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Generic saddle-node bifurcation for
cascade second order ODEs on manifolds

by MIiLAN MEDVED (Bratislava)

Abstract. Cascade second order ODEs on manifolds are defined. These objects are lo-
cally represented by coupled second order ODEs such that any solution of one of them can
represent an external force for the other one. A generic saddle-node bifurcation theorem
for 1-parameter families of cascade second order ODEs is proved.

1. Introduction. Consider the Duffing forced oscillator
(1.1) &+ i+ iz + ax = g(t),

where o, w,y € R and g¢(t) is an external force. If g(t) = Bcoskt, 5,k € R,
then g is a solution of the differential equation

(1.2) i+ k*y = 0.

We study the control problem consisting in finding a solution ¢(t) of equation
(1.2) such that equation (1.1) has a periodic or homoclinic solution or more
generally some prescribed qualitative properties. If we are able to describe
the topological structure of trajectories of the system

(1.3) F+yi+wirtard =y, §JH+ky=0

then we have a chance to solve this control problem. While equation (1.1)
is scalar and nonautonomous, the system (1.3) is two-dimensional, autono-
mous. Despite this fact it is sometimes more convenient to study autonomous
systems in a higher dimensional state space than the nonautonomous ones
with lower dimensional variables. Systems of the form (1.3), where the sec-
ond equation is independent of the first one, are called cascade systems. In
[2] we have studied nonautonomous cascade systems of second order differ-
ential equations of the form

(14) $+R(y,t)$:f($,y,t), y+S(y)y:0,
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and a sufficient condition for the oscillation of solutions was proved. Cascade
systems of first order ODEs of the form

Y= @(3/7 Z)? z= W(Z,U)

are studied from the point of view of their feedback stabilization (u is a
control parameter) in [8].

We define cascade second order ODEs on manifolds which can represent
two or more coupled nonlinear oscillators controlled by a second order ODE.
We study generic bifurcations of such objects. Generic properties of second
order ODEs on manifolds have been studied by S. Shahshahani [9] and
generic bifurcations of second order ODEs on manifolds are described in the
papers [3, 4, 5]. We note that in [7] a class of vector fields on manifolds
containing second order ODEs is studied from the generic point of view.

2. Generic saddle-node bifurcation. Recall the definition of second
order ODEs on a smooth manifold X. Denote by T'X the tangent bundle of
the manifold X and by T?X = T(T'X) the double tangent bundle of X (see
e.g. [1], [6]). Denote by I'7(TX) the set of all C"-vector fields on T'X.

DEFINITION 2.1 (see [1]). A vector field £ € I'7(TX) is said to be a
second order ODE on X if
(21) DTXO§=ide,
where 7x : TX — X is the natural projection, Drx : T?X — TX is the
derivative of 7x and idrx : TX — TX is the identity map on T X.

If (U, ) is a chart on X, then (T,, 75" (U)) is the natural chart on T'X,
where T, ([7]z) = (a(x), do(aoy)(1)), [¥]x € T X and do(aoy) is the Fréchet
derivative of a oy at 0 € R (see e.g. [1], [6]).

If the vector field £ € I'7 (T'X) satisfies (2.1) and &, is its local represen-
tative in the chart (T, 75" (U)) then

(2.2) Salz,y) = (2,9, 9(x,y)),
where (z,y) € a(U) xR", g € C"(a(U) x R™,R"™) (see [6]). The vector field
(2.2) represents a special system of the form
t=y, =gy,
which is obviously equivalent to the second order ODE on «(U):
¥ =g(x, ).

REMARK. An interesting class of vector fields can be obtained if (2.1)
is replaced by the condition D7x o £ = A, where A : TX — TX is a fiber
preserving bundle endomorphism, linear on each fiber. Such vector fields are
locally represented by systems of the form & = B(z)y, y = g(z,y), where
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B(x) is a matrix-valued function, not necessarily invertible for all x. Generic
properties of such objects are studied in [7].

DEFINITION 2.2. Let X and Y be smooth manifolds. By a cascade second
order ODE (briefly CS) of class C” on X x Y we mean a couple { = (F,G),
where F: TX xTY — T?X x T?Y,G : TY — T?Y are C"-mappings with
the following properties:

(1) m o Fy is a second order ODE on X for all § € TY, where m :
T?X x T?Y — T?X is the natural projection and Fj : TX — T?X x T?Y,
Fy(&) := F(&,9).

