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Generic saddle-node bifurcation for
cascade second order ODEs on manifolds

by Milan Medveď (Bratislava)

Abstract. Cascade second order ODEs on manifolds are defined. These objects are lo-
cally represented by coupled second order ODEs such that any solution of one of them can
represent an external force for the other one. A generic saddle-node bifurcation theorem
for 1-parameter families of cascade second order ODEs is proved.

1. Introduction. Consider the Duffing forced oscillator

(1.1) ẍ+ γẋ+ ω2x+ αx3 = g(t),

where α, ω, γ ∈ R and g(t) is an external force. If g(t) = β cos kt, β, k ∈ R,
then g is a solution of the differential equation

(1.2) ÿ + k2y = 0.

We study the control problem consisting in finding a solution g(t) of equation
(1.2) such that equation (1.1) has a periodic or homoclinic solution or more
generally some prescribed qualitative properties. If we are able to describe
the topological structure of trajectories of the system

(1.3) ẍ+ γẋ+ ω2x+ αx3 = y, ÿ + k2y = 0

then we have a chance to solve this control problem. While equation (1.1)
is scalar and nonautonomous, the system (1.3) is two-dimensional, autono-
mous. Despite this fact it is sometimes more convenient to study autonomous
systems in a higher dimensional state space than the nonautonomous ones
with lower dimensional variables. Systems of the form (1.3), where the sec-
ond equation is independent of the first one, are called cascade systems. In
[2] we have studied nonautonomous cascade systems of second order differ-
ential equations of the form

(1.4) ẍ+R(y, t)x = f(x, y, t), ÿ + S(y)y = 0,
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and a sufficient condition for the oscillation of solutions was proved. Cascade
systems of first order ODEs of the form

ẏ = Φ(y, z), ż = Ψ(z, u)

are studied from the point of view of their feedback stabilization (u is a
control parameter) in [8].

We define cascade second order ODEs on manifolds which can represent
two or more coupled nonlinear oscillators controlled by a second order ODE.
We study generic bifurcations of such objects. Generic properties of second
order ODEs on manifolds have been studied by S. Shahshahani [9] and
generic bifurcations of second order ODEs on manifolds are described in the
papers [3, 4, 5]. We note that in [7] a class of vector fields on manifolds
containing second order ODEs is studied from the generic point of view.

2. Generic saddle-node bifurcation. Recall the definition of second
order ODEs on a smooth manifold X. Denote by TX the tangent bundle of
the manifold X and by T 2X = T (TX) the double tangent bundle of X (see
e.g. [1], [6]). Denote by Γ rI (TX) the set of all Cr-vector fields on TX.

Definition 2.1 (see [1]). A vector field ξ ∈ Γ rI (TX) is said to be a
second order ODE on X if

(2.1) DτX ◦ ξ = idTX ,

where τX : TX → X is the natural projection, DτX : T 2X → TX is the
derivative of τX and idTX : TX → TX is the identity map on TX.

If (U,α) is a chart on X, then (Tα, τ−1
X (U)) is the natural chart on TX,

where Tα([γ]x) = (α(x), d0(α◦γ)(1)), [γ]x ∈ TxX and d0(α◦γ) is the Fréchet
derivative of α ◦ γ at 0 ∈ R (see e.g. [1], [6]).

If the vector field ξ ∈ Γ rI (TX) satisfies (2.1) and ξα is its local represen-
tative in the chart (Tα, τ−1

X (U)) then

(2.2) ξα(x, y) = (x, y, y, g(x, y)),

where (x, y) ∈ α(U)×Rn, g ∈ Cr(α(U)×Rn,Rn) (see [6]). The vector field
(2.2) represents a special system of the form

ẋ = y, ẏ = g(x, y),

which is obviously equivalent to the second order ODE on α(U):

ẍ = g(x, ẋ).

Remark. An interesting class of vector fields can be obtained if (2.1)
is replaced by the condition DτX ◦ ξ = A, where A : TX → TX is a fiber
preserving bundle endomorphism, linear on each fiber. Such vector fields are
locally represented by systems of the form ẋ = B(x)y, ẏ = g(x, y), where
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B(x) is a matrix-valued function, not necessarily invertible for all x. Generic
properties of such objects are studied in [7].

