On some radius results for normalized analytic functions

by Yong Chan Kim (Taegu), Jin Seop Lee (Taegu) and Ern Gun Kwon (Andong)

Abstract. We investigate some radius results for various geometric properties concerning some subclasses of the class \mathcal{S} of univalent functions.

1. Introduction. Let \mathcal{A} denote the class of all normalized functions f(z),

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disc $\mathcal{U} = \{z : |z| < 1\}$.

Also let \mathcal{S} denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U} . We denote by $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$ the subclasses of \mathcal{S} consisting of all functions which are, respectively, starlike and convex of order α in \mathcal{U} (0 $\leq \alpha <$ 1), that is,

(1.2)
$$S^*(\alpha) := \left\{ f : f \in S \text{ and } \operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \ z \in \mathcal{U} \right\}$$

and

(1.3)
$$\mathcal{K}(\alpha) := \left\{ f : f \in \mathcal{S} \text{ and } \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \ z \in \mathcal{U} \right\}.$$

Further, we introduce the sets

(1.4) UST :=
$$\left\{ f : f \in \mathcal{S} \text{ and } \operatorname{Re}\left(\frac{f(z) - f(\zeta)}{(z - \zeta)f'(z)}\right) \ge 0, \ (z, \zeta) \in \mathcal{U} \times \mathcal{U} \right\}$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 30C45.

Key words and phrases: Hausdorff–Young theorem, univalent function, Hardy space, Dirichlet space.

The authors owe a debt of gratitude to Professor Frode Rønning and the referee for their comments on the paper. This work was supported by KOSEF (Project No. 94-0701-02-01-3), TGRC-KOSEF, and the Basic Science Research Institute Program, Ministry of Education (BSRI-96-1401).

and

(1.5) UCV :=
$$\left\{ f : f \in \mathcal{S} \text{ and } \operatorname{Re}\left(1 + (z - \zeta)\frac{f''(z)}{f'(z)}\right) \ge 0, \ (z, \zeta) \in \mathcal{U} \times \mathcal{U} \right\}$$

which were defined by Goodman [3, 4].

Each of the classes UST and UCV has a natural geometric interpretation: $f \in \text{UST}$ if and only if the image of every circular arc in \mathcal{U} with center ζ also in \mathcal{U} is *starlike* with respect to $f(\zeta)$, and $f \in \text{UCV}$ if and only if the image of every circular arc is *convex*.

Note that if we take $\zeta = 0$ in (1.4) and (1.5) we have the usual classes of starlike and convex functions, and if we let $\zeta \to z$, then the conditions are trivially fulfilled.

Let $S_p(\alpha)$ be the class defined by

(1.6)
$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \operatorname{Re} \frac{zf'(z)}{f(z)} - \alpha.$$

We see that for all $\alpha \in [-1,1)$ we have $S_p(\alpha) \subset \mathcal{S}^*(0)$. Introducing the class $UCV(\alpha)$ (uniformly convex functions of order α) by $g \in UCV(\alpha) \Leftrightarrow zg' \in S_p(\alpha)$, we observe that $UCV(\alpha) \subset \mathcal{K}(0)$ for $\alpha \in [-1,1)$ (see [7, 8]).

Then $f \in UCV(\alpha)$ if and only if

(1.7)
$$\operatorname{Re}\left\{1+(z-\zeta)\frac{f''(z)}{f'(z)}\right\} \ge \alpha, \quad (z,\zeta) \in \mathcal{U} \times \mathcal{U}.$$

Clearly we have UCV(0) = UCV. We easily find that [6]

$$g \in UCV \Leftrightarrow zg' \in S_p(0) \equiv S_p$$
.

