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Asymptotic stability of a partial differential

equation with an integral perturbation

by Katarzyna Pichór (Katowice)

Abstract. We study the asymptotic behaviour of the Markov semigroup generated by
an integro-partial differential equation. We give new sufficient conditions for asymptotic
stability of this semigroup.

1. Introduction. We study the asymptotic behaviour of the semigroup
of Markov operators generated by the equation

(1.1)
∂u

∂t
+ λu = Au+ λKu,

where K : L1(Rd) → L1(Rd) is an integral Markov operator, λ > 0 and the
operator A is given by

Af = −

d
∑

i=1

∂(aif)

∂xi
.

If λ=0 then (1.1) is known as the Liouville equation. In this case u(x, t)
describes the densities of the distributions of points whose movement is
governed by the differential equation

x′(t) = a(x(t)).

If we add the integral term K then this movement is perturbed by random
jumps of points. Then (1.1) is known as the Takacs equation and plays an
important role in the theory of jump processes.

The problem of asymptotic stability of the solutions of (1.1) has been
investigated by Klaczak [3], Lasota and Mackey [5], Malczak [6] and Rud-
nicki [9]. The main tool exploited in these papers was the Lyapunov function.
In our paper we use the theory of partially-integral Markov semigroups [10]
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and the concept of Hasminskii function [7, 8]. Our method allows us to
strengthen the earlier results concerning the asymptotic stability of Markov
semigroups (see Remark 1 and Section 4).

The organization of the paper is as follows. Section 2 contains some
auxiliary definitions and results from the theory of Markov operators. The
main result concerning the asymptotic stability of (1.1) is formulated in
Section 3 and proved in Section 5. Section 4 contains some examples of
applications.

2. Semigroup representation of solutions. Let X⊂R
d be a bounded

or unbounded domain. We denote by ∂X and X the boundary and the
closure of X, respectively. We assume that the domain X is normal and the
boundary ∂X is either empty or a surface of class C1

σ (see [4]).

We consider the integro-differential equation

(2.1)
∂u(t, x)

∂t
+ λu(t, x) = −

d
∑

i=1

∂(ai(x)u(t, x))

∂xi
+ λ

\
X

k(x, y)u(t, y) dy,

where t ≥ 0, x ∈ X and λ is a positive constant. The kernel k is measurable
and stochastic, i.e.,

(2.2)
\
X

k(x, y) dx = 1 and k(x, y) ≥ 0, x, y ∈ X.

We denote by D the set of all nonnegative elements of L1(X) with norm
one. The elements ofD are densities. A linear mapping P : L1(X) → L1(X)
is called a Markov operator if P (D) ⊂ D. A semigroup {P (t)}t≥0 of linear
operators on L1(X) is said to be a continuous semigroup of Markov operators

if P (t) is a Markov operator for every t ≥ 0 and if for every f ∈ L1(X) the
function t 7→ P (t)f is continuous. A density f∗ ∈ D is called invariant under
the semigroup {P (t)}t≥0 if P (t)f∗ = f∗ for every t ≥ 0. The semigroup
{P (t)}t≥0 is called asymptotically stable if there is an invariant density f∗
such that

lim
t→∞

‖P (t)f − f∗‖ = 0 for f ∈ D.

Equation (2.1) can be rewritten as the evolution equation

(2.3) u′(t) = (A− λI + λK)u, u(0) ∈ L1(X),

where If = f , K : L1(X) → L1(X) is the Markov operator defined by

Kf(x) =
\
X

k(x, y)f(y) dy
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and the operator A is given by

Af = −

d
∑

i=1

∂(aif)

∂xi
.

We assume that ai ∈ C
2
b(X) for all i, where Ck

b (X) is the space of k-times
differentiable bounded functions defined on X whose partial derivatives of
order ≤ k are continuous and bounded.

Define the domain of the operator A by

E = {f ∈ L1(X) ∩ C1
b(X) : Af ∈ L1(X), f(x) = 0 for x ∈ ∂X}.

Then we replace the operator A by its closure A in L1(X). From now on we
write A for the closure A.

Denote by n(x) the unit inward normal vector to the boundary ∂X at
the point x. Let a(x) ·n(x) denote the scalar product of a(x) and n(x). We
assume that

(2.4) a(x) · n(x) ≥ 0

for all x ∈ ∂X such that the normal vector n(x) is well defined. For each
x ∈ X denote by πtx the solution x(t) of the equation

x′(t) = a(x(t))

with initial condition x(0) = x. From (2.4) it follows that πt(X) ⊂ X for all
t > 0.

