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A singular initial value problem for
the equation u(™(z) = g(u(x))

by WOJCIECH MYDLARCZYK (Wroctaw)

Abstract. We consider the problem of the existence of positive solutions u to the
problem

ul™ (z) = g(u(x)),
w0) =4/ (0)=...=u™V0)=0(g>0, >0, n>2).

It is known that if g is nondecreasing then the Osgood condition

4 n
§§{$}1/ ds < 0o

is necessary and sufficient for the existence of nontrivial solutions to the above problem.
We give a similar condition for other classes of functions g.

1. Introduction. In this paper we consider the equation
(1.1) (@) = glu()) (x> 0),
where g : (0,00) — (0,00), n € N, with initial condition
(1.2) u(0) = u'(0) = ... =Y (0) = 0.

If g(0) = 0, then u = 0 is a solution to the problem (1.1), (1.2). We are
interested in the existence of solutions u € C[0, M] N C™ (0, M), 0 < M
< 00, such that u(xz) > 0 for z > 0, which we call nontrivial solutions. For
n = 1 this problem is classical and leads to the well-known Osgood condition,
for n = 2 it is also standard. The case of n = 3 was considered in [5]. When
g is a nondecreasing continuous function, the problem has been solved for
any n (see [2], [4]). In that case, a necessary and sufficient condition for the
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existence of nontrivial continuous solutions is

0 1/n

1| s
S—[—] ds < oo (6>0).
0 s Lg(s)
We are going to obtain a similar condition for some other classes of

functions g satisfying the following conditions:
(1.3) g€ C(0,00), g > 0;
(1.4)  z™g(z) is bounded as  — 0+ for some m > 0.

We will rather deal with an integral formulation of the original problem
which reads

(L5) u() = =9 Lg(u(s)) ds,
0

and we will seek for nontrivial continuous solutions v > 0 of this integral
equation. We now present our main results which will be proved in Section 4.

THEOREM 1.1. Let g satisfy (1.3), (1.4). Then the condition
s
(1.6) Sg(s)s_("_z)/("_l) ds < o0
0

is necessary for the existence of nontrivial solutions of the equation (1.5).

Before stating our further results we introduce some auxiliary definitions
and notations.

Let g satisfy (1.3), (1.4). We put
g (x) =2"™ sup s"g(s) forx >0.
0<s<z

We easily see that g(x) < ¢g*(x) for > 0 and x™g¢*(x) is nondecreasing.
We define two function classes K,, and K} (n > 2) as follows:

K, = {g: g satisfies (1.3), (1.4), (1.6) and z™g(x) is nondecreasing},

K= {g : g satisfies (1.3), (1.4), (1.6) and sup ¢ () < oo},

0<z G(x)
where
G(x) = Sg(S)S*(”*Q)/("*l) ds, G*(z)= Sg*(s)sf(nfg)/(n,l) ds.
0 0

We easily observe that K, contains nondecreasing functions and that
K, C K}. In contrast to K,, the class K, admits functions which can oscil-
late at the origin like [sin(1/x)| (see [5]).
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Let u be a nontrivial solution of (1.5). We define

v(z) =u'(u"'(2)) = (z >0),

1
(u=1)(2)
for which we establish some a priori estimates.

THEOREM 1.2. Let g € K and n > 2. Then there exist constants
c1,co > 0 such that

no1yn/(n-1) @
1xn—2<v(x) > < S(x _ s)"2g(s)s—(n=D/(n=1) g

n—2 —
x 0
S <U($)”1>n/(n_1)
~ €2 - 5

$n—2

for x > 0.

As a consequence of the above estimates we obtain the existence result
for (1.1), (1.2).

THEOREM 1.3. Let g€ K} and n > 2. Then the problem (1.1), (1.2) has
a continuous solution u such that u(x) > 0 for x > 0 if and only if

5
(1.7) Sgb(s)_l/("_l) ds <oo (0<9),
0
where
T (1 eyn=2g(g)g—(1-D)/(n=1) gg \ (1=1)/n
(1.8)  ¢(z) = x”_Q{ Jo (@ =) gii)i ds} (z > 0).

REMARK 1.1. Observe that the existence of nontrivial solutions to (1.1),
(1.2) depends only on the behaviour of ¢ in a neighbourhood of zero. There-
fore the assumptions on g could be reformulated to take this fact into ac-
count.