Let
$$\alpha_j$$
 $(j=1,\ldots,p)$ and β_j $(j=1,\ldots,q)$ be complex numbers with $\beta_j \neq 0,-1,-2,\ldots, \quad j=1,\ldots,q.$

Then the generalized hypergeometric function ${}_{n}F_{a}(z)$ is defined by

$$(1.8) pF_q(z) \equiv {}_pF_q(\alpha_1, \dots, \alpha_p; \beta_1, \dots, \beta_q; z)$$
$$:= \sum_{n=0}^{\infty} \frac{(\alpha_1)_n \dots (\alpha_p)_n}{(\beta_1)_n \dots (\beta_q)_n} \cdot \frac{z^n}{n!}, \quad p \le q+1,$$

where $(\lambda)_n$ is the Pochhammer symbol defined, in terms of the gamma function, by

$$(1.9) \quad (\lambda)_n := \Gamma(\lambda + n)/\Gamma(\lambda)$$

$$= \begin{cases} 1 & (n = 0), \\ \lambda(\lambda + 1) \dots (\lambda + n - 1) & (n \in \mathbb{N} := \{1, 2, 3, \dots\}). \end{cases}$$

The ${}_{p}F_{q}(z)$ series in (1.8) converges absolutely for $|z| < \infty$ if p < q + 1,

and for $z \in \mathcal{U}$ if p = q + 1. Furthermore, if we set

(1.10)
$$w = \sum_{j=1}^{q} \beta_j - \sum_{j=1}^{p} \alpha_j,$$

it is known that the pF_q series, with p=q+1, is absolutely convergent for

$$|z| = 1 \text{ if } \operatorname{Re}(w) > 0,$$

and conditionally convergent for

$$|z| = 1 \ (z \neq 1) \text{ if } -1 < \text{Re}(w) \le 0.$$

Let $\sigma_{\alpha}(f)$ denote the largest number r such that f(z) is univalent on $\mathcal{U}_r := \{z \in \mathbb{C} : |z| < r \le 1\}$ and

(1.11)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \quad \text{ on } \mathcal{U}_r$$

and let $k_{\alpha}(f)$ denote the largest number r such that f(z) is univalent on \mathcal{U}_r and

(1.12)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha \quad \text{ on } \mathcal{U}_r.$$

Similarly, $\sigma_{\text{UST}}(f)$ denotes the largest number r such that f(z) is univalent on \mathcal{U}_r and

(1.13)
$$\operatorname{Re}\left\{\frac{f(z) - f(\zeta)}{(z - \zeta)f'(z)}\right\} \ge 0, \quad (z, \zeta) \in \mathcal{U}_r \times \mathcal{U}_r,$$

 $\sigma_{S_p(\alpha)}(f)$ denotes the largest number r such that f(z) is univalent on \mathcal{U}_r and

(1.14)
$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \operatorname{Re} \frac{zf'(z)}{f(z)} - \alpha, \quad z \in \mathcal{U}_r,$$

and $k_{\text{UCV}(\alpha)}(f)$ denotes the largest number r such that f(z) is univalent on \mathcal{U}_r and

(1.15)
$$\operatorname{Re}\left\{1 + (z - \zeta)\frac{f''(z)}{f'(z)}\right\} \ge \alpha, \quad (z, \zeta) \in \mathcal{U}_r \times \mathcal{U}_r.$$

For 0 and a function <math>f(z) in \mathcal{U} , define the integral means $M_p(r,f)$ by

(1.16)
$$M_p(r,f) = \begin{cases} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta\right)^{1/p} & \text{if } 0$$

Then, by definition, an analytic function f(z) in \mathcal{U} belongs to the Hardy space \mathcal{H}^p (0 if

(1.17)
$$||f||_p := \lim_{r \to 1_-} M_p(r, f) < \infty.$$

For $f \in \mathcal{A}$ we set

(1.18)
$$\Phi_p(r,f) = \frac{r}{\{1 + M_p(r,f'-1)^p\}^{1/p}} \quad (0 \le r < 1),$$

and

(1.19)
$$\Phi_p(f) = \sup_{0 \le r < 1} \Phi_p(r, f) \quad (0 < p < \infty).$$

For the functions $f_j(z)$ (j = 1, 2) defined by

(1.20)
$$f_j(z) = \sum_{n=0}^{\infty} a_{j,n+1} z^{n+1} \quad (a_{j,1} := 1; \ j = 1, 2),$$

let $(f_1 * f_2)(z)$ denote the *Hadamard product* or *convolution* of $f_1(z)$ and $f_2(z)$, defined by

$$(1.21) (f_1 * f_2)(z) := \sum_{n=0}^{\infty} a_{1,n+1} a_{2,n+1} z^{n+1} (a_{j,1} := 1; \ j = 1, 2).$$

