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bounded, symmetric and non-vanishing function

by means of Loewner’s parametric method

by J. Śladkowska (Gliwice)

Abstract. Let B
(R)
0 (b) denote the class of functions F (z) = b + A1z + A2z

2 + . . .
analytic and univalent in the unit disk U which satisfy the conditions: F (U) ⊂ U , 0 6∈

F (U), ImF (n)(0) = 0. Using Loewner’s parametric method we obtain lower and upper

bounds of A2 in B
(R)
0 (b) and functions for which these bounds are realized. The class

B
(R)
0 (b), introduced in [6], is a subclass of the class Bu of bounded, non-vanishing univalent
functions in the unit disk. This last class and closely related ones have been studied by
various authors in [1]–[4]. We mention in particular the paper of D. V. Prokhorov and
J. Szynal [5], where a sharp upper bound for the second coefficient in Bu is given.

1. Introduction. Let B(R)
0 (b), 0 < b < 1, denote the class of all func-

tions F that are analytic, univalent in the unit disk U and satisfy the con-
ditions

F (U) ⊂ U, F (0) = b, 0 6∈ F (U), Im F (n)(0) = 0, n = 0, 1, . . . , F ′(0) > 0.

Let

(1) F (z) = b + A1z + A2z
2 + . . . , A1 > 0,

and

(2) L(z) = K−1

(

4b

(1 − b)2

(

K(z) +
1

4

))

= b + B1z + B2z
2 + . . . ,

where K(z) = z/(1 − z)2,

(2′) B1 =
4b(1 − b)

1 + b
, B2 =

−8b(1 − b)(b2 + 2b − 1)

(1 + b)3
.

The function (2) maps U onto U \ (−1, 0], is univalent and symmetric in U ,

L(0) = b, and therefore L ∈ B(R)
0 (b). Let further S

(R)
1 denote the family of

1991 Mathematics Subject Classification: Primary 30C45.
Key words and phrases: univalent function, Loewner differential equation.

[119]
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all functions f which are analytic, univalent and symmetric in U and satisfy

f(U) ⊂ U , f(0) = 0. It is obvious that if f ∈ S
(R)
1 then L◦f ∈ B(R)

0 (b). But

also conversely, if F ∈ B(R)
0 (b) then F (U)∩(−1, 0] = ∅, hence L−1◦F ∈ S

(R)
1 .

Moreover, any F ∈ B(R)
0 (b) is subordinate to L. The above relations allow

the application of Loewner’s theory, adapted to the class S
(R)
1 by O. Tammi

[7], pp. 61–77, to functions of the class B(R)
0 (b). It turns out that in this

manner it is possible not only to obtain estimates of A2 in the class B(R)
0 (b)

in an easier way than using the variational method as in [6], but also to
obtain all the extremal functions.

2. Loewner’s theory applied to B(R)
0 (b). D is called a symmetric

2-slit disk if it is obtained from the disk U by removing two Jordan arcs
not containing 0, symmetric about the real axis and such that D is a simply
connected domain. It is known that each simply connected domain, included
in the disk U , symmetric about the real axis and containing 0, can be ap-
proximated, in the sense of convergence towards a kernel, by domains like
ones considered above, and hence on account of the Carathéodory Conver-

gence Theorem, each function in S
(R)
1 can be approximated in the topology

of uniform convergence on compact sets by S
(R)
1 functions that map U onto

symmetric 2-slit disks.Hence the set of all such functions—denote it by S—

is dense in S
(R)
1 and the infimum and supremum in S

(R)
1 of any functional

(real and continuous) are the same in S
(R)
1 as in S.

Tammi [7], p. 68, proved the following theorem for functions of class S.

Theorem I. For each symmetric 2-slit domain D there exists a function

ϑ = ϑ(u), continuous in [u0, 1], u0 > 0, which determines a differential

equation

(3) u
∂f(z, u)

∂u
=

f(z, u) − f3(z, u)

1 − 2 cos ϑ(u)f(z, u) + f2(z, u)
,

so that its solution f(z, u0) with the initial condition f(z, 1) = z is the

mapping function of U onto D with f(0, u0) = 0.

Conversely , if ϑ is continuous in [u0, 1] for some u0 > 0 and (3) is

integrated with the initial condition f(z, 1) = z, then the solution satisfies

f(z, u) ∈ S
(R)
1 , f ′

z(0, u) = u.

Denoting by S1 the set of all solutions of the equations (3) with the
functions ϑ continuous in [u0, 1] for some u0 > 0 and with the initial condi-

tion f(z, 1) = z, we have S ⊂ S1 ⊂ S
(R)
1 . The continuity of the function L

implies that the family L = {F : F = L ◦ f for some f ∈ S1} is dense in the

class B(R)
0 (b), and hence if F is a functional real, continuous and bounded
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in B(R)
0 (b), then

inf
B

(R)
0 (b)

F = inf
L

F , sup
B

(R)
0 (b)

F = sup
L

F .

