ(x) for (t, x) ∈ I ×Ω

where ξ ∈ C∞

0 (Rn), 0 ≤ ξ ≤ 1, ξ(x′) = 1, |Dξ|, ‖D2ξ‖ ≤ 1 and Dξ,D2ξ are
the derivatives of ξ. Since Ψ = Φ outside the support of ξ and Ψ(t′, x′) >
supΦ + δ there exists (tδ, xδ) ∈ I × Ω such that Ψ(tδ, xδ) = supΨ . By the
compactness of I we can assume, taking a subsequence if necessary, that
tδ → t as δ → 0.

We claim that t = t0. Indeed, since

(13) z(tδ, xδ)
+ − η(tδ) + 2δ ≥ z(s, x)+ − η(s) for t∗ ≤ s ≤ t ∈ I

and η(s) ≤ η(t) we obtain, by (8),

(14) M(tδ) − η(tδ) + 2δ ≥M(t) − η(t) for t ∈ I.

Note that in view of (8), M(t) = sup{z+(s, x) : (s, x) ∈ Θt \Θt∗} for t ∈ I.
Letting δ → 0 in (14) we get

M(t) − η(t) ≥M(t) − η(t) for t ∈ I,

which means by the definition of t0 that t = t0.
It also follows from (13), (14) (for t = t0) that

M(t0) − η(t0) ≥ lim sup
δ→0

z(tδ, xδ)
+ − η(t0)

≥ lim inf
δ→0

z(tδ, xδ)
+ − η(t0) ≥M(t0) − η(t0),

which yields

(15) lim
δ→0

z(tδ , xδ)
+ = M(t0).

Observe now that we may assume that xδ ∈ Ω. Indeed, if xδ → x0 ∈ δ0Ω

then z(t0, x0)
+ ≤ M0(t0) and by (15) we have M(t0) ≤ M0(t0), which

contradicts (8). Moreover, by (8), (15) we can also assume that z+(tδ, xδ) =
z(tδ, xδ) > 0. Put

λ(t, x) = η(t) − 2δξ(x).
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Notice that z − λ attains a local maximum at (tδ, xδ) ∈ (t∗, T ) ×Ω. Since

Dtλ(tδ , xδ) = η′(tδ), Dxλ(tδ, xδ) = −2δDξ(xδ),

D2
xλ(tδ , xδ) = −2δD2ξ(xδ)

and z ∈ SUB(F, g) in Θ \Θt∗ we obtain

η′(tδ) + F (tδ, xδ, z(tδ , xδ), z(tδ ,xδ),−2δDξ(xδ),−2δD2ξ(xδ)) ≤ 0

and

η′(tδ) + F (tδ , xδ, z(tδ , xδ), z(tδ ,xδ),−2δDξ(xδ),−2δD2ξ(xδ))

− F (tδ , xδ, z(tδ , xδ), z(tδ ,xδ), 0, 0) + F (tδ, xδ , z(tδ, xδ), z(tδ ,xδ), 0, 0) ≤ 0.

It follows from Assumption 1 that

η′(tδ) − ω(tδ,max(z(tδ , xδ), ‖z
+
(tδ ,xδ)‖D)) −Aδ ≤ 0

where Aδ → 0 as δ → 0. Hence,

(16) η′(tδ) − ω(tδ, ‖z
+
(tδ ,xδ)‖D)) −Aδ ≤ 0.

Notice that

lim
δ→0

‖z+
(tδ ,xδ)‖D = M(t0).

This fact follows from (15) and from the inequality

z(tδ, xδ)
+ ≤ ‖z+

(tδ ,xδ)‖D ≤ z(tδ, xδ)
+ + 2δ

where the right-hand estimate is a consequence of (13) (for t = tδ). Letting
δ → 0 in (16) we get (10). It now follows from Proposition 1 (if we put
H(t) = ω(t,M(t))) that

(17) M(t) ≤M(t∗) +

t\
t∗

ω(s,M(s)) ds, t ∈ [t∗, T ],

which in view of (8) implies

(18) M(t) ≤M0(T ) +

t\
0

ω(s,M(s)) ds for t ∈ [t∗, T ].