We also give a condition for the blow-up of solutions, which means that
there exists 0 < M < oo such that lim,_,/— u(x) = co.

THEOREM 1.4. Let g € K} and n > 2. A continuous solution u to (1.1),
(1.2) positive for x > 0 blows up if and only if

S o(s) V"V ds < o0
0
where ¢ is given in (1.8).

We call the condition (1.7) the generalized Osgood condition for the
problem (1.1), (1.2). Such conditions for convolution type integral equations
u(z) = | k(z — s)g(u(s)) ds have been widely studied (see [1], [6]). Unfor-
tunately, only the case of nondecreasing functions g was considered.
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2. Auxiliary lemmas. Let f: (0,00) — (0,00) be a continuous locally
integrable function. We will use some properties of the functions
xr
w(x) = cx® 7 4 S (x —s)*1f(s)ds (x> 0),
0
where k > 2 and ¢ > 0 is a constant.

LEMMA 2.1. For any x > 0,

x
(k= 1)7Fw!(2)F " < cw(@)* 2 + | (w(@) — w(s))* 2 f(s) ds
0
< (k—1)"1w'(z)k L
Proof. We notice first that w’ is nondecreasing. So the mean value
theorem gives the right inequality immediately.
To prove the left inequality we first introduce the Borel measure du(s) =
f(s)ds + coy (s > 0). Thus w can be rewritten in the form

x

w(z) = S (z — s)* " Ldu(s).
0

Moreover, we see that
w(z) —w(s) = | {(@ = )" = (s = )" "} du(t).
0

Since
(-t 1 —(s—t)F 1> @—s)(z—t)"? for0<s<u,

we get
w(z) —w(s) > (x —s)I(s), where I(s)= S (z — )2 du(t).
0
Noting that I'(s) = (z — 8)*72f(s) and w(z) > cz¥~1, I(0) = ca¥72, we
obtain

cw ()2 + | (w(x) —w(s))* 2 f(s) ds
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LEMMA 2.2. Let p be a Borel measure on [0,00). Then the function

(Tp (& — )" du(s))"**
(To (@ = s)m*F dp(s)

where k,n € N, is nondecreasing.

@km(az) = (a: > O),

Proof. By differentiation we verify that for K =1 and any n € N,

T xT

sign @ () = sign (S (z—s)" " Ldu(s) - S (z — s)" T du(s)

0 0
~ (V-9 dus)’).
0

Hence the Schwarz inequality yields the required assertion in that case. Now
by an inductive argument based on the relation

Preit (@) = [@pop ()] T OER [ ()] )
we obtain the required assertion for any k,n € N.

We set

(2.1) z(x) = :§ (z —s)"2g(s)s =D/ "V gs  (2>0, n>2).
0

LEMMA 2.3. Let g € K,, and w(z) = 2™V (z) + (m + 1)2"=2) (),
w(0) = 0. Then w is nondecreasing and continuous. Moreover, there exist
constants cy,co > 0 such that

C1

(22) (n—k—1)!

(z —s)" " dw(s) < (a:z)(k) (x)

O e B

(x—s)" " Ldw(s) (z>0)

MH

~ (n— —1'
0

fork=0,1,...,n—1.

Proof. Define h(z) = 2™+22("=1(z) for > 0 and h(0) = 0. By our
assumptions on g the function h is continuous and nondecreasing. Note also
that

T2
2D (1g) — 20D (2y) = S s ™ 2h(s) ds
1
1 1

1
_ (n—1) o (n—1) —m—1
= 1(x22 (x2) — 212 (x1)) + e S s dh(s)

1
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for any 0 < 7 < 3, from which it follows immediately that w is nonde-
creasing. Let

= = i (n=1)
v = xligler(x) xli%hrxz ().

Then we easily see that v must be 0. Thus w is continuous at 0 and every-
where else. To get (2.2) we first notice that using the Leibniz rule we can
find some constants ¢, co > 0 such that

cw(z) < (x2)™ V() < cpw(x)
for x > 0. This gives the required assertion immediately if we just observe

that w(z) = §; dw(s) for z > 0.
LEMMA 2.4. Let g € K. Then there exists a constant ¢ > 0 such that

T

(2.3) | (@ — )" 2g(s)6(s) "/ "V ds < c(x) (a > 0),
0

where ¢ is defined in (1.8).