Definition 2.2. Let X and Y be smooth manifolds. By a cascade second
order ODE (briefly CS) of class Cr on X ×Y we mean a couple ξ = (F,G),
where F : TX × TY → T 2X × T 2Y,G : TY → T 2Y are Cr-mappings with
the following properties:

(1) π1 ◦ Fẏ is a second order ODE on X for all ẏ ∈ TY , where π1 :
T 2X × T 2Y → T 2X is the natural projection and Fẏ : TX → T 2X × T 2Y,
Fẏ(ẋ) := F (ẋ, ẏ).

(2) G is a second order ODE on Y and π2 ◦ F (ẋ, ẏ) = G(ẏ) for all
(ẋ, ẏ) ∈ TX×TY , where π2 : T 2X×T 2Y → T 2Y is the natural projection.

The set of all CS on X × Y is denoted by Γ rc (X × Y ) or briefly Γ rc .

One can show that any ξ = (F,G) ∈ Γ rc is locally represented by a
system of ODEs of the form

(2.5) ẋ = y, ẏ = g(x, y, u, v), u̇ = v, v̇ = h(u, v),

where g, h ∈ C3.
We may look at the first two equations of this system as a system con-

trolled by the system of the last two equations.
Define LΓ rc (X × Y ) := {kξ + lη : k, l ∈ R, ξ, η ∈ Γ rc }. The set Γ rc is not

closed with respect to linear operations over R, but the set LΓ rc is a vector
space over R.

From the definition of LΓ rc it follows that the local representative ξαβ of
ξ = (F,G) ∈ LΓ rc in a local chart (Tα×β , τ−1

X×Y (Uα × Vβ)) on TX × TY has
the form

(2.6) ẋ = ky, ẏ = kgα×β(x, y, u, v), u̇ = kv, v̇ = khβ(u, v),

where k ∈ R, gαβ ∈ Cr(α(U)×Rn×β(V )×Rn,Rn), hβ ∈ Cr(β(V )×Rn,Rn).
In the sequel we identify ξαβ with the system (2.6). If k 6= 0 then we say
that ξ has ordinary structure. Define

‖ξαβ‖r := |k|+ sup
(x,y,u,v)∈Kαβ

{‖gαβ(x, y, u, v)‖, . . . , ‖dr(x,y,u,v)gαβ‖r}

+ sup
(u,v)∈Lβ

{‖hβ(u, v)‖, . . . , ‖dr(u,v)hβ‖r},

where ‖.‖k is the norm on the space of the corresponding k-multilinear
mappings, Kαβ := α(U) × Rn × β(V ) × Rn, Lβ = β(V ) × Rn. We identify
the vector field ξαβ with the mapping Fαβ : α(U)×Rn×β(V )×Rn → R4n,

(2.7) Fαβ(x, y, u, v) := (ky, kgαβ(x, y, u, v), kv, khβ(u, v)),

and define

(2.8) ‖Fαβ‖r := ‖ξαβ‖r.
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Let ξ ∈ LΓ rc , {(Ui, αi)}mi=1, {(Vj , βj)}lj=1 be systems of charts on X and
Y that cover X and Y , respectively, and let ξij be the local representative of
ξ in the natural chart (Tαi×βj , τ

−1
X×Y (Ui × Vj)) (i = 1, . . . ,m, j = 1, . . . , l).

From the definition of LΓ rc we see that there is a constant k (inde-
pendent of i, j) and mappings gij ∈ Cr(αi(Ui) × Rn × βj(Vj) × Rn,Rn),
hj ∈ Cr(βj(Vj)× Rn,Rn) such that ξij is represented by the system

(2.9) ẋ = ky, ẏ = kgij(x, y, u, v), u̇ = kv, v̇ = khj(u, v).

Define ‖ξij‖r similarly to (2.8) and let

(2.10) ‖ξ‖r := sup{‖ξij‖r : i ∈ {1, . . . ,m}, j ∈ {1, . . . , l}}.
The vector space Grc (X × Y ) := {ξ ∈ LΓ rc (X × Y ) : ‖ξ‖r <∞} is a Banach
space.

Remark. In all our considerations we assume for simplicity that dimX
= dimY. However, from the point of view of applications to control prob-
lems, it is reasonable to study also the cases dimX 6= dimY.