Let λ denote normalized Lebesgue area measure on \mathcal{U} ; and, for $\beta > -1$, λ_{β} denote the finite measure defined on \mathcal{U} by

$$(1.22) d\lambda_{\beta}(z) = (1 - |z|^2)^{\beta} d\lambda(z).$$

For $\beta > -1$ and $0 the weighted Bergman space <math>A^p_{\beta}$ is the collection of all functions f holomorphic in \mathcal{U} for which

(1.23)
$$||f||_{p,\beta}^p = \int_{\mathcal{U}} |f|^p d\lambda_\beta < \infty.$$

The weighted Dirichlet space D_{β} ($\beta > -1$) is the collection of all functions f holomorphic in \mathcal{U} for which the derivative f' belongs to A_{β}^2 . It is well known that A_{β}^p is a complete linear metric space for p > 0, a Banach space if $p \geq 1$, and a Hilbert space if p = 2.

The space D_{β} is a Hilbert space with the norm $\|\cdot\|_{D_{\beta}}$ defined by

(1.24)
$$||f||_{D_{\beta}}^{2} = |f(0)|^{2} + \int_{\mathcal{U}} |f'|^{2} d\lambda_{\beta}.$$

In this paper, we investigate some radii problems for various geometric properties concerning the subclasses of the class S of univalent functions.

2. A set of lemmas. The following lemmas will be required in our investigation.

Lemma 1 (Hausdorff–Young [1, Theorem 6.1, p. 94]). Let $f \in \mathcal{H}^p, 1 \leq p \leq 2$. Then

$$\left(\sum_{n=0}^{\infty} |a_n|^q\right)^{1/q} \le ||f||_p, \quad 1/p + 1/q = 1,$$

where the left-hand side is $\sup_{n\geq 0} |a_n|$ if p=1.

LEMMA 2 (H. Silverman [9, Theorem 1, Corollary, p. 110]). Let f(z) be defined by (1.1) and $0 \le \alpha < 1$. Then

(i)
$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \le 1 - \alpha \Rightarrow \sigma_{\alpha}(f) = 1,$$

(ii)
$$\sum_{n=2}^{\infty} n(n-\alpha)|a_n| \le 1 - \alpha \Rightarrow k_{\alpha}(f) = 1.$$

LEMMA 3. Let f(z) be defined by (1.1) and $0 \le \alpha < 1$. Then

$$\sum_{n=2}^{\infty} (n-\alpha)|a_n| \le 1 - \alpha \Rightarrow k_{\alpha}(f) \ge 1/2.$$

Further, the constant 1/2 is best possible.

Proof. Let $f(z) \in \mathcal{A}$ be such that $\sum_{n=2}^{\infty} (n-\alpha)|a_n| \leq 1-\alpha$. Put $g(z)=2f(z/2)=z+\sum_{n=2}^{\infty}a_n(1/2)^{n-1}z^n\equiv\sum_{n=1}^{\infty}c_nz^n\in\mathcal{A}$. Then

$$\sum_{n=2}^{\infty} \frac{n(n-\alpha)}{1-\alpha} |c_n| \le \sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha} |a_n| \le 1.$$

By Lemma 2, we obtain $k_{\alpha}(g) = 1$ and $k_{\alpha}(f) \geq 1/2$.

Lemma 4 (A. W. Goodman [4, Theorem 6, p. 369; 3, Theorem 6, p. 91]). Let f(z) be defined by (1.1). Then

(i)
$$\sum_{n=2}^{\infty} n|a_n| \le \sqrt{2}/2 \Rightarrow \sigma_{\text{UST}}(f) = 1,$$

(ii)
$$\sum_{n=2}^{\infty} n(n-1)|a_n| \le 1/3 \Rightarrow k_{\text{UCV}}(f) = 1.$$

Further, the number 1/3 above is the largest possible.