(2) G is a second order ODE on Y and my o F(#,y) = G(y) for all
(#,9) € TX x TY, where 13 : T?X x T?Y — T?Y is the natural projection.

The set of all CS on X x Y is denoted by I'7 (X x Y') or briefly I'7.

One can show that any £ = (F,G) € I is locally represented by a
system of ODEs of the form
(2.5) =y, y=g(x,y,uv), w=v, v=h(uv),
where g, h € C3.

We may look at the first two equations of this system as a system con-
trolled by the system of the last two equations.

Define LIT(X xY) :={kf +In: k,l e R, {,ne IV} Theset I is not
closed with respect to linear operations over R, but the set LI is a vector
space over R.

From the definition of LI7 it follows that the local representative £,z of
¢ = (F,G) € LT in alocal chart (Taxs, Txxy (Ua x V) on TX x TY has
the form

(2.6) T =ky, y=kgaxg(z,y,u,v), @==kv, v==khg(u,v),

where k € R, gop € C"(a(U)xR"xB(V)xR",R"), hg € C"(B(V)xR"™, R™).
In the sequel we identify £,3 with the system (2.6). If k # 0 then we say
that & has ordinary structure. Define

[€apllr = [k[+  sup  {llgas(@,y,w, V)|, .., |dz 4 00)asllr}
(z,y,u,v)EKqp

+ sup {[lhg(w, ), [ld{y,mhsllr}s
(u,v)ELg

where ||| is the norm on the space of the corresponding k-multilinear
mappings, K.p = a(U) x R" x B(V) x R", Lg = B(V) x R". We identify
the vector field £,5 with the mapping F,5 : a(U) x R" x S(V) x R" — R"|
(2.7) Fop(z,y,u,v) == (ky, kgas(z,y,u,v), kv, khg(u,v)),

and define

(2.8) [Fopllr = lI€asllr-
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Let € € LIT {(Ui, )} 4, {(V],ﬁ])}ézl be systems of charts on X and
Y that cover X and Y, respectively, and let &;; be the local representative of
¢ in the natural chart (Taixgj,r)zlxy(Ui xV;)i=1,...,m,j=1,...,10).

From the definition of LI we see that there is a constant k (inde-
pendent of ¢,j) and mappings g;; € C"(c;(U;) x R™ x §;(V;) x R™, R"),
hj € C™(B;(V;) x R™,R™) such that &;; is represented by the system

(2.9) T =ky, y=kgjx,yuv), w=kv, 0=*khj(u,v).
Define ||&;;||, similarly to (2.8) and let

(2.10) €]l == sup{[|€sllr =i € {1,...,m}, je{1,...,1}},
The vector space GL(X xY):={{ € LIT(X xY): |||, < oo} is a Banach
space.

REMARK. In all our considerations we assume for simplicity that dim X
= dim Y. However, from the point of view of applications to control prob-
lems, it is reasonable to study also the cases dim X # dimY.

DEFINITION 2.3. Let A, B, X and Y be smooth manifolds. By a paramet-
rized cascade second order ODE (briefly PCS) of class C” on X x Y (with
parameter set A X B) we mean a couple £ = (F,G), where F': TX x TY X
AxB —=T?xT? G:TY x B— T?Y are C"-mappings with the following
properties:

(1) T 0 Fiy q,p) is a second order ODE on X for all (y,a,b) € TY x Ax B,
Fiy.ap)(w) == F(Z,9,a,b), i.e. m o Fy is a parametrized second order ODE
on X with parameter (a b) e Ax B (F (,a,b) := F(&,9,a,b))

(2) G is a parametrized second order ODE on Y and 75 0 F(,9,a,b) =
G(3,b) for all (i,9,a,b) € TX x TY x Ax B

(m,m are the projections defined in Definition 2.2). The set of all such
objects is denoted by HL(X x Y, A, B).

Throughout this paper we assume that A, B, X and Y are compact.

Sometimes we control a parametrized second order ODE by a second
order ODE which is independent of parameters. In this case we have B = ()
in Definition 2. 3. The set of all such objects is denoted by Hr (X xY, A).

Let L’H’”(XXYA B) = {k&+1n: k1 € R, §n€HT(X><YA B)
(briefly LH).