Since

M(t) ≤M(t∗) = M0(t
∗) ≤M0(T ) for t < t∗

inequality (18) holds for t ∈ [0, T ]. It follows from standard theorems that

M(t) ≤ µ(t,M0(T )) for t ∈ [0, T ].

Putting t = T we complete the proof.

Remark 2. If we assume that ‖g+‖Γt
≤ µ(t, ‖g+‖Γ0

) for t ∈ [0, T ] then

(19) ‖z+‖Et
≤ µ(t, ‖g+‖Γ0

).
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P r o o f. It follows from (17) and (8) that

M(t) ≤ µ(t∗,M0(0)) +

t\
t∗

ω(s,M(s)) ds for t ∈ [t∗, T ]

and as a result

M(t) ≤ µ(t; t∗, µ(t∗,M0(0))) = µ(t,M0(0)) for t ∈ [t∗, T ]

where µ(t; t∗, µ(t∗,M0(0))) denotes the right-hand maximum solution of (16)
through (t∗, µ(t∗,M0(0))).

Assumption 2. 1) There exists a function ω satisfying condition “P”

such that for all (t, x, u,w) ∈ Θ × R × C(D), if u ≤ 0 then

F (t, x, u,w, 0, 0) ≤ ω(t,max(u, ‖w−‖D)).

2) For every R > 0 and |u|, ‖w‖D ≤ R,

[F (t, x, u,w, 0, 0) − F (t, x, u,w, p,A)]− → 0 as p,A→ 0

uniformly with respect to (t, x, u,w) ∈ Θ × R × C(D).

Corollary 1. Suppose that F satisfies Assumption 2 and z∈BUC(E)∩
SUP(F, g) then

(20) ‖z−‖Et
≤ µ(t, ‖g−‖Γt

) for t ∈ [0, T ].

Moreover , if we assume that ‖g−‖Γt
≤ µ(t, ‖g−‖Γ0

) for t ∈ [0, T ] then

(21) ‖z−‖Et
≤ µ(t, ‖g−‖Γ0

).

P r o o f. Notice that if z ∈ SUP(F, g) that −z ∈ SUB(F̃ ,−g) where

(22) F̃ (t, x, u,w, p,A) = −F (t, x,−u,−w,−p,−A).

It is easy to check that F satisfies Assumption 2 if and only if F̃ satisfies
Assumption 1. Therefore Theorem 1 and Remark 2 imply (20) and (21).

Let us now introduce:

Assumption 3. 1) There exists a function ω satisfying condition “P”

such that for all (t, x, u,w) ∈ Θ × R × C(D), if u ≥ 0 then

F (t, x, u,w, 0, 0) ≥ −ω(t,max(|u|, ‖w‖D)),

and if u ≤ 0 then

F (t, x, u,w, 0, 0) ≤ ω(t,max(|u|, ‖w‖D)).

2) For every R > 0 and |u|, ‖w‖D ≤ R,

F (t, x, u,w, p,A) → F (t, x, u,w, 0, 0) as p,A→ 0

uniformly with respect to (t, x, u,w) ∈ Θ × R × C(D).
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Theorem 2. Suppose that F satisfies Assumption 3 and z ∈ BUC(E) ∩
SOL(F, g). Then

(23) ‖z‖Et
≤ µ(t, ‖g‖Γt

) for t ∈ [0, T ].

Moreover , if ‖g‖Γt
≤ µ(t, ‖g‖Γ0

) for t ∈ [0, T ] then

(24) ‖z‖Et
≤ µ(t, ‖g‖Γ0

).