Definition 2.3. Let A, B, X and Y be smooth manifolds. By a paramet-
rized cascade second order ODE (briefly PCS) of class Cr on X × Y (with
parameter set A×B) we mean a couple ξ = (F,G), where F : TX × TY ×
A×B → T 2 × T 2, G : TY ×B → T 2Y are Cr-mappings with the following
properties:

(1) π1◦F(ẏ,a,b) is a second order ODE on X for all (ẏ, a, b) ∈ TY ×A×B,
F(ẏ,a,b)(x) := F (ẋ, ẏ, a, b), i.e. π1 ◦ Fẏ is a parametrized second order ODE
on X with parameter (a, b) ∈ A×B (Fẏ(ẋ, a, b) := F (ẋ, ẏ, a, b))

(2) G is a parametrized second order ODE on Y and π2 ◦ F (ẋ, ẏ, a, b) =
G(ẏ, b) for all (ẋ, ẏ, a, b) ∈ TX × TY ×A×B
(π1, π2 are the projections defined in Definition 2.2). The set of all such
objects is denoted by H̃rc(X × Y,A,B).

Throughout this paper we assume that A, B, X and Y are compact.
Sometimes we control a parametrized second order ODE by a second

order ODE which is independent of parameters. In this case we have B = ∅
in Definition 2. 3. The set of all such objects is denoted by H̃rc(X × Y,A).

Let LH̃rc(X × Y,A,B) = {kξ + lη : k, l ∈ R, ξ, η ∈ H̃rc(X × Y,A,B)
(briefly LH̃rc).

Let ξ ∈ LH̃rc , {(Ui, αi)}mi=1, {(Vj , βj)}lj=1 be systems of charts on X and
Y , respectively, as in the definition of ‖ξ‖r for ξ ∈ LΓ rc (see (2.10)) and
let {(Ak, ak)}pk=1, {(Bs, bs)}

q
s=1 be systems of charts on A and B covering

A and B, respectively. Let (Tαi×βj , τ
−1
X×Y (Ui×Vj)) be the natural chart on

X × Y as in the definition of (2.9) and let ξijks be the local representative
of ξ ∈ LH̃rc in this chart and the above charts on X and Y . Then ξijks is
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represented by a parametrized system of differential equations of the form

(2.11) ẋ = ky, ẏ = kgijks(x, y, u, v, µ, ν), u̇ = kv, v̇ = khjs(u, v, ν),

where x, y, u, v ∈ Rn, µ ∈ Rm1 , ν ∈ Rm2 (dimX = dimY = n, dimA = m1,
dimB = m2).

Define ‖ξijks‖r similarly to (2.8) and let

‖ξ‖r := sup{‖ξijks‖r : i ∈ {1, . . . ,m}, j ∈ {1, . . . , l}, k ∈ {1, . . . , p}}.

The space

(2.12) Hrc(X × Y,A,B) := {ξ ∈ LH̃rc(X × Y,A,B) : ‖ξ‖r <∞}

is a Banach space.
Let (T 2X)0 be the zero section of T 2X, i.e. (T 2X)0 = {0[ẋ] ∈ T 2X :

ẋ ∈ TX}, where 0[ẋ] is the zero element of Tẋ(TX). The set (T 2X)0 is
a closed submanifold of T 2X diffeomorphic to TX (see [1, pp. 59]). Let
ξ = (F,G) ∈ Hrc(X × Y,A,B). Then define C(ξ) := {(a, b, ẋ, ẏ) ∈ A× B ×
TX × TY : F (x, y, a, b) ∈ (T 2X)0 × (T 2Y )0}.

Proposition 2.4. Let ξ = (F,G) ∈ Hrc(X×Y,A,B) have ordinary struc-
ture. Then C(ξ) is a subset of A×B×(TX)0×(TY )0, where (TX)0, (TY )0
are the zero sections of TX and TY , respectively.

P r o o f. Let (a, b, ẋ, ẏ) ∈ C(ξ), where ξ = (F,G). Then Fab(ẋ, ẏ) ∈
(TX)0 × (TY )0, Gb(ẏ) ∈ (TY )0, where Fab(x, y) := F (ẋ, ẏ, a, b), Gb(ẏ) :=
G(ẏ, b). Let (Tα, τ−1

X (Uα)), (Tβ , τ−1
Y (Vβ)) be natural charts on TX and TY ,

respectively, such that ẋ ∈ τ−1
X (Uα), ẏ ∈ τ−1

Y (Vβ). Let ξab := (Fab, Gb) and
(ξab)αβ be the local representative of ξab in these charts. If Tα(ẋ) = (p, q)
and Tβ(ẏ) = (u, v) then

(ξab)αβ(p, q, u, v) = (p, q, kq, kg(p, q, u, v), u, v, kv, kh(u, v)),
(p, q) ∈ α(Uα)× Rn, (u, v) ∈ β(Vβ)× Rn, k ∈ R.

