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On some radius results for normalized analytic functions

by YoNG CHAN Kim (Taegu), JIN SEOP LEE (Taegu)
and ERN GUN KwON (Andong)

Abstract. We investigate some radius results for various geometric properties con-
cerning some subclasses of the class S of univalent functions.

1. Introduction. Let A denote the class of all normalized functions

f(z)7
(1.1) flz)=z+ Z anz",
n=2

which are analytic in the open unit disc Y = {z : |z| < 1}.

Also let S denote the class of all functions in A which are univalent in U.
We denote by S*(a) and IC(«) the subclasses of S consisting of all functions
which are, respectively, starlike and convex of order a in U (0 < o < 1),
that is,

(1.2) S*(a) == {f . feSand Re<zf/(z)> >a, z eu}

f(2)
?f.j,) K(a) = {f . feSand Re<1 + ZJ{:;?) >a, z € u}.

Further, we introduce the sets

(1.4) UST:= {f:feS and Re(%) >0, (2) EUXU}
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and

1!
(1.5) UCV := {f :feSand Re<1—|—(z—() f’((zz))> >0, (20) EZ/{XU}
which were defined by Goodman [3, 4].
FEach of the classes UST and UCV has a natural geometric interpretation:
f € UST if and only if the image of every circular arc in i with center ¢
also in U is starlike with respect to f(¢), and f € UCV if and only if the
image of every circular arc is convex.

Note that if we take ¢ = 0 in (1.4) and (1.5) we have the usual classes of
starlike and conver functions, and if we let ( — z, then the conditions are
trivially fulfilled.

Let S, () be the class defined by

2f'(2) 2f'(2)
f(2) f(z)

We see that for all & € [—1,1) we have S,(a) C §*(0). Introducing the
class UCV(«) (uniformly convex functions of order «) by g € UCV(ar) &
zg' € Sp(a), we observe that UCV(«) C K(0) for a € [-1,1) (see [7, §]).

Then f € UCV () if and only if

(1.7) Re{l +(z—0) ";,/((;) } >a, (2,0 €U xU.

Clearly we have UCV(0) = UCV. We easily find that [6]
geUCV & zg' € S,(0) = S).

(1.6)

—1‘§Re

Let oj (j=1,...,p)and §; (j =1,...,q) be complex numbers with

Bj #0,-1,-2,..., j=1,...,q.
Then the generalized hypergeometric function ,F,(z) is defined by
(1-8) PFCI(Z)EZDFq(ala"'?ap;ﬂla"'7ﬂq;z)

[ee]

_ N (@) () 2
_g(ﬁl)n(ﬁq)n nl’ p<qg+1,

where (M), is the Pochhammer symbol defined, in terms of the gamma
function, by

(1.9) (M) =T\ +n)/T (V)

[ (n=0),
N {)\()\+1)...(A+n—1) (neN:=1{1,2,3,...}).

The ,F,(z) series in (1.8) converges absolutely for |z| < oo if p < ¢ +1,
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and for z € U if p = ¢ + 1. Furthermore, if we set

q p
(1.10) w=Y B - aj
j=1 j=1

it is known that the , I series, with p = ¢ + 1, is absolutely convergent for
|z| =1 if Re(w) > 0,
and conditionally convergent for
|z| =1 (2 # 1) if =1 < Re(w) <0.

Let 0,(f) denote the largest number r such that f(z) is univalent on
U, :={z€C:|z| <r <1} and

2f'(2)
1.11 Re
) $1
and let k. (f) denote the largest number r such that f(z) is univalent on U,
and

(1.12) Re{l +

}>oz on U,

2f"(z)
f(z)

Similarly, oust(f) denotes the largest number r such that f(z) is uni-
valent on U, and

f(z) = (<) }
1.13 Req ——-<5 7 >0, z,¢) € Uy x U,
(1-19) \Elgrg)ze o

03,(a)(f) denotes the largest number 7 such that f(z) is univalent on U,
and

}>a on U,.

2f'(z) 2f'(2)

f(z) f(2)
and kycv(a)(f) denotes the largest number 7 such that f(z) is univalent on
U, and

(1.15) Re{1+(z—§)

(1.14) —1| <Re —a, z€U,,

f"(2)
f'(z)

For 0 < p < oo and a function f(z) in U, define the integral means
My(r, f) by

}2@, (z,¢) € U X U,.

2m

1
we  wmen=1 (o 3
max| ;| <, | f(2)| if p = o0.
Then, by definition, an analytic function f(z) in U belongs to the Hardy
space HP (0 < p < 00) if

(1.17) 1fllp == Tliql_ My (r, f) < occ.