Let & € LHE, {(Us, o)}, {(V},8;)};=, be systems of charts on X and
Y, respectively, as in the definition of [[£]|, for £ € LI (see (2.10)) and
let {(Ak,ar)}h_1,{(Bs,bs)}i_; be systems of charts on A and B covering
A and B, respectively. Let (To,xgs;, TXXY(U x V;)) be the natural chart on
X x Y as in the definition of (2.9) and let &;jxs be the local representative
of £ € L?j[’c" in this chart and the above charts on X and Y. Then ;i is
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represented by a parametrized system of differential equations of the form
(211) T = ky? y: kgijks(xaya U,U,/J,,l/), U= kU, 'l'):khjs(U,U,V),

where z,y,u,v € R", p € R v € R™ (dim X = dimY =n, dim A = my,
dim B = my).
Define ||&;jxs||, similarly to (2.8) and let

€]l == sup{||€ijusllr 15 € {1,...,m}, je€{1,...,1}, ke {1,...,p}}.
The space
(2.12) HI(X X Y,A,B):={¢ € LHI(X xY,A,B) : ||¢]|, < oo}

is a Banach space.

Let (T%2X)g be the zero section of T2X, i.e. (T?X)o = {0[#] € T?X :
i € TX}, where 0[#] is the zero element of T;(TX). The set (T2X)g is
a closed submanifold of T2X diffeomorphic to TX (see [1, pp. 59]). Let
£ = (F,G) e H.(X x Y, A, B). Then define C(§) := {(a,b,%,y) € A x B x
TX x TY : Fz,y,a,b) € (T?X)o x (T2Y)o}.

PROPOSITION 2.4. Let { = (F,G) € HL(X xY, A, B) have ordinary struc-
ture. Then C(&) is a subset of AX Bx (T'X)gx (TY )o, where (TX )o, (TY )o
are the zero sections of TX and TY , respectively.

Proof. Let (a,b,2,9) € C(&), where £ = (F,G). Then Fu(%,7y) €
(TX)o x (TY)o, Go(y) € (TY)o, where Fop(z,y) := F(&,9,a,b),Gp(y) =
G(9,b). Let (Tw, 75" (Ua)), (T, 75 (Vi) be natural charts on TX and T,
respectively, such that & € 73,1 (Uy), § € 75+ (V). Let &up := (Fap, Gp) and
(€ab)ap be the local representative of &, in these charts. If T, (%) = (p,q)
and T3(y) = (u, v) then

(&ab)ap(Ps @, u,v) = (P, q, kq, kg(p, ¢, u,v),u, v, kv, kh(u,v)),
(p,q) € a(Uy) xR™,  (u,v) € B(V3) xR", keR.

Since &ap(2,y) = (Fup(z,9), Goly)) € (T°X)o x (T?Y)o we have kg = 0,
kv =0 (kK # 0), g(p,q,u,v) = 0 and h(u,v) = 0. Thus T,(%) = (p,0),
T3(y) = (u,0), i.e. £ € (TX)o,y € (TY)o and the proof is finished.

LEMMA 2.5. Let Z1 and Zy be smooth manifolds, M; be a smooth sub-
manifold of Z; (i = 1,2), f € C"(X xY,Z1), g € C"(X x Y, Z3), r > 1,

F = (fg) € C"(X xY,Zy x Zy). Then F' h (My x M) (F transversally
intersects My x Ms) if and only if f h My and g h M.

Proof. By definition of transversality F' M (My x My) if and only if for
any (z,y) € To X x T,Y =T, (X xY),

DF((I}, y)(T(Ly) (X X Y) + TF(ac,y) (Ml X Mg) = TF(z,y) (Zl X ZQ),
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where DF(x,y) is the derivative of F' at (x,y). This equality is equivalent
to

DF(x,y)(To X x T,Y) + (T(a,y) M1) X (Ty(z,y)M2)
= (Tt (z,y)Z1) X (Ty(z,y)Z2)
and this is equivalent to the following system of equalities:
DF(2,y)(To X x T,Y) + Tp(p My = Tizap 21 (ie. fh Zy),
Dg(z, y)(To X X TyY ) + Ty(uy Mo = Ty Zo, (ie. g Z2).
LEMMA 2.6. Let Zy, Za, My, My be as in Lemma 2.5, f € C" (X, Z;),

geC"(Y,Z), r 2 1, F(z,y) = (f(x),9(y)) for all (z,y) € X x Y. Assume
that f t My and g My. Then F th (M x My).