LEMMA 5. Let f(z) be defined by (1.1) and $-1 \le \alpha < 1$. Then

(i)
$$\sum_{n=2}^{\infty} n(n-1)|a_n| \le \frac{1-\alpha}{3-\alpha} \Rightarrow k_{\text{UCV}(\alpha)}(f) = 1.$$

Further, the constant $\frac{1-\alpha}{3-\alpha}$ above cannot be replaced by a larger number.

(ii)
$$\sum_{n=2}^{\infty} (n-1)|a_n| \le \frac{1-\alpha}{3-\alpha} \Rightarrow k_{S_p(\alpha)}(f) = 1.$$

(iii)
$$\sum_{n=2}^{\infty} (n-1)|a_n| \le \frac{1-\alpha}{3-\alpha} \Rightarrow k_{\mathrm{UCV}(\alpha)}(f) \ge 1/2.$$

Proof. (i) Let
$$f(z)=z+\sum_{n=2}^\infty a_nz^n$$
 with
$$\sum_{n=2}^\infty n(n-1)|a_n|\leq \frac{1-\alpha}{3-\alpha}.$$

Then

$$\sum_{n=2}^{\infty} n|a_n| \le \frac{1-\alpha}{3-\alpha}.$$

Further,

$$1 + \operatorname{Re}\left\{\frac{f''(z)(z-\zeta)}{(1-\alpha)f'(z)}\right\} \ge 1 - \frac{1}{1-\alpha} \cdot \frac{\sum_{n=2}^{\infty} n(n-1)|a_n| \cdot |z^{n-2}|}{1 - \sum_{n=2}^{\infty} n|a_n| \cdot |z^{n-1}|} |z-\zeta|$$
$$\ge 1 - \frac{\frac{2(1-\alpha)}{3-\alpha}}{(1-\alpha)\left(1 - \frac{1-\alpha}{3-\alpha}\right)} = 0.$$

Thus $k_{\text{UCV}(\alpha)}(f) = 1$. But equality is attained for the function f(z) = $z - \frac{1-\alpha}{6-2\alpha}z^2 \text{ with } z = 1 \text{ and } \zeta = -1.$ (ii) Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ with

(ii) Let
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 with

$$\sum_{n=2}^{\infty} (n-1)|a_n| \le \frac{1-\alpha}{3-\alpha}.$$

Then there exists

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n = z + \sum_{n=2}^{\infty} \frac{a_n}{n} z^n$$
, i.e. $zg'(z) = f(z)$,

such that

$$\sum_{n=2}^{\infty} n(n-1)|b_n| = \sum_{n=2}^{\infty} (n-1)|a_n| \le \frac{1-\alpha}{3-\alpha}.$$

Thus, by (i), $k_{\text{UCV}(\alpha)}(g) = 1$, i.e. $g(z) \in \text{UCV}(\alpha)$. Therefore, by the relation between $UCV(\alpha)$ and $S_p(\alpha)$, $f \in S_p(\alpha)$, i.e. $\sigma_{S_p(\alpha)}(f) = 1$.

(iii) The proof is much akin to that of Lemma 3, with (i) above used in place of Lemma 2.

3. Results. By using Lemmas 1 and 2, we obtain

Theorem 1. Let f(z) be defined by (1.1). Then

(3.1)
$$\sigma_{\alpha}(f) \ge \Phi_{p}(g_{\alpha}) \quad (0 \le \alpha < 1; \ 1 \le p \le 2),$$

where

(3.2)
$$g_{\alpha}(z) = \left[\frac{1}{1-\alpha} \left\{ \frac{z}{1-z} + \alpha \log(1-z) \right\} \right] * f(z).$$

Moreover,

(3.3)
$$g_{\alpha}(z) = [z \, {}_{3}F_{2}(2-\alpha,1,1;1-\alpha,2;z)] * f(z)$$
$$= \sum_{n=1}^{\infty} \frac{n-\alpha}{1-\alpha} \cdot \frac{1}{n} a_{n} z^{n}.$$

Proof. We may put $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \neq z$. For fixed r, 0 < r < 1, define

(3.4)
$$R = \Phi_p(r, g_\alpha) \quad (0 \le \alpha < 1).$$

Then we easily find that 0 < R < r.