Since ξab(x, y) = (Fab(x, y), Gb(y)) ∈ (T 2X)0 × (T 2Y )0 we have kq = 0,
kv = 0 (k 6= 0), g(p, q, u, v) = 0 and h(u, v) = 0. Thus Tα(ẋ) = (p, 0),
Tβ(ẏ) = (u, 0), i.e. ẋ ∈ (TX)0, ẏ ∈ (TY )0 and the proof is finished.

Lemma 2.5. Let Z1 and Z2 be smooth manifolds, Mi be a smooth sub-
manifold of Zi (i = 1, 2), f ∈ Cr(X × Y, Z1), g ∈ Cr(X × Y,Z2), r ≥ 1,
F = (f, g) ∈ Cr(X × Y, Z1 × Z2). Then F t̄ (M1 ×M2) (F transversally
intersects M1 ×M2) if and only if f t̄ M1 and g t̄ M2.

P r o o f. By definition of transversality F t̄ (M2 ×M2) if and only if for
any (x, y) ∈ TxX × TyY = T(x,y)(X × Y ),

DF (x, y)(T(x,y)(X × Y ) + TF (x,y)(M1 ×M2) = TF (x,y)(Z1 × Z2),
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where DF (x, y) is the derivative of F at (x, y). This equality is equivalent
to

DF (x, y)(TxX × TyY ) + (Tf(x,y)M1)× (Tg(x,y)M2)
= (Tf(x,y)Z1)× (Tg(x,y)Z2)

and this is equivalent to the following system of equalities:

DF (x, y)(TxX × TyY ) + Tf(x,y)M1 = Tf(x,y)Z1 (i.e. f t̄ Z1),
Dg(x, y)(TxX × TyY ) + Tg(x,y)M2 = Tg(x,y)Z2, (i.e. g t̄ Z2).

Lemma 2.6. Let Z1, Z2, M1, M2 be as in Lemma 2.5, f ∈ Cr(X,Z1),
g ∈ Cr(Y, Z2), r ≥ 1, F (x, y) = (f(x), g(y)) for all (x, y) ∈ X × Y. Assume
that f t̄ M1 and g t̄ M2. Then F t̄ (M1 ×M2).

P r o o f. Define g ∈ Cr(X ×Y,Z2), g̃(x, y) := g(y) for all (x, y) ∈ X ×Y.
If g t̄ M2 then

(2.13) Dg(y)(TyY ) + Tg(y)M2 = Tg(y)M2.

Since Dg(y) = D2g̃(x, y) is the partial derivative of g̃ with respect to y, we
see from (2.13) that

D2g̃(x, y)(TyY ) + Tg̃(x,y)M2 = Tg̃(x,y)Z2.

Since Dg̃(x, y)(TxX × TyY ) = D2g̃(x, y)(TyY ), we obtain the equality

Dg̃(x, y)(TxX × TyY ) + Tg̃(x,y)M2 = Tg̃(x,y)Z2,

i.e. g̃ t̄M2. One can show analogously that also f̃ t̄ M1, where f̃ ∈Cr(X×
Y,Z2), f̃(x, y) := f(x) for all (x, y) ∈ X × Y. As a consequence of Lemma
2.5 we obtain F t̄ (M1 ×M2).

Definition 2.7.

H0 := {ξ = (F,G) ∈ Hrc(X × Y,A,B) :
F t̄(TX)0×(TY )0×A×B (T 2X)0 × (T 2Y )0}

(f t̄M Z means that f transversally intersects Z along the set M).

Proposition 2.8. Suppose that dimY = m1 and dimB = m2. Then

(1) The set H0 is open and dense in Hrc(X × Y,A,B), r ≥ 1.
(2) If ξ ∈ H0 then C(ξ) is a compact , (m1 + m2)-dimensional Cr−1-

submanifold of A×B × (TX)0 × (TY )0.

P r o o f. Define the mappings

% : Hrc(X × Y,A,B)→ Cr(TX × TY ×A×B, TX × TY ), %(F ) = F,

ev% : Hrc(X × Y,A,B)× TX × TY ×A× → TX × TY,
ev%(F, ẋ, ẏ, a, b) = %F (ẋ, ẏ, a, b) := F (ẋ, ẏ, a, b).