1/p
\f(rew)]pcw) if 0 < p < oo,
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For f € A we set

(1-d18) Py(r, f) = T M0 = D7 (O0<r<1),
(1.19) Pp(f) = sup Pp(r, f) (0 <p<oo)

0<r<1
For the functions f;(z) (j = 1,2) defined by

oo
(1.20) Fi(2) =Y ajnnz" (ani=1 = 1,2),
n=0

let (f1 * f2)(2) denote the Hadamard product or convolution of fi(z) and
fa(z), defined by

[ee]
(121)  (Axf)(2) =) @rmir02n412™ T (a0 =1; 5 =1,2).
n=0
Let A denote normalized Lebesgue area measure on Uf; and, for 8 > —1,
A denote the finite measure defined on U by

(1.22) dg(2) = (1 — |2]?)PdA(2).

For 6 > —1 and 0 < p < oo the weighted Bergman space Ag is the
collection of all functions f holomorphic in & for which

(1.23) 15 5 = V1£17 dAs < oo
u

The weighted Dirichlet space Dg (3 > —1) is the collection of all func-
tions f holomorphic in U for which the derivative f’ belongs to A%. It is
well known that Ag is a complete linear metric space for p > 0, a Banach
space if p > 1, and a Hilbert space if p = 2.

The space Dj is a Hilbert space with the norm || - ||p, defined by

(120) 171, = LFO)F + [ 1 ds.
u
In this paper, we investigate some radii problems for various geometric
properties concerning the subclasses of the class S of univalent functions.

2. A set of lemmas. The following lemmas will be required in our
investigation.

LEMMA 1 (Hausdorff-Young [1, Theorem 6.1, p. 94]). Let f € HP, 1 <
p < 2. Then

oo 1/q
(Z !M") <|[fllp, 1/p+1/g=1,
n=0

where the left-hand side is sup,,>q |a,| if p = 1.
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LeMMA 2 (H. Silverman [9, Theorem 1, Corollary, p. 110]). Let f(z) be
defined by (1.1) and 0 < o < 1. Then

(i) Y (n—a)lan| <1—a=o0.(f) =1,
n=2
(i) nn—a)la,| <1—a=ks(f)=1.
n=2

LEMMA 3. Let f(z) be defined by (1.1) and 0 < o < 1. Then

Z(n— a)lan| <1—a=ku(f)>1/2.

n=2
Further, the constant 1/2 is best possible.

Proof. Let f(z) € A be such that > 7 ,(n — a)la,| < 1 — a. Put
9(2) =2f(2/2) =2+ 07 s a,(1/2)" 12 =35> ¢,2" € A. Then

n=1

= n(n — a) Zn—a
- n < n él‘

By Lemma 2, we obtain k,(g9) =1 and ko (f) > 1/2. =

LEMMA 4 (A. W. Goodman [4, Theorem 6, p. 369; 3, Theorem 6, p. 91]).
Let f(z) be defined by (1.1). Then

(i) > nlan] < V2/2 = oust(f) = 1,
n=2
(ii) > n(n—1an| <1/3 = kucv(f) = L.
n=2

Further, the number 1/3 above is the largest possible.

LEMMA 5. Let f(z) be defined by (1.1) and —1 < a < 1. Then

oo

l—«
i —Dlap| < —— =k o =1.
(i) ;Z:Qn(n Nan| < 3_a vev(a) (f)
Further, the constant ;;—g above cannot be replaced by a larger number.
.. = 1l—a
(i) > (n—1Dag| < 3o = ks(f) =1
n=2

11—«
(iii) (n—1)]a,| < 3

— = kucv (f) > 1/2.

3
)
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Proof. (i) Let f(2) =2+ > .7, a,z" with

o0

11—«
Y n(n—1an| <
o 3—«
Then
in|an| < L= .
o 33—«
Further,

e e e

(1—a)f'(2) -« 1- ZZO:Q nlan| - |21
2(1—a)

2 1 _ 3—« — — O
(1—a)(1-35=3)
Thus k‘Ucv(a)( f) = 1. But equality is attained for the function f(z) =
z—61 20/3 with z =1 and ( = —1.
(ii) Let f(2) =z + > .-, anz" with

[ee)

S Dlanl < 5.