Set $h(z) = g'_{\alpha}(rz) - 1$. Then Lemma 1 gives

(3.5)
$$\left\{ \sum_{n=2}^{\infty} \left(\frac{n-\alpha}{1-\alpha} |a_n| r^{n-1} \right)^q \right\}^{1/q} \le ||h||_p = M_p(r, g'_{\alpha} - 1),$$

where 1/p + 1/q = 1, and the left-hand side of (3.5) attains its supremum when p = 1. Thus

$$\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha} |a_n| R^{n-1} = \sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha} |a_n| r^{n-1} (R/r)^{n-1}$$

$$\leq \left\{ \sum_{n=2}^{\infty} \left(\frac{n-\alpha}{1-\alpha} |a_n| r^{n-1} \right)^q \right\}^{1/q} \left\{ \sum_{n=2}^{\infty} (R/r)^{pn-p} \right\}^{1/p}$$

$$\leq M_p(r, g'_{\alpha} - 1) \left\{ \sum_{n=2}^{\infty} (R/r)^{pn-p} \right\}^{1/p} = 1,$$

by the Hölder inequality.

Lemma 2 shows that $\sigma_{\alpha}(u) = 1$ for $u(z) = R^{-1}f(Rz)$ and $\sigma_{\alpha}(f) \geq R$, since r is arbitrary. Hence we get the inequality $\sigma_{\alpha}(f) \geq \Phi_{p}(g_{\alpha})$.

THEOREM 2. Let f(z) be defined by (1.1) and let $g_{\alpha}(z)$, $0 \le \alpha < 1$, be defined by (3.2). Then

(3.6)
$$\sigma_{\alpha}(f) \ge \left\{ \frac{1}{(\beta+2)\|g_{\alpha}\|_{D_{\alpha}}^{2}} \right\}^{1/2} \quad (\beta > -1).$$

Proof. By Theorem 1 and (1.18), we have

(3.7)
$$\sigma_{\alpha}(f) \ge \frac{r}{\{1 + M_2(r, g'_{\alpha} - 1)^2\}^{1/2}}.$$

Since

$$d\lambda_{\beta}(z) = \frac{\beta+1}{\pi} (1-r^2)^{\beta} r \, dr \, d\theta \quad (|z|=r),$$

we obtain

(3.8)
$$||g_{\alpha}||_{D_{\beta}}^{2} = \frac{\beta+1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} |g_{\alpha}'(re^{i\theta})|^{2} (1-r^{2})^{\beta} r \, d\theta \, dr$$

$$= 2(\beta+1) \int_{0}^{1} M_{2}(r,g_{\alpha}')^{2} (1-r^{2})^{\beta} r \, dr.$$

From (3.3) we observe that

(3.9)
$$M_2(r, g'_{\alpha})^2 = 1 + M_2(r, g'_{\alpha} - 1)^2 = \sum_{n=1}^{\infty} \left(\frac{n-\alpha}{1-\alpha}\right)^2 |a_n|^2.$$

Hence

$$(3.10) \quad \{\sigma_{\alpha}(f)\}^{2} \|g_{\alpha}\|_{D_{\beta}}^{2}$$

$$= 2(\beta+1) \int_{0}^{1} \{\sigma_{\alpha}(f)\}^{2} \{1 + M_{2}(r, g_{\alpha}' - 1)\} (1 - r^{2})^{\beta} r dr$$

$$\geq 2(\beta+1) \int_{0}^{1} r^{3} (1 - r^{2})^{\beta} dr = (\beta+1) \int_{0}^{1} r (1 - r)^{\beta} dr$$

$$= (\beta+1)B(2, \beta+1) = \frac{1}{\beta+2},$$

where $B(\alpha, \beta)$ denotes the beta function. Hence the proof is complete.

