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The law of large numbers and a functional equation

by JOANNA GER and MACIEJ SABLIK (Katowice)

Abstract. We deal with the linear functional equation
T
(E) g(x) = pig(eiz),
i=1

where ¢ : (0,00) — (0,00) is unknown, (p1,...,pr) is a probability distribution, and ¢;’s
are positive numbers. The equation (or some equivalent forms) was considered earlier
under different assumptions (cf. [1], [2], [4], [5] and [6]). Using Bernoulli’s Law of Large
Numbers we prove that g has to be constant provided it has a limit at one end of the
domain and is bounded at the other end.

1. Introduction. In [4] the authors asked for the conditions under
which any solution of the equation

(J) [z =) + [z +p(x)) = 2f(z)

is affine. The equation (J) is called the Jensen equation on the graph of
the function ¢. For ¢ linear, say ¢(x) = azx, z € (0,00), (J) leads to the
equation

(¥ o) = Solex) + 3o(dr)

where g(z) = f(x)/z, c =14+a and d = 1 —a. Obviously, () is a particular
case of (E) which is our main point of interest. Thus one motivation for the
present paper is to extend our previous results.

Another motivation comes from [1] and [6] (cf. also [5]), where the fol-
lowing equation has been considered:

'
(L) G(t)=>_ AG(t+a;)
i=1
where G : R — R is unknown, A;’s are positive, and a;’s are different from 0.
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Suppose that A € R is a solution of the characteristic equation of (L), i.e.

i Aie)“” = 1.
i=1

Then it easy to check that G solves (L) if and only if g : (0,00) — R given
by

g(x) = 27 G(Inz)

solves (E) with p; = A;e* and ¢; = e, i € {1,...,r}. The equation (L)
has been studied by the aforementioned authors either under the assump-
tion that solutions are continuous and bounded (G. Derfel, who moreover
uses probability methods to prove the results) or measurable and nonneg-
ative (M. Laczkovich) or satisfy some asymptotic conditions (J. Baker). It
might be interesting that M. Pycia in [7] when dealing in particular with (L)
with equality replaced by inequality, assumes measurability and asymptotic
conditions. In the present paper we also impose some asymptotic conditions,
which is another consequence of our original interest in solving the Jensen
equation on curves. In [4], following several authors dealing with a similar
problem for the Cauchy equation on curves, we looked for solutions of (J)
which are differentiable at 0 and such that the quotient f(z)/z is bounded
at infinity. Our present results concerning (E) are of a similar type.

2. Preliminaries. Let ({2,.A, P) be a probability space, let r € N be a
positive integer and fix py,...,p, > 0 such that Y., p; = 1. We consider

a sequence (X, )nen of vector random variables, X,, = (X, 1,...,Xnr),
where X, ; : 2 — R for i € {1,...,r}, and assume that for every n € N the
random variable X,, has polynomial distribution, i.e. for every ki,...,k, €

{0,1,...,n} such that k1 + ...+ k, = n,

n!
Plwe 2: Xp1(w)=ki,..., Xnr(w) =k }) = Wplfl Lpp

We start with the following

LEMMA 2.1. If (Xy)nen, Xn = (Xn,..., X0 ), n €N, is a sequence of
vector random variables with polynomial distribution, then for every § > 0,

<of) =1,

< 6, Z Xn,j(w):n—Xm(w)}.

J=1,j#1

Xnyi(w)
n

(1) lim P({w € (2: max — i

n—00 1<ilr

Proof. Fix § > 0. Fori € {1,...,r} set

Al = {w e ’Xn’i(w) —p;
n
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Then
ﬂA?:{weQ: max ﬂ—pi <5}.
i1 1<i<lr n

It is obvious that if we prove

(2) lim P(A}) =1 forie{l,...,r},

n—oo

then we get (1). By symmetry it is enough to show that (2) holds for i = 7.
We have
n!