Proof. First we consider g € K,, and define
1
k!

for k=0,1,...,n—2.
For z defined in (2.1) we have
P(z) VD) = g (=D (=) () =1 g (n=2)/m

T

I(z) = = S (x — 5)*g(s)o(s) "V ds (x> 0)

and
1 xr
(n —2) () = HS $)F2 D (5)2(s) Vs =D/ ds (x> 0)
0
for k=0,1,...,n—2.
We shall prove that there exist constants cg,cq,...,c,_2 > 0 such that
(2.4) Ii(z) < 2D (@) 2 () YD/ (2> 0)

for k=0,1,...,n—2.
Our assertion will follow from (2.4) with k =n — 2. Set
Hi(x) = (22" (@) (wa(2)) ",
Je(x) = [(x2) "2 @) Ha2(2) " (2> 0),

k=0,1,...,n — 2. Using the Leibniz rule and monotonicity properties of
the derivatives of z, we can observe that

2% (z) < (22)®(2) < (k+ D2z® (z) (x> 0)
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for k=0,1,...,n — 2. Hence
(2.5) (n—k—1"0"YJ(2) < Hy(z) < Jp(z) (x> 0)

for k=0,1,...,n—2.
Lemmas 2.2 and 2.3 yield the following monotonicity property of the
functions Jj:

there exist constants cg,cy,...,Cnh_o such that
Ji(s) < cpdg(z) fork=0,1,...,n—2and 0 < s < x.

It follows from (2.5) that the functions Hy have the same property. Now,
we are ready to prove (2.4) by induction. Using the above property for H
we obtain

Io(w) = ——

(n_2) Z(nfl)(S)Z(s)fl/ns(nfm/n ds

1
(n—2)

IN

A () (2D () D/ H (5) 7 ds

Qtemrm 8 O e B

1
(n—2)!
1
(n—2)!

Applying the inductive assumption and the relation

< ncy Hg(x)l/”(z(”ﬂ) (a;))l/”

= nco 272 () z(z) "M/ PP =2/,

(l‘Z(ZE))_l/n = (z(”_3_k) (:E))i 7;1@:—12) x nzlk;‘—lQ) ch—&—l(l‘)m,

where K =0,1,...,n—3 and z > 0, we get

x

Ijyq(x) = Slk(S) ds < ¢,
0

1 n—1 _ 1
<Cka+1( )"(k+2)"1;‘ n (1 k+2)

Z(n—Q—k) (S)(sz(s))—l/ns(n—l)/n ds

O e B

XS (n=2-k) (5) ((n=3—K) (5))~ TE=D dg
0
n(k +2) (n—3—Fk) —1/n_(n—2)/n
_nk+n+1kz (z)z(z) z )

which ends the proof of (2.4).

If g € K}, then we employ the fact that ¢* € K,,. From the definitions
of g* and ¢ it follows that there exists a constant ¢ > 0 such that for ¢*
corresponding to g* we have

¢(z) < ¢*(x) < cp(x) (x> 0).
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Hence
xT

L) = | (@ — )" ?g(s)6(s) "/ "V ds
0

< Cl/(n—l) S (JE . S)n_Qg*(S)qb*(S)_l/(n_l) ds
0
for > 0. Therefore our assertion follows from the inequality in (2.3) just
proved.

3. A perturbed integral equation. Since g admits a singularity at 0,
we are going to obtain a solution w of (1.1), (1.2) as a limit of solutions u.
of more regular problems. We perturb the equation (1.5) to

(3.1) ue(z) =ea" '+ [ (z — )" g(uc(s))ds (x> 0),
0

where € > 0 (n > 2). Let u. > 0 (¢ > 0) be a continuous solution of (3.1)
such that u, > 0 for x > 0. To give some a priori estimates for u. we
introduce an auxiliary function

ve(x) = ul(uz ' (2) =

and show that it satisfies a useful integral inequality stated in the following
lemma.

(x >0)

LEMMA 3.1. Let g satisfy (1.3

~—

, (1.4). Then for any e > 0,
1
Ve (s)
<(n—-1)"tv ()"t (z>0).

Proof. This follows from Lemma 2.1 if we take f(s) = g(uc(s)) (s > 0)
and then substitute 7 = u.(s).

ds

(’I’L _ 1)771215(33)”71 < €:L,n72 + )n72

(z —5)"g(s)

O e B

From this lemma we obtain the following a priori estimates for v..