P r o o f. The proof follows by the same method as for Theorem 1. The
only difference is that we put |z| in place of z+. Now, we have

M(t) = ‖z‖Θt
, M(t) = ‖z‖Et

, M0(t) = ‖z‖Γ t
for t ∈ [0, T ],

Φ(t, x) = |z(t, x)| − η(t),

and since |z(tδ , xδ)| > 0 we consider two cases z(tδ , xδ) > 0 and z(tδ, xδ) < 0.
Both lead in view of Assumption 3 to (23) and (24).

3. Comparison results. Let F,F : Θ × R × C(D) × R
n ×M(n) → R

and g, g : Γ → R be continuous functions.

Assumption 4. 1) There exists a function ω satisfying condition “P”

such that for all (t, x, u,w, p,A), (t, x, v, z, p,A) ∈ Θ × R × C(D) × R
n ×

M(n), if u ≥ v then

F (t, x, u,w, p,A) − F (t, x, v, z, p,A) ≥ −ω(t,max(|u− v|, ‖(w − z)+‖D)).

2) For every R > 0 and |u|, ‖w‖D ≤ R, F (t, x, u,w, ·, ·) is continuous

uniformly with respect to (t, x, u,w) ∈ Θ × R × C(D).

Assumption 5. 1) There exists a function ω satisfying condition “P”

such that for all (t, x, u,w, p,A), (t, x, v, z, p,A) ∈ Θ×R×C(D)×R
n×M(n),

if u ≥ v then

F (t, x, u,w, p,A) − F (t, x, v, z, p,A) ≥ −ω(t,max(|u− v|, ‖w − z‖D)),

and if u ≤ v then

F (t, x, u,w, p,A) − F (t, x, v, z, p,A) ≤ ω(t,max(|u− v|, ‖w − z‖D)).

2) F (t, x, u,w, ·, ·) and F (t, x, u,w, ·, ·) are continuous uniformly with re-

spect to (t, x, u,w) ∈ Θ × R × C(D) for every R > 0 and |u|, ‖w‖D ≤ R.

Theorem 3. Suppose that F and F satisfy Assumption 4 and u ∈
BUC(E) ∩ SUB(F, g), v ∈ C1,2(Θ) ∩ BUC(E) ∩ SUP(F, g). Then

(25) ‖(u− v)+‖Et
≤ µ(t, ‖(g − g)+‖Γt

) for t ∈ [0, T ].

Moreover , if ‖(g − g)+‖Γt
≤ µ(t, ‖(g − g)+‖Γ0

) for t ∈ [0, T ] then

(26) ‖(u− v)+‖Et
≤ µ(t, ‖(g − ḡ)+‖Γ0

).



24 K. Topolski

P r o o f. It is easily seen that w∗ = u− v ∈ SUB(F [v], g − g) where

F [v](t, x, z, w, p,A)

= F (t, x, z + v(t, x), w + v(t,x), p+Dxv(t, x), A +D2
xv(t, x))

− F (t, x, v(t, x), v(t,x) ,Dxv(t, x),D
2
xv(t, x))

satisfies Assumption 1. Theorem 1 and Remark 2 imply the desired asser-
tions.

Similar reasoning yields

Theorem 4. Suppose that F and F satisfy Assumption 5 and u ∈
BUC(E) ∩ SOL(F, g), v ∈ C1,2(Θ) ∩ BUC(E) ∩ SOL(F, g). Then

(27) ‖u− v‖Et
≤ µ(t, ‖g − g‖Γt

) for t ∈ [0, T ].

Moreover , if ‖g − g‖Γt
≤ µ(t, ‖g − g‖Γ0

) for t ∈ [0, T ] then

(28) ‖u− v‖Et
≤ µ(t, ‖g − g‖Γ0

).

Remark 3. For first order equations (with F,F not depending on A)
some results, which are not consequences of the above, are presented in [10].

Remark 4. The above results may by extended to weakly coupled sys-
tems of differential-functional equations.
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