° k kr— k‘r
PAN = > D TN Tt
{kr:|kr/n—pr|<6} k14...+kr_1=n—k, 1w Bort

_ Z TL! k?"
- Tel(n — ko )P

{kr:|ky/n—p,|<d8}

(n—ke)! & K
S IOy S MR
kil kp—q!
Ktk 1 =n—ky
n! k —k
— r 1 _ n r
Z k‘T'(n o kT)'pT ( p'f’)

{kr:|ky/n—p,r|<d8}

Cp({veor B o)),

where Y, . : 2 — R, n € N, is a random variable with Bernoulli distribution

P(Yn,r = kr) = (;)Z)ﬁr(l —pT)l_kT.

Using Bernoulli’s law of large numbers (cf. [3], Chapter VI, §4), we get (2).

— Dr

In the sequel we will deal with the equation
(E) g(@) = 3 piglew),
i=1

assuming that
H pi>0c¢#1L,1<i<r,0<c¢<...<c, E:lei =1, and
[[o e #1

Consider the characteristic equation for (E), i.e.

3 S et = 1.
=1

Denote by A the set of roots of (3). In view of (H) we have 0 € A. Using
simple calculus methods to the function R 3 A — >°7_, pic} —1 € R one
can show that card A < 2 and the following holds.
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LEMMA 2.2. Assume that (H) holds. We have

(i) ifc1 > 1 or e, <1 then A={0};
(ii) if c1 < 1 < ¢, then A = {0, \}; moreover,

Hcf‘ >1=A<0 and l_IcficiA <1,
i=1 i=1

while
' ' A
Hcf <1=X>0and Hcfici > 1.

i=1 i=1
3. Main results. Let us prove first the following extension of Theorem 1
of [4].

PROPOSITION 3.1. Let g : (0,00) — R be a solution of equation (E). If
either

(A1) g is bounded in the vicinity of 0,
(Ag) lim g(z) =a € [—00,00|, and
(A3) I >

i=1
or
(B1) g is bounded in the vicinity of oo,
(B2) 111{)1+ g(x) =a € [—o00,00], and
(Bs) I <t

i=1

then a € R and g(x) = a, x € (0,00).

Proof. Assume that (A;)—(As) hold. We first show that for every R > 0
there exists a Br > 0 such that

(4) l9(z)| < Br

for every x € (0, R).
It follows from (Aj) that ¢, = max{ci,...,c,—1} > 1 and hence

a:=min{l,1/c1,...,1/c,_1} - ¢, > 1.
Let dyp > 0 and 3y > 0 be such that for every x € (0, dy),
(5) 19(2)] < fo.
Fix R > 0 and let x € (0,dy) where d; := ady. Then z/c, < dy and
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(ci/er)x < do, i € {1,...r — 1}. From (E) and (5) we get
oo =[5 o) - ()]
< (P22

<1+Z ) Bo—p)= 50(—1>—:51.

'r"

Using the same argument, we prove that for every n € N there exists a
0B, > 0 such that

6) m@ﬂgﬁns<2—1ybo

T

for every x € (0,d,,) where d,, := a"dp. Since a > 1 we have a’¥dy > R for
some N € N. In view of (6) it is enough to put Br := (.
For every n € N, put

Ay ={(k1,.... k) e (NU{O})" : k1 + ...+ k, =n}.
An easy induction shows that (E) implies
n!
(7) g(z) = Z mplfl coprg(et . dra), @ e (0,00),
(k1yeskr)EA,

for n € N. First, we will prove that a € R. Indeed, suppose that a = co. Fix
D > 0 and let R > 0 be such that

®) g(x) = D

for every « > R. Let € > 0 be such that

9) At > et

Finally, let = € (0,00) and choose ny € N such that for every n > ny,

(10) (R/z)/™ < ef.

In view of (9) there exists a § > 0 such that

(11) &> el

for every £ = (&1,...,&) € R” satisfying

(12) e —pll <,

where p = (p1,...,p,) and || - || denotes the maximum norm in R”. Now, if

n > ng and ki, ...,k € NU{0} are such that

— —Piy---5s— — Pr
n n

<o
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then (see (10)—(12)) for n > ny,
(13) e = (g s ety > %m = R.
For every n € N, put
Ky={(k1,.... k) € Ay : . cFre > RY,

L, :={(k1,.... k) € Ap: [(k1/n—p1,...,k/n—p.)|| <6},
M, = A, \K,, P,:=A4,\L,.
In view of (13) we have L,, C K,, and M,, C P, for n > ny.