LEMMA 3.2. Let g € K. Then there exist constants c1,ca > 0 such that
for any € >0,

(3.2) e1(ex™ 2+ ¢(a)V D <o (2) < eaea™ 2 4 @)V Y (&> 0).
Proof. Define

w(z) = ex"? gc:z:—s”*2 s
S S A e
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n—2

Since w(z)/x"™~* is nondecreasing, it follows from Lemma 3.1 that

Ue(s)n_l n—1 Ua(x)n_l
Therefore,
L 1
‘ > _ \n—2
(3.3)  w(z)> (S) (x —s) 9(s) ’UE(S) ds
e ! Tve(2) TR (g 5)n R ()52 0 s,

0

Since 2" 7?2 < w(z) < (n—1)"1v.(z)" 1, the left inequality in (3.2) follows
from (3.3). Now, by the left inequality and the definition of w we have

€T
w(x) < c<6:1:"_2 + S (z — 5)" " 2g(s)g(s) "L/~ D ds),
0
where ¢ > 0 is some constant. Thus the right inequality is a consequence of
Lemmas 2.2 and 3.1.

As an immediate consequence of Lemma 3.2 we obtain the following

estimates for u_ 1.

COROLLARY 3.3. Let g € K. Then there exist constants c¢1,ca > 0 such
that for any e > 0,
(34) 1 \(es" 2+ ¢(s)) "V ds < us(x)

0
T

< e S (es" 2+ 4(s)) Y Vds (x> 0).
0
Now we study the local existence of solutions to the original problem.
We begin with the consideration of the perturbed equation (3.1) with € > 0,
for which we prove the following existence result.

LEMMA 3.4. Let g € K. Then there exists g > 0 such that for any

0 < e < g9 the perturbed equation (3.1) has a continuous solution us(x) > 0
for x > 0 defined locally on [0,d].

Proof. We introduce the operator

Tw(z) = (n—1ex" 2+ (n—1) S (x —8)"?g(w(s)) ds,
0



186 W. Mydlarczyk

considered in the cone (n —1)ez" 2 < w(z) < 2(n —1)ez™ 2 (x > 0). Since
for w and its inverse w1 we have the estimates

ex"t < w(x) < 2™t (2> 0),
1/(n—1) 1/(n—1)
Yy ~_1 Y
A < <|(Z 0
<2€> Sw(y) < <€> (y >0),

we can find §. > 0 such that for any 0 < x < &,
T d

1
(3.5) (w(s))ds < \g(s)—=—7= ds
§g §g w(@1(s))
5
< ce Sg(s)s_("_Q)/("_l) ds < e,
0

where

d=w(d:) and c.= b 9(n=2)/(n=1) g=1/(n—1)
n—1

Thus T maps the cone K. = {w : (n—1)ez" 2 < w(z) < 2(n—1)ez™ 2,
0 < x < 6.} into itself. We can also verify that all the functions of the family
{Tw: w € K.} are equicontinuous. So T : K. — K. is compact in C[0, ]
topology. Now, by the Schauder fixed point theorem, 71" has a fixed point
w,. Taking u.(z) = w.(x) (0 < x < J.), we obtain the required solution as
ue(z) = §g we(s) ds.

4. Proofs of theorems. In this section we give the proofs of the theo-
rems of Section 1.

Proof of Theorem 1.1. Let u be a nontrivial solution of (1.5). In view of
Lemma 2.1 we have

(n = 17"/ ()" < V{u(e) — u(s)}"2g(u(s)) ds
0

which can be rewritten for v(z) = v/(u"1(x)) as

(4.1)  (n—1)"w(z)" ' < S (z — 5)"2g(s)— ds
0

Since

k) ) n— 71/("171)
1 e o (v(s)E
—— ds = (n—=2)/(n—-1)
[S)g(S)U(S) dS - ég(s)s ( Sn_2 > dS,



A singular initial value problem 187

our result follows from the fact that v(x)"~!/2""2 — 0 as * — 0, easily
obtained from (4.1).

Proof of Theorem 1.2. The required estimates follow from Lemma 3.2
immediately.