Proof. Define g € C"(X x Y, Z3), g(x,y) := g(y) for all (z,y) € X xY.
If g M My then

(2.13) Dg(y)(TyY) + Tg(y)M2 =T

a(y) Mo2.

Since Dg(y) = D2g(z,y) is the partial derivative of g with respect to y, we
see from (2.13) that

Dag(z,y)(TyY) + Ty(a,y) M2 = Ty(a,y) Z2-
Since Dg(x,y)(TpX x T,Y) = Dog(x,y)(T,Y ), we obtain the equality
Dy(x, y)(Te X X TyY) + Th(a,4) Mo = Ty(ay) 2o,

i.e. ghM,. One can show analogously that also frﬁ M, where fve C" (X x

Y, Z), flz,y) := f(x) for all (z,y) € X x Y. As a consequence of Lemma
2.5 we obtain F' i (M; x Ms).

DEFINITION 2.7.
Hy ={{=(F,G) e H.(X xY,A,B):
F Drx)ox(my)oxaxs (T2 X)o x (T?Y)o}
(f Masr Z means that f transversally intersects Z along the set M).
PROPOSITION 2.8. Suppose that dimY = my and dim B = my. Then

(1) The set Hy is open and dense in H.(X x Y, A,B), r > 1.
(2) If € € Hy then C(£) is a compact, (my + ma)-dimensional CT~1-
submanifold of A x B x (TX)o x (TY )o.

Proof. Define the mappings
0:HLU(X XY, A B) - C"(TX xTY x Ax B,TX xTY), o(F)=F,
evy t HU(X XY, A,B) x TX xTY x Ax - TX xTY,
evo(F,&,9,a,b) = op(Z,7y,a,b) := F(&,y,a,b).
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We shall prove that ev, M (T2X)g x (T?Y ). It suffices to work in coordi-
nates. Locally we have: TX =~ U xR", TY =V x R", A~ Wy, B~ W,
UcCR®, V cCR® W; C R™, Wy C R™2 are open neigbourhoods of the ori-
gins, (TX)g =~ U x {0}, (TY ) =~V x {0} (= means locally diffeomorphic).
Let f be the local representative of F'. Then

f:UXR" xV x Wy x Wy — R,
[y, w0, p,v) = (2,y, ky, kfi(z, y, u,0, 1, 0),u,0, kv, k fo(u, 0, 0, 0)).
Obviously,
(T2X)o x (T2Y ) ~ M
= {(z,9,y1,y2,u,v, 21, 22) € R¥ :yy=yo=21=20= 0} = h71<0)7
where
h:R¥ — RY™ Wz, y,y1,y2,u,0, 21, 22) = (Y1, Y2, 21, 22).
The map ev, has its local representative
(o)t (fs 2, ysts v 1,0) > (21,0, 0, 1, ).
y [6, Proposition 2.76], (ev,); h Mj if and only if the map
ho(evy) : (f,z,y,u,v,pu,v)— (ky,kfi(x,y,u,v, 1, v), ko, kfa(u,v,v))

is a submersion. Let us now prove that

:(f7$7y7u7v7/1/7y)7 (fxy7uv/'l/7 )
Then the derivative of h o (ev,); at P evaluated at P has the form

dplh o (v, )i (P) = lim ~[ho (ev,)i(P+ sP) — ho (ev,)i(P)]

s—0 8
= (k§, kdy fL(U) + kfL(U), k0, kdy f2(V) + kf2(V)),

where f = (fl, 2). [ = (. f2), U = (z.y,u0,mv), U = (T.9,3,7,4,7),
V = (u,v,v), V = (u,v,v), k # 0. We have to show that for any vector

w € R4" there exists a P = (f Z,y,u,u, v, 1, V) such that
dplho (ev,)(P)] = w.
This equation is equivalent to the system
ky =wy, kv=us,
kdy f1(U) + kf1(U) = wa,
kdy f2(V) + kfa(V) = ws,

where w = (wy, wa, w3, wys). The first two equatlons are trivial. If we choose
U 1% arbitrarily then it suffices to find mappings fl, fg from the correspond-
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ing spaces with the prescribed values
kfL(U) = w2 — kdy f1(U),  kf2(V) = ws — kdy fo(U),

which is a trivial interpolation problem. Omne can easily check that be-
sides the transversality of the evaluation map ev, proven above all other
assumptions of Abraham’s transversality theorems (see [1, Theorem 18.2,
19.1] and also [6]) are satisfied. By these theorems the set Hy := {F €
HZ(X X KA,B) : Q(F) = F m(Tx)OX(Ty)OXAxg [(TQX)O X (TZY)O]} is
dense in H(X x Y, A, B). The set (T'X)o x (T'Y)p x A x B is diffeomorphic
to X XY x Ax B and since this is a compact set, the set Hy is open. If F' € Hj
then by [1, Corollary 17.1], codim C(¢) = codim F~1((TX)o x (TY)o) =
codim[(T'X)o x (TY )o] = 4n, i.e. dimC(§) = dim(A x B) = my + ma.