Saddle-node bifurcation 217

We shall prove that ev% t̄ (T 2X)0 × (T 2Y )0. It suffices to work in coordi-
nates. Locally we have: TX ≈ U × Rn, TY ≈ V × Rn, A ≈ W1, B ≈ W2,
U ⊂ Rn, V ⊂ Rn, W1 ⊂ Rm1 , W2 ⊂ Rm2 are open neigbourhoods of the ori-
gins, (TX)0 ≈ U × {0}, (TY )0 ≈ V × {0} (≈ means locally diffeomorphic).
Let f be the local representative of F . Then

f : U × Rn × V ×W1 ×W2 → R4n,

f(x, y, u, v, µ, ν) = (x, y, ky, kf1(x, y, u, v, µ, ν), u, v, kv, kf2(u, v, µ, ν)).

Obviously,

(T 2X)0 × (T 2Y )0 ≈M0

:= {(x, y, y1, y2, u, v, z1, z2) ∈ R8n : y1 = y2 = z1 = z2 = 0} = h−1(0),

where

h : R8n → R4n, h(x, y, y1, y2, u, v, z1, z2) = (y1, y2, z1, z2).

The map ev% has its local representative

(ev%)l : (f, x, y, u, v, µ, ν) 7→ f(x, y, u, v, µ, ν).

By [6, Proposition 2.76], (ev%)l t̄ M0 if and only if the map

h ◦ (ev%)l : (f, x, y, u, v, µ, ν) 7→ (ky, kf1(x, y, u, v, µ, ν), kv, kf2(u, v, ν))

is a submersion. Let us now prove that

P = (f, x, y, u, v, µ, ν), P̃ = (f̃ , x̃, ỹ, ũ, ṽ, µ̃, ν̃).

Then the derivative of h ◦ (ev%)l at P evaluated at P̃ has the form

dP [h ◦ (ev%)l](P̃ ) = lim
s→0

1
s

[h ◦ (ev%)l(P + sP̃ )− h ◦ (ev%)l(P )]

= (kỹ, kdUf1(Ũ) + kf̃1(U), kṽ, kdV f2(Ṽ ) + kf̃2(V )),

where f = (f1, f2), f̃ = (f̃1, f̃2), U = (x, y, u, v, µ, ν), Ũ = (x̃, ỹ, ũ, ṽ, µ̃, ν̃),
V = (u, v, ν), Ṽ = (ũ, ṽ, ν̃), k 6= 0. We have to show that for any vector
w ∈ R4n there exists a P̃ = (f̃ , x̃, ỹ, ũ, ũ, ṽ, µ̃, ν̃) such that

dP [h ◦ (ev%)l(P̃ )] = w.

This equation is equivalent to the system

kỹ = w1, kṽ = v3,

kdUf1(Ũ) + kf̃1(U) = w2,

kdV f2(Ṽ ) + kf̃2(V ) = w4,

where w = (w1, w2, w3, w4). The first two equations are trivial. If we choose
Ũ , Ṽ arbitrarily then it suffices to find mappings f̃1, f̃2 from the correspond-
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ing spaces with the prescribed values

kf̃1(U) = w2 − kdUf1(Ũ), kf̃2(V ) = w4 − kdV f2(Ũ),

which is a trivial interpolation problem. One can easily check that be-
sides the transversality of the evaluation map ev% proven above all other
assumptions of Abraham’s transversality theorems (see [1, Theorem 18.2,
19.1] and also [6]) are satisfied. By these theorems the set H0 := {F ∈
Hrc(X × Y,A,B) : %(F ) = F t̄(TX)0×(TY )0×A×B [(T 2X)0 × (T 2Y )0]} is
dense in Hrc(X ×Y,A,B). The set (TX)0× (TY )0×A×B is diffeomorphic
toX×Y ×A×B and since this is a compact set, the setH0 is open. If F ∈ H0

then by [1, Corollary 17.1], codimC(ξ) = codimF−1((TX)0 × (TY )0) =
codim[(TX)0 × (TY )0] = 4n, i.e. dimC(ξ) = dim(A×B) = m1 +m2.

Proposition 2.9. There is an open dense subset H1 of Hrc(X×Y,A,B)
such that if ξ = (F,G) ∈ H1 then C(ξ) is a Cr−1-submanifold of A ×
B × (TX)0 × (TY )0 and C(G) = {(b, ẏ) ∈ B × TY : G(ẏ, b) = 0} is a
Cr−1-submanifold of B × (TY )0, where codimC(G) = codimB = m2.