3. Lower and upper bounds of A2. Let

f(z, u) = u(z + a2(u)z2 + a3(u)z3 + . . .)

satisfy the equation (3) and the initial condition f(z, 1) = z with some ϑ
continuous in [u0, 1] for some u0 > 0. Let

(4) F (z, u) = L(f(z, u)) = b + A1(u)z + A2(u)z2 + . . .

By (3), a′
2(u) = 2 cos ϑ(u), and hence

a2(u) = −2

1\
u

cos ϑ(t) dt, u0 ≤ u ≤ 1.

From (4), (2) and (2′) it follows that

A1(u) = B1u =
4b(1 − b)

1 + b
u,

A2(u) = B1ua2(u) + B2u
2

=
−8b(1 − b)

1 + b

(

u

1\
u

cos ϑ(t) dt +
b2 + 2b − 1

(1 + b)2
u2

)

.

It is obvious that A2(u) is maximal if cos ϑ(t) = −1 and it is minimal if
cos ϑ(t) = 1 for u ≤ t ≤ 1. Thus we obtain the following inequality:

(5)
−8b(1 − b)

(1 + b)

(

u − 2

(1 + b)2
u2

)

≤ A2(u) ≤ −8b(1 − b)

(1 + b)

(

u − 2b2 + 4b

(1 + b)2
u2

)

, 0 ≤ u ≤ 1.

Both inequalities are sharp. The right-hand side of (5) attains its maximal
value for u∗ = (1 + b)2/(4b(b + 2)). If u∗ ≤ 1, that is, if 2/

√
3 − 1 ≤ b < 1,

then

(6) max
u∈[0,1]

A2(u) = A2(u
∗) =

1 − b2

b + 2
.

If u∗ > 1, that is, if 0 < b ≤ 2/
√

3 − 1, then

(7) max
u∈[0,1]

A2(u) = A2(1) = −8b(1 − b)

(1 + b)3
(b2 + 2b − 1) = B2.

The left-hand side of (5) attains its minimal value for u∗∗ = (1 + b)2/4 ≤ 1,
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hence for every 0 < b < 1,

(8) min
u∈[0,1]

A2(u) = A2(u
∗∗) = −b(1 − b2).

Exactly the same results were obtained in [6] by means of the variational
method.

Let us now find functions whose second coefficient satisfies the equalities
in (6), (7) and (8).

Putting in (3) cos ϑ(u) = −1 for u ∈ [u0, 1], u0 > 0 arbitrary, we get the
identity

(9)
f(z, u) + 1

f(z, u)(1 − f(z, u))

∂f(z, u)

∂u
=

1

u
,

where f is the function from the second part of Theorem I.

Integrating (9) from u1 to 1, where u1 = u∗ for 0 < b ≤ −1 + 2
3

√
2 and

u1 = 1 for 2/
√

3 − 1 < b < 1, we obtain

(10)
f(z, u1)

(1 − f(z, u))2
= u1

z

(1 − z)2
.

If u1 = 1 then f(z, u1) = f(z, 1) = z and F (z) = L(z), hence for 0 < b ≤
2/
√

3−1 the function (2) maximizes the second coefficient A2. If 2/
√

3−1 <
b < 1 then A2 is maximal, by (10), for the function

(11) F (z) = L(f(z, u∗)) = K−1

(

4b

(1 − b)2

(

(1 + b)2

4b(b + 2)

z

(1 − z)2
+

1

4

))

,

which maps the disk U on U \ (−1, c], where

c =
(2b3 + 3b2 + 3)

√
2 + b − 2(2 + b)(1 − b2)

√
1 + b√

2 + b(3b2 + 6b − 1)
.

We see that c tends to 0 as b → (2/
√

3 − 1) − 0.

Putting now in (3) cos ϑ(u) = 1 for u ∈ [u0, 1], u0 > 0 arbitrary, we get
for the function f satisfying (3) the identity

(12)
1 − f(z, u)

f(z, u)(1 + f(z, u))

∂f(z, u)

∂u
=

1

u
.

Integrating (12) from u∗∗ to 1 we obtain

f(z, u∗∗)

(1 + f(z, u∗∗))2
= u∗∗ z

(1 + z)2
.

The coefficient A2 is minimized by the function

(13) F (z) = L(f(z, u∗∗)) = K−1

(

b

(1 − b)2
1

1 − (1 + b)2z/(1 + z)2

)

.
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This function maps the disk U onto U \ ((−1, 0] ∪ [d, 1)), where

d =
3 + 6b2 − b4 − (1 − b2)

√
9 − 10b2 + b4

8b
.

We see that d tends to 1 as b tends to 1.
We now restate the result obtained above:

Theorem. If F ∈ B(R)
0 (b), 0 < b < 1, then

−b(1 − b2) ≤ A2 ≤















−8b(1 − b)

(1 + b)3
(b2 + 2b − 1) for 0 < b ≤ 2√

3
− 1,

1 − b2

b + 2
for

2√
3
− 1 < b < 1.

The left-hand bound is realized by the function (13) and the right-hand

bounds by the functions (11) and (2).
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