The equation

(2.5) u′(t) = Au

generates a continuous semigroup {T (t)}t≥0 of positive linear operators on
L1(X). The semigroup {T (t)}t≥0 can be given explicitly. Namely

(2.6) T (t)g(x) = 1X(π−tx)g(π−tx)J(−t, x) for g ∈ L1(X),

where J(t, x) = det(d/dx)[πtx].

If g ∈ E then the function u(t, x) = T (t)g(x) is the classical solution of
the equation

∂u

∂t
= −

d
∑

i=1

∂(aif)

∂xi

with initial condition u(0, x) = g(x) and boundary condition u(t, x) = 0 for
x ∈ ∂X and t ≥ 0. Since E is dense in L1(X) and T (t) is a contraction
on E for each t ≥ 0, we can extend T (t) in a unique way to the whole
L1(X). This extension defines the semigroup {T (t)}t≥0. From (2.4) and
(2.6) it follows that T (t) preserves integrals. Consequently, {T (t)}t≥0 is a
continuous semigroup of Markov operators.
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Let Af = Af −λf +λKf . Then (2.3) can be rewritten as the evolution
equation

(2.7) u′(t) = Au,

and u satisfies the initial condition u(0) = g, g ∈ L1(X). From the Phillips
perturbation theorem [1], (2.7) generates a continuous semigroup {P (t)}t≥0

of Markov operators on L1(X) given by

(2.8) P (t)g = u(t) = e−λt
∞
∑

n=0

λnTn(t)g,

where T0(t) = T (t) and

(2.9) Tn+1(t)g =

t\
0

T0(t− s)KTn(s)g ds, n ≥ 0.

3. Main result. We denote by B(x, r) the closed ball in X with centre
x and radius r. We say that a point w ∈ X is ε-attainable from v ∈ X if
there are a positive integer n, a sequence t1, . . . , tn of positive numbers and
a sequence v0, . . . , vn of elements of X such that v0 = v, vn = w and

k(x, y) > 0

for all y ∈ B(πti
vi−1, ε), x ∈ B(vi, ε) and i = 1, . . . , n.

Let A∗ and K∗ be the linear operators given by

A∗f(x) =

d
∑

i=1

ai(x)
∂f

∂xi
(x), K∗f(x) =

\
X

k(y, x)f(y) dy.

Denote by Ck(X) the space of k-times differentiable functions defined on X
whose partial derivatives of order ≤ k are continuous. For every nonnegative
C1-function f we put A∗f = A∗f − λf + λK∗f . Then A∗ is the adjoint
operator of A.

A measurable function V : X → [0,∞) will be called approximable if
there exists an increasing sequence (vn) of functions such that:

(a) vn ∈ D(A∗) and vn ≥ 0 for every n ∈ N,
(b) there is c > 0 such that vn −A∗vn ≥ −c for every n ∈ N,
(c) vn → V a.e.,
(d) the sequence (A∗vn) is a.e. convergent.

If (vn) satisfies (a)–(d), then we put A∗V = limn→∞ A∗vn. The function
A∗V is measurable. One can check that the definition of A∗V does not
depend on the choice of the sequence (vn), but this does not play any role
in further considerations.

The main result of this paper is the following.
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Theorem 1. Assume that for some approximable function V and some

compact subset F0 of X we have

(3.1) sup
x6∈F0

A∗V (x) < 0 and sup
x∈X

A∗V (x) <∞.

Suppose that for any two points w, v ∈ X there exists an ε > 0 such that

any w is ε-attainable from v. Moreover , assume that the kernel k satisfies

the following condition:

(K) for every y0 ∈ X there exist x0 ∈ X, q > 0 and δ > 0 such that

(3.2) k(x, y) ≥ q1B(x0,δ)(x)1B(y0,δ)(y).

Then the semigroup {P (t)}t≥0 is asymptotically stable.

The proof of Theorem 1 is given in Section 5. In the next section we give
some examples of applications.