PROPOSITION 2.9. There is an open dense subset Hy of HL(X xY, A, B)
such that if ¢ = (F,G) € Hy then C(§) is a CTl-submanifold of A x
B x (TX)y x (TY)o and C(G) = {(b,y) € BxTY : G(y,b) = 0} is a
Cr-submanifold of B x (TY )q, where codim C(G) = codim B = ms.

Proof. Let £ = (F,G) € Hy, where Hy is the set from Proposition 2.8.
By Definition 2.3, m3 0o F' = G and G(y,b) is a parametrized second order
ODE on Y. One can prove as in Proposition 2.4 that C(G) C B x (TY ).
As in the proof of Proposition 2.8 one can show that the set

Hy={G € H};(B,Y): G Mryyoxn (T?Y)o}

is open and dense in H’;(B,Y) which is the set of all parametrized second
order ODEs on Y with the parameter set B (see also [3]). Let H; := {{ =
(F,G) € Hy : G € Hy}. Obviously,

Hy = Hyn{¢=(F,G) e HL(X x Y, A,B) : G Hy}.

This is obviously an open dense set in H.(X x Y, A, B). lf £ = (F,G) € H;
then C(¢) is a C"~!-submanifold of A x B x (TX)q x (TY )y (Proposition
2.8) and by the same reason as for C(£) the set C(G) = G1((T?Y )y is a
C"1l-submanifold of B x (TY)q and codim C(G) = dim B = ma.

Now consider the case when B={), i.e. the set HL(X xY, A).If ¢ = (F,G)
then G is independent of the parameter. From Shahshahani’s theorem [9]
(see also [3, 4, 5]) it follows that the second order ODE G is generically
Kupka—Smale, i.e. all its critical elements (critical points and closed orbits)
are isolated and hyperbolic. Thus assume that G is Kupka—Smale. Then the
set K(G) := C(G) U P(G) is finite (C(G) is the set of all critical points of
G and P(G) is the set of all periodic orbits of G) and if yo € C(G) then
we have defined the parametrized second order ODE 7 o Fy; on X x A
with parameter set A. Now assume that dim A=1. To prove generic results
concerning the set H. (X x Y, A) it suffices to apply generic results for 1-
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parameter families of second order ODEs on manifolds proved in [3, 4, 5] in
a slightly modified form. We shall prove the following theorem.

THEOREM 2.10. There exists a residual (i.e. massive by [6]) subset Ho
of HL(X x Y, A) such that if £ = (F,G) € HL(X x Y, A) then:

(1) G is Kupka—Smale, i.e. the sets P(G) and C(G) of all periodic or-
bits and critical points of G, respectively, are isolated (C(G) is finite) and
hyperbolic.

(2) If yo € C(G) then the 1-parameter family Fy, : (&,a) — F(&,yo,a)
of second order ODEs is generic in the set H"(X,A) of all 1-parameter
families of second order ODFEs on X, i.e.:

(a) The set C(Fy,) = {(a,2) € AxTX : & is a critical point of
the vector field Fyyq : 2 — Fy,(2,a)} is a compact 1-dimensional
submanifold of A x (T'X)o.

(b) The set Co(F,,) = {(a,i) € C(F,,) : Fypa(d) is not a surjec-
tive map} is a submanifold of C(Fy,,) of codimension 1, i.e. of
dimension 0, where Fyoa is the hessian of Fy,, at the critical
point & (see [1]).