Let (12, A,P) be a probability space and let (Y,,),en be a sequence of
vector-valued random variables defined by

Xn
Yn = — D,
n

where X, : 2 — R", n € N, are vector-valued random variables with poly-
nomial distribution. Lemma 2.1 implies that for every n > 0,

lim PV, <) = 1.

In particular, we have

n!
(14) > m}?’fl opir = P([Yall < 6) —L

n! k ki ok k..

lg(z)| = Z Wpll cprrglert )
e, Rl R

n! k1 ki (k1 K.

+ Z Bl tPL e Pr gler' ... )
e, Falee Kl

> Y TPl )

Lo k!

n' k k
S kg )
o e kil k!
Toeeeshor n

n! Ky k.
=203 L

(klv"'vkr)eLn
|
n. k K,
“Br D> gt
(kl’“wk'r')epn Lo B

> DP(||Yn|| < 0) = BRP([[Yn| = 6) —— D.
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Since x > 0 was arbitrary this shows that |g(z)| > D for z € (0,00).
But D > 0 was arbitrary as well, thus |g(z)] = oo, x € (0,00), which
contradicts the boundedness of g at 0. This contradiction shows that a < oo.
An analogous argument may be used to show that a > —oo, too.

To prove that g = a fix n > 0 and let R > 0 be such that

(15) l9(x) —al <n
for every x € [R,00). Let z € (0,00). From (4), (7) and (13)—(15) we get

n! k - k -
lg(x) —al < Z mp11~--]95’ g(ar* ... epra) —
ooy e, Tt Fr!
n! k k k k
+ Z WPf oy lglert L gra) — al
(k1,....kp)EM, 07
n! k1 K,
§77+(BR+|GD(k zk:)ep kl'kr'pl pT
| EREERYAT o n

<0+ (Br + [al)P(|Yn]| = 8) ——n.

Since = € (0,00) and 1 > 0 were arbitrary, we get our assertion.
To prove the remaining part of the assertion it is enough to observe that
if g solves the equation (E) and (B;)—(B3) are satisfied then the function

G(z) :=g(1/x), x € (0,00),

satisfies (E) with ¢; replaced by C; :=1/¢;, 1 € {1,...,r}, and G,C4,...,C,
satisfy (A;)—(As), hence G(z) = a, x € (0,00).

Let us note that the assumptions on g are essential, and even high reg-
ularity of solutions does not guarantee uniqueness.

ExXAMPLE 3.1. The function g : (0,00) — R given by g(x) = 1/x satisfies
(B1), (B2) and solves the equation

g(x) = zg(?)x) + ig(z), z € (0,00).

» 1\ /4
33 > 1,

and thus (Bs) does not hold.

Note that

EXAMPLE 3.2. The function g :=id|(0, 00) solves the equation

g(x) = ;ng) + ;g<;m) z € (0,00).
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and satisfies (A1) and (Az). However,
(3/2)2-(1/2)2 <1
and thus (As) does not hold.

The above examples also show that Proposition 3.1 does not hold when
(A2) and (As) are satisfied, but (A;) is not (Example 3.1) or (B2) and (Bj)
are satisfied while (B;) is not (Example 3.2). However, observe that in both
cases nonconstant solutions are of the form z — z* where X is a nonzero
solution of the respective characteristic equation (A = —1 for the equation
in Example 3.1, and A = 1 in Example 3.2). It turns out that this is not
accidental. More exactly, we have the following result concerning the case
where the characteristic equation (3) has a nonzero root (cf. our comment
before Lemma 2.2 on the size of A).

THEOREM 3.1. Assume that (H) holds and suppose that the set A of roots
of the characteristic equation (3) has two elements. Set

p:=minA, v:=maxA.

Let g : (0,00) — R be a solution of equation (E) and define for every A € R
the function gy : (0,00) — R by

ga(@) = 27g()

If
(1) gu 18 bounded in a vicinity of 0 and
() zli}ngo gv(z) = a € [—o0, 0],
then a € R and g(z) = az”, z € (0,00).

If
(61) gy is bounded in a vicinity of oo and
(B2) Jim_g,(z) = a € [-00,00],

then a € R and g(x) = az", = € (0,00).