Remark 1. The assumptions of Theorem 1 can be divided into two
groups. The ε-attainability and condition (3.2) describe “transitivity” prop-
erties of the semigroup. From the assumptions on V it follows that V is
a Hasminskii function (see Section 5). Proofs of the asymptotic stability
of Markov semigroups in [3, 5, 6] use the notion of the Lyapunov function
rather than the Hasminskii function. We recall the definition of the Lya-
punov function. Let X be an unbounded subset of R

d and let {P (t)}t≥0

be a Markov semigroup. A function V : X → [0,∞) is called a Lyapunov

function for the semigroup {P (t)}t≥0 if

(1) lim‖x‖→∞ V (x) = ∞,
(2) there exist t > 0, α < 1, β ∈ R and a dense subset D0 of D such that\

X

V (x)P (t)f(x) dx ≤ α
\
X

V (x)f(x) dx+ β for f ∈ D0.

The existence of a Lyapunov function and the “transitivity” conditions of
Theorem 1 do not imply the asymptotic stability of the semigroup. Consider
the following example.

Let X = (0,∞) and k : X ×X → (0,∞) be given by the formula

k(x, y) =
2

y
e−2x/y .

Let {P (t)}t≥0 be the Markov semigroup generated by the equation

∂u(t, x)

∂t
+ u(t, x) = Ku(t, x)

where the Markov operator K : L1(X) → L1(X) is

Kf(x) =

∞\
0

k(x, y)f(y) dy.
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It is easy to check that

P (t)f =
∞
∑

n=0

e−t t
n

n!
Knf.

The “transitivity” properties of the semigroup {P (t)}t≥0 follow from conti-
nuity and positivity of the kernel k. Since

∞\
0

k(x, y) dx = 1 and

∞\
0

xk(x, y) dx =
y

2
,

we have

(3.3)

∞\
0

xKf(x) dx =
1

2

∞\
0

xf(x) dx.

This implies that V (x) = x is a Lyapunov function for the semigroup
{P (t)}t≥0. Condition (3.3) also implies that this semigroup is not asymp-
totically stable.

Moreover, it is difficult to check directly condition (2) in the definition
of the Lyapunov function. In some cases condition (2) can be replaced by
the inequality

(3.4) A∗V ≤ −γV + δ, γ > 0, δ > 0,

(cf. [5, Ch. 11.9]). If X = R
d then (3.1) is weaker than (3.4). The use of the

Hasminskii function allows us to prove the asymptotic stability if condition
(3.1) holds but it is difficult or impossible to check (3.4).

4. Examples

Example 1. Let X = R
d and assume that for every x0 ∈ X there exist

q > 0 and δ > 0 such

k(x, y) ≥ q1B(x0,δ)(x)1B(x0,δ)(y).

This condition implies (3.2) and the fact that each point of X is ε-attainable
from any other point of X. Suppose that there exist positive constants H
and M and a bounded set F ⊂ X such that

sup{‖a(x)‖ : x 6∈ F} < H,\
X

‖y‖k(y, x) dy ≤M for x ∈ F ,\
X

‖y‖k(y, x) dy < ‖x‖ −H/λ for x 6∈ F .

Let V ∈ C1(X) be such that V (x) = ‖x‖ for ‖x‖ ≥ 1. We check that
V is approximable. Let ϕ be a C1([0,∞)) function such that ϕ′(0) = 1,
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0 ≤ ϕ(x) ≤ x for x ∈ [0, 1] and ϕ(x) = 1/2 for x ≥ 1. We define an
increasing sequence (vn) by

vn(x) =

{

V (x), x ∈ B(0, n),
n+ ϕ(V (x) − n), x 6∈ B(0, n).

It is easy to check that the sequence (vn) satisfies conditions (a)–(d). Then
all assumptions of Theorem 1 are satisfied and, consequently, system (2.1)
is asymptotically stable.

Example 2. Let X = (0,∞). We consider the one-dimensional equa-
tion (2.1) with kernel

k(x, y) =

{

γb(γx− y), 0 ≤ y ≤ γx,
0, 0 ≤ γx < y,

where b is a nonnegative function such that
T∞
0
b(x) dx = 1. Then k satis-

fies (2.2). In [3, 9] a similar equation was considered with a = const. Now,
we generalize the results of those papers to the case when a ∈ C2

b(X) with
a(0) ≥ 0. Assume that γ > 1 and b(x) > 0 for every x > 0. These conditions
imply (3.2) and the fact that each point of X is ε-attainable from any other
point of X. Suppose that

(4.1)

∞\
e

b(x) lnx dx <∞.

Now, we construct a Hasminskii function for the semigroup generated
by (2.1). Let δ ∈ (0, 1) be such that

δ\
0

b(x) dx ≤
1

3

and set

c = 2
(

1 +

∞\
e

b(x) lnx dx
)

.