(%
n=2

Then there exists

_z+anz _z+z“"n ie. 29'(2) = f(2),

such that
—1b = —1)la,| < .
3 (= Dl = 30— Dlonl < 5=

Thus, by (i), kucv(a)(g) = 1,1i.e. g(z) € UCV(a). Therefore, by the relation
between UCV () and Sy(a), f € Sp(a), ie. og,)(f) = 1.

(iii) The proof is much akin to that of Lemma 3, with (i) above used in
place of Lemma 2. m

3. Results. By using Lemmas 1 and 2, we obtain
THEOREM 1. Let f(z) be defined by (1.1). Then
(3.1) 0a(f) 2 Pplga) (0<a<1; 1<p<2),

where

(3.2) Ga(2) = [1ia{%+alog(1—z)H « f(2).
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Moreover,

(3.3) 9a(2) = [2 312 —a, 1, ;1 — o, 2;2)] * f(2)
= i n-a la 2"
N ot 11—« "

Proof. We may put f(z) =z + Y 0, a,2" # 2.
For fixed r, 0 < r < 1, define

(3.4) R=9?,(r,90) (0<a<1l).

Then we easily find that 0 < R < r.
Set h(z) = g/, (rz) — 1. Then Lemma 1 gives

(35) {i = ||)}/ < 1hlly = My(r,gh — 1),

11—«
n=2

where 1/p + 1/q = 1, and the left-hand side of (3.5) attains its supremum
when p = 1. Thus

= n—a . NN — - n—
Zl— |an|R 122 |an|r™ (R /r)"

n=2 a n=2 l-a
o0 _ gy 1l/q o /
S R
< Mg~ D S} <,
n=2

by the Holder inequality.
Lemma 2 shows that o,(u) = 1 for u(z) = R™'f(Rz) and o,(f) > R,
since r is arbitrary. Hence we get the inequality oo (f) > @p(ga). =

THEOREM 2. Let f(z) be defined by (1.1) and let go(z), 0 < o < 1, be
defined by (3.2). Then

1 1/2
3.6 o > 5 —1).
0 SO e
Proof. By Theorem 1 and (1.18), we have
T
(37) UOé(f) > {1 + 1\4'2(7,7 9& _ 1)2}1/2'
Since

ds(z) = %(1—7“2)’87"617"61,9 (2| =),
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we obtain
/8 + 1 127 ‘
(3.8) HgaH%ﬁ = S S lgh, (re’®))2 (1 — r*)Pr db dr
00

1
=28+ 1) | Ma(r, g,)*(1 — r*)Prdr.
0
From (3.3) we observe that

%S 2
n—uo
B9 Malrng)? =14 Mot~ 12 = 3 (322 )

n=1

Hence

(3.10)  {oa(N)}?ll9alB,

=2(8+1) {{ou (NP1 + My(r,g, = D} —1*)Prdr
0
>2B+ 1)\ - dr=(B+1){r@—r)dr
0 0
1
=B+1)B(2,8+1) = RSl

where B(a, 3) denotes the beta function. Hence the proof is complete. m
REMARK. Letting § — —1, we easily find that
(3.11) aa(f) = 1/llghl2-

Furthermore, for & = 0, we obtain the result of Goluzin [2, Theorem 23,
p. 187].

THEOREM 3. Let f(z) be defined by (1.1) and let go(2), 0 < a < 1, be
defined by (3.2). Then

(3'12) koz(f) > dip(ga)/z (1 <p< 2)’

Proof. The proof is much akin to that of Theorem 1 which we have
detailed above. Indeed, in place of Lemma 2, we make use of Lemma 3. m

REMARK. If we put « = 0 in Theorems 1 and 3, then we easily find
that
(3.13) ao(f) = ®p(f)
and

(3.14) ko(f) = @p(f)/2,
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which are the results of Yamashita [11, Theorem 2, Theorem 2C, pp. 1095—
1096].
From Lemmas 1 and 4 we have
THEOREM 4. Let f(z) be defined by (1.1) . Then

(3.15) oust(f) = Pp(v) (1 <p<2),

where

(3.16) v(z) = 2 +V2(f(2) — 2).
Define

(3.17) ha(z):z+i’:2{1i—z —I—log(l—z)} (-1<a<l1; zel).
Put uq(2) = hg * f(z). Then

(3.18) Ua(2) :z—I—Z?:Z(l—%)anz”.

Hence, by using Lemmas 1 and 5, we have

THEOREM 5. Let f(z) be defined by (1.1) and —1 < a < 1. Then for
1<q¢<2,

(319) 0S,(a) (f) > (pq(ua)
and
(3.20) kucvia)(f) = Pq(ua)/2,

where uy 1s defined by (3.18).
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