(c) Let (ao, 20) € C(Fy,), 20 € T», X, (U,a), be a chart on X, %y €
U, (V,0) be a chart on A, ag € V, F(p,q,€) be the main part of
the local representative of Fy, in the chart (V,[3) and the chart
on TX derived from (U, o), where a(ao) = €0, Tu(20) = (o, o),
and let co = (po, qo,0). Then

(c1) the map D(ao, 20)Fy, is surjective, i.e.
0F (co) 0F(co) OF(co) — 9

Op = dq ' O -
(c2) (a0, 20) € Co(Fy,) if and only if

rank <8F(CO), aF(CO)) =2n — 1.
Ip dq

(e3) If (ao,20) € Co(Fy,) then the charts (U,a), (V,B3) can
be chosen in such a way that B(ag) = 0, Tu(20) = O,
To(C(Fy)) N7 (U) = {(£p1r- - pnrd) € B X RY x R
q=0,e=®(p1), pi = Pi(p1), i =2,...,n, e € p(V),
p1 € J}, where @; are C"-functions on an interval J C R,
0€J, &;(0)=0, j=1,...,n, dbo(0)/dz; =0, d?P(0)/d?
> 0. If e = B(a) then there exists just one couple of points
(a,21),(a,22) € C(Fy,) and if s is the number of positive
etgenvalues of the map Fyoa(ZQ) then the number of positive
eigenvalues of the map Fyo.(22) is either s +1 or s — 1.

(2.15) rank (
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(c4) If (ag, 20) € Co(Fy,) then the map Fyy.(0) has zero eigen-
value of multiplicity 1.

(d) Ifyo € C(GQ) and (ao, 20) € C(Fy,) — Co(F)y,) then (ao, Yo, 20) is
a hyperbolic critical point of & = (F,G) and if (ag, 20) € Co(fy,)
then there is a saddle-node bifurcation of & near (ag,yo, 20) (i.e.
similar assertions to (2)(a)—(c) hold for the whole vector field £).

Proof. The assertion (1) is the Kupka—Smale theorem (see e.g. [9]). The
assertion (2)(a) is a consequence of Proposition 2.8. For the simplicity of our
further considerations we assume A = R, X = R", i.e. we are working in
coordinates and the corresponding conclusions for the space H. (X x Y, A)
can be made in the usual way. We shall work in the space C := CH (R x
R?" x R?2", R?") := {h € C"(R x R?" x R?" R?") : ||h||,, < oo}. In this case
we may identify the set HL(X x Y, A) with the set of parametrized systems
of differential equations on R*" of the form

R p = kq, q:kf(€7p7q7u7v)7

(2.16) = {u = kv, ©=kg(u,v),
where k€ R, fe C}, g€ C%. The last equation of the system is independent
of the parameter and we simply write ¢ € C}p, omitting the number of
variables. As above we define the norm ||£||, := |k| + || f]|» + ||g]|-. Denote
the set of all systems of the form (2.16) with the norm |||, < oo by D".
The space (D", || -||»-) is a Banach space. Let F.(z,y,u,v) := F(e,z,y,u,v).
The set of critical points of £ is C(€) = {(g,z,u,v) ERxR" : y =0, v =0,
fle,z,y,u,v) =0, g(u,v) = 0} and Cy(&) = {(g,u,v) € C(&) : the matrix
of the linearization of £ at (e, z,u,v) is singular}.

Now let J be the set of all 1-jets of mappings from C% and J}1; := {j1¢ €
JV: € e DT} If € is of the form (2.16) then

ité(e,p g u,v) = (e,p,q,kq, kf (e, p, q, u,v),u, v,
kv, kg(u,v), B(e, p,q,u,v)),

where
0 O I 0 0
. a Ao BO C{J DO
(2.17) B=k|ly o 0 o I
0 0 0 P Qo

with a = 8f(c)/85, AO = af(c)/aQ7 CO = af(c)/8u7 DO = 8f(c)/8v, PO =
dg(d)/Ou, Qo=0g(d)/dv, c=(g,p,q,u,v), d = (u,v). Then J}, is obviously
a linear subspace of J!. Define the sets
M}, ={(e,p,q,q1,u,v,v1, B) € R x R* x M(4n,4n + 1) :
B is a matrix of the form (2.17)},
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(Mip)o =A{(e,p, ¢, q1,u,v,01,B) € Mj; : q1 =0, vy =0, det B = 0}.

Then M}, is obviously a linear subspace of R x R®" x M (4n,4n + 1) and
(M};)o is an algebraic manifold. By the Whitney stratification theorem (see
e.g. [1] or [6]) there is an ordered Whitney stratification (Mj;)o = U;~, M;,
where M;, i = 1,...,m, are smooth manifolds. Let X,,:=RxR%”. Define the
map g1 : D" — C" (X, J1;), 0(&) = 51, where j1¢ is the 1-jet extension
of £&. This map is a C"~l-representation. Let us check that ev, M (M};)o
(le. ev, M M;, i = 1,...,m), where ev, : D" x Ji;, (£,&,p,q,u,v)
0(&)(e, p, g, u,v). We shall prove that ev, h Z for any submanifold Z of M},.