Let V ∈ C1([0,∞)) be a nonnegative function such that V (x) = c for
x ∈ [0, δ2], V is decreasing in [δ2, δ], V (x) ≤ 1 for x ∈ [δ, e] and V (x) = lnx
for x ≥ e. From (4.1) it follows that A∗V is a bounded function and there
exists ε > 0 such that A∗V (x) ≤ −ε for x ∈ (0, δ2) and for sufficiently
large x. It remains to check that V is approximable. We define an increasing
sequence (vn) by

vn(x) =

{

V (x), 0 ≤ x ≤ n,
V (n+ ϕ(x− n)), x > n,

where ϕ is the function from Example 1. It is easy to check that (vn) satisfies
conditions (a)–(d).



90 K. Pichór

5. Proof of Theorem 1. In the proof we use some auxiliary definitions.
The support of an f ∈ L1(X) is defined up to a set of measure zero by the
formula

supp f = {x ∈ X : f(x) 6= 0}.

We say that a Markov operator P spreads supports if for every measurable
set A with µ(A) < ∞ (where µ is Lebesgue measure) and for every f ∈ D
we have

lim
n→∞

µ(suppPnf ∩A) = µ(A).

We say that a Markov operator P satisfies condition (I) if it can be
written in the form

Pf(x) =
\
X

h(x, y)f(y) dy +Rf(x),

where R is a positive contraction on L1(X) and the kernel h is a measurable
nonnegative function such that for every y0 ∈ X there exist an ε > 0 and a
measurable function η ≥ 0 such that

T
η(x) dx > 0 and

h(x, y) ≥ η(x)1B(y0,ε)(y).

Let R = R(1,A) = (I −A)−1 be the resolvent of A. It is easy to show
that R is a Markov operator on L1(X). The operator R is also defined by

Rf =

∞\
0

e−tP (t)f dt.

Let Z0 be a measurable subset of X and let V : X → [0,∞) be measur-
able. Define

DV =
{

f ∈ D :
\
X

f(x)V (x) dx <∞
}

.

The function V will be called a Hasminskii function for the semigroup
{P (t)}t≥0 and the set Z0 if there exist M > 0 and ε > 0 such that for
every f ∈ DV we have\

X

V (x)Rf(x) dx ≤
\
X

V (x)f(x) dx+M
\

Z0

Rf(x) dx

− ε
\

X\Z0

Rf(x) dx.

The following criterion for asymptotic stability of Markov semigroups is
proved in [8].

Theorem 2. Let {P (t)}t≥0 be a Markov semigroup generated by (2.7)
and P = P (t0) for some t0>0. Assume that the operator P spreads supports

and satisfies (I). Let Z0 ⊂ X be a compact set. Assume that there exists a
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Hasminskii function for the semigroup {P (t)}t≥0 and the set Z0. Then the

semigroup {P (t)}t≥0 is asymptotically stable.

The thread of the proof of Theorem 1 is as follows. First we check that
for each t0 > 0 the operator P (t0) spreads supports. This follows from the
ε-attainability assumption. Then using (3.2) we check condition (I). And
finally from (3.1) we conclude that V is a Hasminskii function.

From (2.6) and (2.8) it follows that the operator Tn for n = 1, 2, . . . can
be written in the form

Tn(t)f(x) =
\
X

kn(t, x, y)f(y) dy,

where

k1(t, x, y) =

t\
0

1X(πs−tx)k(πs−tx, πsy)J(s− t, x) ds,

and for n = 2, 3, . . . ,

kn(t, x, y) =

t\
0

\
X

1X(πs−tx)k(πs−tx, z)kn−1(s, z, y)J(s − t, x) dz ds.

Set

(5.1) h(t, x, y) = e−λt
∞
∑

n=1

λnkn(t, x, y).

Then from (2.8) it follows that

(5.2) P (t)f(x) =
\
X

h(t, x, y)f(y) dy + e−λtT (t)f(x).

The semigroup property P (t+ s) = P (t)P (s) and (5.2) imply

(5.3) P (t+ s)f(x) ≥
\
X

( \
X

h(t, x, z)h(s, z, y) dz
)

f(y) dy

for every f ∈ D. From (5.2), (5.3) and Theorem C of [2, Ch. V] it follows
that

(5.4) h(t+ s, x, y) ≥
\
X

h(t, x, z)h(s, z, y) dz.

We divide the proof of Theorem 1 into a sequence of lemmas.