Proof. Suppose that (As) holds (cf. Proposition 3.1). According to
Lemma 2.2, if A consists of two elements then ¢; < 1 < ¢,, and hence
p < 0 =v. Conditions (o) and (a2) mean simply that g satisfies (A;) and
(A2) of Proposition 3.1, and the first part of the assertion follows. To prove
the second part, note (cf. Introduction) that

(E") gu(z) = Zﬁigu(cix),
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where p; = p;ct', i€{1,...,r}. Now, from Lemma 2.2(ii) we infer that p;, ¢;,
ie{l,...,r} and g, satisfy conditions (B1)-(Bg) of Proposition 3.1. Hence
the second part of the assertion follows.

The proof in the case where (Bs) holds is analogous.

REMARK 3.1. The condition (A3) holds in particular if ¢; > 1. It turns
out that in this case assumption (A;) is redundant. Indeed, equation (E)
then implies that if (8) holds for x > R then it holds for z > R/c; > R as
well. An easy induction shows that (8) has to hold for every x > 0, which,
as in the proof of Proposition 3.1, implies that a € R. Now, an analogous
argument shows that |g(x) — a| < ¢ for every ¢ > 0 and every z > 0. In
other words, g = a.

Similarly, if ¢, < 1 then (Bjs) holds and (B;) is redundant. Thus (cf.
Lemma 2.2) we can state the following.

THEOREM 3.2. Assume that (H) holds and suppose that A={0}. If either
c1 > 1 and (Az) holds or ¢, < 1 and (Bg) holds then a € R and g(x) =
€ (0,00).
REMARK 3.2. Note that the second part of the above theorem was proved
by J. Baker in [1] (Proposition 2), under the assumption that a € R.

The assumption on g may also be relaxed in some other cases, not covered
by our theorems. As an example, we prove a result on solutions of equation
(E) with r =2 and ¢y = ¢ "

Consider the equation

(16) ole) = pates) + (1= plg 1)

where g : (0,00) — Ris the unknown function, p € (0,1) and ¢ € (0, 00)\{1}.
First, we prove the following

LEMMA 3.1. If g satisfies equation (16) then for every n € N,

6)
(17) o) = pg(ca) + (1= po)a( Fa) o (0.09),

where
Pn—1DP
18 Pppn=7"7"T"—", N=2,  p=p
(18) 1 —=p+pn_1p !
In particular,
(19) lim p, =0, pe(0,1/2].
n—oo

Proof. A simple proof of (17) and (18) will be omitted. To prove (19)
define for p € (0,1) the function f, : (0,1) — (0,1) by

pt
t) = —— t 1).
fp() 1_p+pt7 6(07 )



174 J. Ger and M. Sablik

We have
fp(on) = i1 = 3 (p), neN
If p € (0,1/2] then for every t € (0,1) we get
t(1—2p+ pt)
t—f(t) = —— =
Hence f,(t) <t and lim,, . f;'(t) = 0, which ends the proof of (19).

> 0.

Using Lemma 3.1 we prove

THEOREM 3.3. Let ¢ > 1 and let g : (0,00) — R satisfy equation (16). If
either

(i) p € (0,1/2] and lim,_,~ g(z) = A € R, or

(ii) p € [1/2,1) and lim, g+ g(z) = A € R,
then g = A.

Proof. Suppose that (i) holds. From Lemma 2.2 we get

se)=g(1e), ae .00

and the assumption on ¢ implies that
glx)=A, x€(0,00).

Assume now that (ii) holds. Setting b :=1/c and g := 1 —p we can write
equation (16) in the form

o) = ag(te) + (1= §a). € (0.0)

Applying Lemma 2.2 to the above equation (with b instead of ¢ and ¢ instead
of p) we get for every z € (0,00) and n € N,

(20) o1) = tu ") + (1~ a5 ).

where

_ qn—194
T G
Since ¢ € (0,1/2] we get lim,,_, ¢, = 0, moreover, lim,,_,, " = 0. Letting
n — oo in (20) we get

n>27 q1 = (¢

g(x) = g<2x>, z € (0,00),

whence g(z) = A, = € (0,00), follows immediately.
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