Proof of Theorem 1.3. Since Sg ﬁ ds = u~!(z) < oo, the necessity part
follows immediately from the estimates given in Theorem 1.2.

Now, we prove the sufficiency. We first notice that if the condition (1.7)
is satisfied then the a priori estimates for u_!(z) given in Corollary 3.3 can
be modified so as to be independent of €. Therefore the local solutions u,
(0 < € < gg) of the perturbed equation (3.1) obtained in Lemma 3.4 can be
extended to a fixed interval [0, M], independent of € (see [3]).

Now, we consider the family {u.(x), 0<z <M}, 0 < e < &g, of solutions
to (3.1). From (3.4) it follows that there exists a constant N such that

0<ucs(r) <N for0<e<eg O0<z<M.

Rewrite the perturbed equation (3.1) as follows:

T ue(s)
(4.2) uc(z) = ezt +(n—1) S (x —s)" 2 S g(t)v 6 dt ds,
0 0 €

where v (t) = ul(uz*(t)). Since only n > 3 is of interest, we can study u”.
First we notice by the estimates of Lemma 3.2 that

0<

1
~ ve(t)

where ¢ > 0 is some constant. Since it follows from (2.4) that

<ep(t) VT (> 0),

N

[ go) /0 <.
0

where ¢ > 0 is some constant, it is easy to deduce from (4.2) that u/(z) are
uniformly bounded for 0 < € < gy and = € [0, M]. Therefore the Arzela—
Ascoli theorem shows that {u.}, {u.} and {u-1}, 0 < e < g, are relatively
compact families on [0, M], possibly for a smaller M because of uzt. If we
choose a sequence {u, } such that {u., }, {u. }, {u_'} are simultaneously
uniformly convergent on [0, M] as €, — 0 and put it into (4.2), then we
can see that the limit function u(x) = lim, o ue, (z), 0 < x < M, is the
required solution to the problem (1.1), (1.2).

Proof of Theorem 1.4. Since the solution u blows up if and only if
ul(x) < M < oo for any = > 0, our assertion follows from the estimates
for v(z) = u'(u~!(x)) given in Theorem 1.2.
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Below we give some examples of functions g in the classes considered in
this paper.

EXAMPLE 4.1. Let g(s) = s /@ D(~Ins)=™? (0 < s < §, n > 2).
We easily verify that g € K,, provided 8 > 1. Since ¢(s) behaves at 0
like cs"~%(—Ins)?, where v = —2=1(8 — 1) and ¢ > 0 is some constant,
the condition of Theorem 1.2 is satisfied and the problem (1.1),(1.2) has a
nontrivial solution.

EXAMPLE 4.2. Let g(s)=s(—1Ins)? (>0, 0 < s < ). In this case ¢(s)
behaves at 0 like cs”~(—1Ins)3(®=1/" Therefore the condition of Theo-
rem 1.2 is satisfied if and only if 5 > n. In that case the problem (1.1), (1.2)
has a nontrivial solution.

EXAMPLE 4.3. Let ¢(z) = 1—|z| for —1 < 2 < 1 and ¢(z) = 0 for |z| > 1.
We consider the function g(z) = >":2 ¢;(z), where ¢;(z) = ¢((z — a;)/5;),
a; =1/2" 3, =1/(3-2"),1=0,1,..., defined for 0 < z < 1. We easily see
that the supports of ¢;, i = 0,1,..., are pairwise disjoint and g(a;) = 1. We
consider the function g* corresponding to g with m = 0:

g (x)= sup g(s)=1 (O<z<1).
0<s<z

We show that g € K} for any n € N. First we notice that the integrals

A=\ ¢i(s)s~ D/ Vas, i=0,1,...,

can be estimated as follows:
127 < A <27l =01,

where c;,ca > 0 are some constants. Let 1/2% < 2 < 1/2¥=1. Then

G(;L') = Sg(s)s_(n_z)/(n_l) ds — Z S QSZ‘(S)S_(H_Q)/(H_U dS é Z A’L
0 1=00 i=k—1

Finally, we obtain
azt/ Y < Gx) < czV/Y (0 <z < 1),

where ¢y, co > 0 are some constants. Since
G*(z) = | g*(5)s~ =2/ =D s = (n — 1)t/ D),
0

we see that g € K. Now Theorem 1.3 shows that the problem (1.1),(1.2)
has a nontrivial solution.
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