Lemma 1. Let v,w ∈ X. Assume that w is ε-attainable from v for some

ε > 0. Then there exist constants n ≥ 1, δ > 0 and 0 < α < β such that

kn(t, x, y) > 0

for all t ∈ (α, β), x ∈ B(w, δ) and y ∈ B(v, δ).
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P r o o f. Since w is ε-attainable from v there are n, a sequence t1, . . . , tn
of positive numbers and a sequence v0, . . . , vn of elements of X such that
v0 = v, vn = w and

k(x, y) > 0

for y ∈ B(πti
vi−1, ε), x ∈ B(vi, ε) and i = 1, . . . , n. Let si = t1 + . . . + ti,

i = 1, . . . , n. First we show that there exist γ1 > 0 and δ1 > 0 with δ1 ≤ ε
such that

(5.5) k1(t, x, y) > 0

for all x ∈ B(πt2v1, δ1), y ∈ B(v, δ1), t ∈ (s2, s2 + γ1).

Set ϕ(s, x) = 1X(πsx)J(s, x). Thus for τ > 0,

k1(s2 + τ, x, y) =

s2+τ\
0

ϕ(s − s2 − τ, x)k(πs−s2−τx, πsy) ds

≥

s1+τ\
s1

ϕ(s − s2 − τ, x)k(πs−s2−τx, πsy) ds.

Now we use a well-known theorem on the continuous dependence of solutions
of differential equations on the initial condition. Since v1 ∈ X, πt2v1 ∈ X,
v ∈ X, πt1v ∈ X there exist γ1 > 0 and δ1 > 0, δ1 ≤ ε such that

πs−s2−τx ∈ B(v1, ε), πsy ∈ B(πt1v, ε)

for all 0 ≤ τ ≤ γ1, s ∈ (s1, s1 + τ), x ∈ B(πt2v1, δ1) and y ∈ B(v, δ1). This
implies that

k(πs−s2−τx, πsy) > 0.

Consequently, k1(t, x, y) > 0 for all y ∈ B(v, δ1), x ∈ B(πt2v1, δ1) and
t ∈ (s2, s2 + γ1). Analogously, by induction we can show that there exist
γm−1 > 0 and δm−1 > 0 with δm−1 ≤ ε such that

(5.6) km−1(t, x, y) > 0

for all x ∈ B(πtm
vm−1, δm−1), y ∈ B(v, δm−1), t ∈ (sm, sm + γm−1) and

m = 2, . . . , n.

Now we show that

(5.7) kn(t, x, y) > 0

for all x ∈ B(vn, δn), y ∈ B(v, δn) and t ∈ (sn, sn + γn). Let τ > 0. Then

kn(sn + τ, x, y) =

sn+τ\
0

\
X

ϕ(s − sn − τ, x)k(πs−sn−τx, z)kn−1(s, z, y) dz ds
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≥

sn+τ\
sn

\
B(πtn

vn−1,δn−1)

ϕ(s − sn − τ, x)

× k(πs−sn−τx, z)kn−1(s, z, y) dz ds.

Let γn > 0 and δn > 0 be constants such that γn ≤ γn−1, δn ≤ min{ε, δn−1}
and

πs−sn−τx ∈ B(vn, ε)

for 0 ≤ τ ≤ γn, s ∈ (sn, sn + τ) and x ∈ B(vn, δn). This implies that
k(πs−sn−τx, z) > 0. From (5.6) we obtain kn−1(s, z, y) > 0. Thus (5.7)
holds for all x ∈ B(vn, δn), y ∈ B(v, δn) and t ∈ (α, β), where α = sn and
β = sn + γn.

Lemma 2. Assume that for any two points w, v ∈ X there exists an ε > 0
such that w is ε-attainable from v. Then for every compact set F ⊂ X there

exists t(F ) such that h(t, x, y) > 0 for all x, y ∈ F and t ≥ t(F ), where h is

defined in (5.1).

P r o o f. First we show that for each v ∈ X there exist δ > 0 and t0(v)
such that

(5.8) h(t, x, y) > 0 for x, y ∈ B(v, δ) and t ≥ t0(v).

Indeed, from Lemma 1 and (5.1) it follows that there exist 0 < α < β such
that

(5.9) h(t, x, y) > 0 for x, y ∈ B(v, δ) and t ∈ [α, β].

Using (5.4) n times we obtain

(5.10) h(t, x, y) > 0 for x, y ∈ B(v, δ) and t ∈ [nα, nβ].