Let w = ev,(&,¢) € Z, where £ € D", ¢ = (¢,p,q,u,v) € X,. Then
evy r1_ﬁ(£7c) Z if and only if

(2.18) Dg.eyevy(D" x Xp,) +TZ = T,yMj,.

It suffices to prove that D¢ ) ev, is surjective. If (£, ¢), (E, c)e D" x X,
then

Digc)evo(€,€) = (€, De£(€) +&(c), DZE(E) + Def).

Since T}, M}; can be identified with Mj,, it suffices to prove that for any
w = (k,p,4,0,0,U,B) € M}, = T,,M}; there exist (£,€) € D" x X,, such
that D¢ o evg(g, ¢) = w (U corresponds to a value of the vector field and
B has the form (2.17), where in (2.17) there is a tilde above the letters
Ao, By, Co, Do, Py, Qo). It suffices to choose ¢ = k, ¢ = ¢ and gsuch that
£(@) = U — D&, D& = B — D2(Z). One can easily check that these
equalities can be satisfied by a suitable choice of E with prescribed values
(and the values of its derivatives) at the point ¢. This is a trivial interpolation
problem. All other assumptions of Abraham’s transversality theorem are also
satisfied. By this theorem for any compact neighbourhood K of ¢g the set
Dy :={¢€ D" : &g (M})o} is open and dense in D". Since codim M; =
2n + 1 and codim M; > 2n + 1 for i > 1, from [1, Corollary 17.2] it follows
that codim Cy(¢) N K = codim(g(£))™1(M;) N K = codim M; = 2n + 1,
ie. dimCy(§) N K =0. Let £ € Dy and ¢y = (0, po, go, o, v0) € Co(&) N K
and let d.,£ be the derivative of the right-hand side of (2.16) at ¢q. Since
0(§)(co) € My, corankd.,& = 1. The derivative d. ¢ is of the form (2.17).
By (a) we have

det (](3)0 éo) #0  (generically).

This yields that

o 0 I 0 ©
(2.19) rank(a Ay By O DO>—2n.
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We shall show that generically

0o 0 I
(2.20) rank<a A BO>—2n.

Define the map
(221) J(g)(uo,vg) : (5apa Q) = (kq, k?f(S,p, q,uo, UO))-

Let J* be the set of all 1-jets of mappings from the set C; (R x R™, R™) and
JIII(UOa UO) = {jlo-(g)(uo,vo) 1§ € Dr}? where U(&)(uo,vo) is defined by (221)
Obviously,

le'(é.)(uOﬂ,O)(E,]% q) - (Eapa q, f(€7p7 q,uo, 'UO), §(€7p7 q, U, vO))a

where B is the matrix from (2.20) with elements described in (2.17). Define
the sets

M}, ={(e,p,¢,q1, B) € R x R®™ x M(2n,2n + 1) :
B is the matrix of the form (2.20)},
(M}1)o = {(,p,qq1,B) € M}; : =0, =0, det B =0}.
Let (M}I)OZ UZ:l M, be the ordered Whitney stratification. Then codim M;
=2n+1. Let X,, =R x R3” and
G D" — O (K, T (0, 00))s BE) = 10(E) ey

This map is a _C’“:l—representation and one can check as for the map o
above that evy h Z for any submanifold Z of J};(ug,vo). From Abraham’s
transversality theorem it follows that

Dio =16 € D" = (&) = j' (&) (uo,v0) N (Mf1)o}
is open and dense in D, where K C R x R?" is a compact set. From [1,
Corollary 17.2] we see that if £ € Dg, then codim Co(0(£)(ug,ve)) N K =

2n + 1, where Co(0(€) (ug,v0)) = 0(&) 1 (M), i.e. dim Co(0(€)(u,v0)) N K =
0. If ¢o = (g0,p0,90) € Co(0(€)(uo,v0)) then the transversality condition,
jla(f)(umvo) Mr (M};)o, yields (2.20), where

0 I
(2.22) rank <Ao Bo) =2n-1,

i.e. the matrix from this equality has zero eigenvalue of multiplicity 1. One
can write £ € D{, near the point (&, po, qo) in the form

(223) p = kQ7 q = kf(gapa q, U, uo, UO)'

Without loss of generality we may assume that k& = 1 (if not, it is possible
to achieve it by a transformation of time). This system can be written in
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the form

(2.24) p=4q, A(e)p + B(e)q + h(e,p, 9);
where A, B,h € C",h(0,p, q ) o(||(p,q)||) (we omit ug, vy in the notation).