Remark. Letting $\beta \to -1$, we easily find that

(3.11)
$$\sigma_{\alpha}(f) \geq 1/\|g_{\alpha}'\|_{2}.$$

Furthermore, for $\alpha = 0$, we obtain the result of Goluzin [2, Theorem 23, p. 187].

THEOREM 3. Let f(z) be defined by (1.1) and let $g_{\alpha}(z)$, $0 \le \alpha < 1$, be defined by (3.2). Then

(3.12)
$$k_{\alpha}(f) > \Phi_{n}(q_{\alpha})/2 \quad (1$$

Proof. The proof is much akin to that of Theorem 1 which we have detailed above. Indeed, in place of Lemma 2, we make use of Lemma 3. ■

Remark. If we put $\alpha=0$ in Theorems 1 and 3, then we easily find that

(3.13)
$$\sigma_0(f) \ge \Phi_p(f)$$

and

(3.14)
$$k_0(f) \ge \Phi_p(f)/2,$$

which are the results of Yamashita [11, Theorem 2, Theorem 2C, pp. 1095–1096].

From Lemmas 1 and 4 we have

Theorem 4. Let f(z) be defined by (1.1). Then

(3.15)
$$\sigma_{\text{UST}}(f) \ge \Phi_p(v) \quad (1 \le p \le 2),$$

where

(3.16)
$$v(z) = z + \sqrt{2}(f(z) - z).$$

Define

$$(3.17) \quad h_{\alpha}(z) = z + \frac{3 - \alpha}{1 - \alpha} \left\{ \frac{z}{1 - z} + \log(1 - z) \right\} \quad (-1 \le \alpha < 1; \ z \in \mathcal{U}).$$

Put $u_{\alpha}(z) = h_{\alpha} * f(z)$. Then

(3.18)
$$u_{\alpha}(z) = z + \sum_{n=2}^{\infty} \frac{3-\alpha}{1-\alpha} \left(1 - \frac{1}{n}\right) a_n z^n.$$

Hence, by using Lemmas 1 and 5, we have

THEOREM 5. Let f(z) be defined by (1.1) and $-1 \le \alpha < 1$. Then for $1 \le q \le 2$,

(3.19)
$$\sigma_{S_n(\alpha)}(f) \ge \Phi_q(u_\alpha)$$

and

(3.20)
$$k_{\text{UCV}(\alpha)}(f) \ge \Phi_q(u_\alpha)/2,$$

where u_{α} is defined by (3.18).

References

- [1] P. L. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- [2] G. M. Goluzin, On the theory of univalent conformal mappings, Mat. Sb. 42 (1935), 169–190 (in Russian).
- [3] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87–92.
- [4] —, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364–370.
- [5] Y. C. Kim, K. S. Lee, and H. M. Srivastava, Certain classes of integral operators associated with the Hardy space of analytic functions, Complex Variables Theory Appl. 20 (1992), 1–12.
- [6] F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 117–122.
- [7] —, A survey on uniformly convex and uniformly starlike functions, ibid. 47 (1993), 123–134.
- [8] —, Some radius results for univalent functions, J. Math. Anal. Appl. 194 (1995), 319–327.

- [9] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109–116.
- $[10] \quad \text{H. M. Srivastava and S. Owa (eds.)}, \textit{Current Topics in Analytic Function Theory}, \\ \quad \text{World Sci., Singapore, 1992.}$
- [11] S. Yamashita, Starlikeness and convexity from integral means of the derivative, Proc. Amer. Math. Soc. 103 (1988), 1094–1098.

Department of Mathematics Yeungnam University 214-1, Daedong, Gyongsan 712-749 Korea

E-mail: kimyc@ynucc.yeungnam.ac.kr

Department of Mathematics Andong National University Andong 760-749 Korea

E-mail: egkwon@anu.andong.ac.kr

Reçu par la Rédaction le 26.7.1996 Révisé le 17.3.1997