Let n0 be a positive integer such that (n0 + 1)α < n0β. Then (5.10) implies
that h(t, x, y) > 0 for all x, y ∈ B(v, δ) and t ≥ t0(v) = n0α.

From (5.4), (5.8) and Lemma 1 we deduce that for all v,w ∈ X there
exist δ > 0 and t0(v,w) such that

(5.11) h(t, x, y) > 0 for x ∈ B(v, δ), y ∈ B(w, δ) and t ≥ t0(v,w).

The assertion now follows from the compactness of F × F .

Lemma 3. Assume that for any two points w, v ∈ X there exists an

ε > 0 such that w is ε-attainable from v. Then for each t0 > 0 the Markov

operator P (t0) spreads supports.

P r o o f. Let P = P (t0). Since X is a metric space it is sufficient to check
that for every compact set F and every density f ,

(5.12) µ(suppPnf ∩ F ) = µ(F )
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for sufficiently large n. From Lemma 2 it follows that for every f ∈ D there
exists t1 > 0 such that for each t ≥ t1,

µ(suppP (t)f ∩ F ) = µ(F ).

This implies that (5.12) holds for all n > t1/t0.

Lemma 4. Assume that condition (K) holds. Then for some t0 the oper-

ator P (t0) satisfies condition (I).

P r o o f. Fix y0∈X and assume that x0, q and δ satisfy (3.2). Then there
exist τ, ε > 0 such that for every |t| ≤ τ we have

(5.13) πt(B(x0, ε)) ⊂ B(x0, δ) and πt(B(y0, ε)) ⊂ B(y0, δ).

Fix t0 ∈ (0, τ) and set

η(x) = λe−λt0q

t0\
0

ψ(s, x)1B(x0 ,δ)(πs−t0x) ds,

where ψ(s, x) = 1X(πs−t0x)J(s − t0, x). Then from (5.13) it follows that\
X

η(x) dx ≥
\

B(x0,ε)

η(x) dx ≥ λe−λt0q

t0\
0

\
B(x0,ε)

ψ(s, x) dx ds > 0.

Now we check that P (t0) satisfies (I). Indeed,

h(t0, x, y) ≥ λe−λt0k1(t0, x, y) = λe−λt0

t0\
0

ψ(s, x)k(πs−t0x, πsy) ds

≥ λe−λt0

t0\
0

qψ(s, x)1B(x0 ,δ)(πs−t0x)1B(y0,δ)(πsy) ds,

and, consequently, h(t0, x, y)≥η(x)1B(y0 ,ε)(y), which completes the proof.

We check that V is a Hasminskii function.

Lemma 5. Assume that there exists an approximable function V and a

compact set F0 ⊂ X such that

sup
x6∈F0

A∗V (x) < 0 and sup
x∈X

A∗V (x) <∞.

Then V is a Hasminskii function for the semigroup {P (t)}t≥0 and the set F0.

P r o o f. Let M and ε be positive constants such that A∗V (x)<M for all
x ∈ X and A∗V (x) < −ε for x 6∈ F0. It is sufficient to check the inequality

(5.14)
\
X

V (x)Rf(x) dx

≤
\
X

V (x)f(x) dx+
\
X

A∗V (x)Rf(x) dx for f ∈ DV ,
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which can be rewritten as\
X

(V (x) −A∗V (x))Rf(x) dx ≤
\
X

V (x)f(x) dx.

Since V is approximable we can find an increasing sequence (vn) which
satisfies conditions (a)–(d). From the Lebesgue monotone convergence the-
orem,

lim
n→∞

\
X

vn(x)f(x) dx =
\
X

V (x)f(x) dx.

The sequence (vn−A
∗vn) is a.e. convergent to V−A∗V . Since vn−A∗vn ≥ −c

we have (vn −A∗vn)Rf ≥ −cRf . From the Fatou lemma we obtain\
X

(V (x) −A∗V (x))Rf(x) dx ≤ lim inf
n→∞

\
X

(vn(x) −A∗vn(x))Rf(x) dx.

As vn ∈ D(A∗) we have\
X

(vn(x) −A∗vn(x))Rf(x) dx =
\
X

vn(x)(I −A)Rf(x) dx

=
\
X

vn(x)f(x) dx

and, consequently,\
X

(V (x) −A∗V (x))Rf(x) dx ≤ lim
n→∞

\
X

vn(x)f(x) dx =
\
X

V (x)f(x) dx.
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Révisé le 8.7.1997