Let C = diag{C, C}, where C' € M(n) is a regular matrix and let
0 I

(2.25) AE) = (4 B(€)> .

Obviously,

) 0 I
CA@O)C <CA( 0)C-1 CB(0)C! > :

Generically the matrix A(e) has zero eigenvalue of multiplicity 1 for ¢ = 0
and by [6, Lemma 3.65] one can find the matrix C(e) in such a way that it
is C"-differentiable on an open interval I containing 0, C(0) = C and the
matrix A(e) := C(e)A(e)(C(e)) ! is in Jordan’s canonical form for all ¢ € I.
If p=(C(e))7tX and ¢ = (C(g)) Y then (2.23) becomes

(2.26) X=Y, Y=AE)X+B(E)Y +hX,Y),
where A(e) = diag{0, A(c)}, A(e) € M(n —1,n— 1),

_ bi1(e) biale . biale

B = c@BECE) ! = (MO O g ),

B(e) € M(n—1,n—1), h(,X,Y) = C()h(e,C(e) "1 X,C(e)1Y). The
system (2.26) can be written in the form

X =Y,
(227) Yi=ae+BX2+buYi+ ...+ b1 Xn + hi(e, X1, X,Y),

Y = A()X + B(e)Y + ha(e, X1, X, Y),

Where hihe € CT, X = (X1,...,X,), Y = (Ya,....Y,), X = (Xo,...
Xn), hi(e, X1,0,...,0) contains terms of order higher than 2 only and
hg(E X,Y) contains terms of order higher than 1 only. We denote the vector

field (2.27) by F. The set C(F) of all critical points of F' is given by the
equahtles

=0,
(2.28) as+ﬂX1 +b11(e)Y; A binYy 4 hi(e, X1, X,Y) =0,
A(e)X + B(e)Y + hz(s,Xl,X, Y)=0.
Since det //l\(O) # 0, from the implicit function theorem it follows that there
exists a C"-map X = ¥ (e, X1) such that ¥(0,0) = 0 and
P(e, X1) = A(e)W(e, X1) + ha(e, X1, (g, X1),0) = 0
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for (e,X1) from some neighbourhood of (0,0). Let F' be the vector field
(2.26). Then doF = C(dgF)C~! and therefore the rank condition (2.22)
implies that @ # 0. This enables us to use the implicit function theorem
by which there exists a C"-function ¢ = @¢(X7) such that ¢¢(0) = 0 and
P(2¢(X1),X1) = 0 in a neighbourhood of the point X; = 0. From the last
equality and from (2.27) we obtain ®((0) = 0 and &{(0) = 25. If 5 # 0 and
a/B < 0 then &7(0) > 0 and if &/ < 0 then using the change of coordinates
e — —e one can obtain again the case @ (0) > 0. Therefore it suffices to
prove that § # 0 generically.

We know that the matrix of linearization of (2.27) with e = 0 at the
origin does not have the maximal rank and that its rank is 2n — 1 (see
(2.22)). However, any vector field £ € DJ, satisfies the transversality condi-
tion j10(&) (ug,ue) M (M};)o. Since the system (2.27) is a local representative
of a component of such a vector field this transversality condition is satisfied
for this local representative. One can check that this condition implies that
the system of equations

0?%g(e, 2) D%gle,z)
ox? YT axi0e 1T

is solvable for any wy,ws € R, where p, g € R are unknowns, z = (X1, )/f, Y)
and g¢(e, z) is the right-hand side of the second equation of (2.27). It is
obvious that this system is solvable if and only if 9%¢g(e,2)/0X? = 3 # 0
(we know that d¢(0,0)/0e = a # 0). The function Py is a solution of the
equation (2.28) which can be solved by using the implicit function theorem.
Since a#0, 8#0 the function @ has the properties as in (¢3). The rest of
the assertion (c¢) and the assertion (d) are consequences of the rank condition
(2.15) and the form of the system (2.27). The proof is finished.
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