P r o o f. Let ξ = (F,G) ∈ H0, where H0 is the set from Proposition 2.8.
By Definition 2.3, π2 ◦ F = G and G(ẏ, b) is a parametrized second order
ODE on Y . One can prove as in Proposition 2.4 that C(G) ⊂ B × (TY )0.
As in the proof of Proposition 2.8 one can show that the set

H̃0 = {G ∈ HrII(B, Y ) : G t̄(TY )0×B (T 2Y )0}

is open and dense in HrII(B, Y ) which is the set of all parametrized second
order ODEs on Y with the parameter set B (see also [3]). Let H1 := {ξ =
(F,G) ∈ H0 : G ∈ H̃0}. Obviously,

H1 = H0 ∩ {ξ = (F,G) ∈ Hrc(X × Y,A,B) : G t̄ H̃0}.

This is obviously an open dense set in Hrc(X × Y,A,B). If ξ = (F,G) ∈ H1

then C(ξ) is a Cr−1-submanifold of A × B × (TX)0 × (TY )0 (Proposition
2.8) and by the same reason as for C(ξ) the set C(G) = G−1((T 2Y )0 is a
Cr−1-submanifold of B × (TY )0 and codimC(G) = dimB = m2.

Now consider the case when B=∅, i.e. the setHrc(X×Y,A). If ξ = (F,G)
then G is independent of the parameter. From Shahshahani’s theorem [9]
(see also [3, 4, 5]) it follows that the second order ODE G is generically
Kupka–Smale, i.e. all its critical elements (critical points and closed orbits)
are isolated and hyperbolic. Thus assume that G is Kupka–Smale. Then the
set K(G) := C(G) ∪ P (G) is finite (C(G) is the set of all critical points of
G and P (G) is the set of all periodic orbits of G) and if y0 ∈ C(G) then
we have defined the parametrized second order ODE π1 ◦ Fy0 on X × A
with parameter set A. Now assume that dimA=1. To prove generic results
concerning the set Hrc(X × Y,A) it suffices to apply generic results for 1-
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parameter families of second order ODEs on manifolds proved in [3, 4, 5] in
a slightly modified form. We shall prove the following theorem.

Theorem 2.10. There exists a residual (i.e. massive by [6]) subset H2

of Hrc(X × Y,A) such that if ξ = (F,G) ∈ Hrc(X × Y,A) then:

(1) G is Kupka–Smale, i.e. the sets P (G) and C(G) of all periodic or-
bits and critical points of G, respectively , are isolated (C(G) is finite) and
hyperbolic.

(2) If y0 ∈ C(G) then the 1-parameter family Fy0 : (ẋ, a) 7→ F (ẋ, y0, a)
of second order ODEs is generic in the set Hr(X,A) of all 1-parameter
families of second order ODEs on X, i.e.:

(a) The set C(Fy0) := {(a, ẋ) ∈ A × TX : ẋ is a critical point of
the vector field Fy0a : ż 7→ Fy0(ż, a)} is a compact 1-dimensional
submanifold of A× (TX)0.

(b) The set C0(Fy0) := {(a, ẋ) ∈ C(Fy0) : Ḟy0a(ẋ) is not a surjec-
tive map} is a submanifold of C(Fy0a) of codimension 1, i.e. of
dimension 0 , where Ḟy0a is the hessian of Fy0a at the critical
point ẋ (see [1]).

(c) Let (a0, ż0) ∈ C(Fy0), ż0 ∈ Tz0X, (U,α), be a chart on X, ż0 ∈
U, (V, β) be a chart on A, a0 ∈ V , F(p, q, ε) be the main part of
the local representative of Fy0 in the chart (V, β) and the chart
on TX derived from (U,α), where α(a0) = ε0, Tα(ż0) = (p0, q0),
and let c0 = (p0, q0, ε0). Then

(c1) the map D(a0, ż0)Fy0 is surjective, i.e.

(2.15) rank
(
∂F(c0)
∂p

,
∂F(c0)
∂q

,
∂F(c0)
∂ε

)
= 2n.

(c2) (a0, ż0) ∈ C0(Fy0) if and only if

rank
(
∂F(c0)
∂p

,
∂F (c0)
∂q

)
= 2n− 1.

(c3) If (a0, ż0) ∈ C0(Fy0) then the charts (U,α), (V, β) can
be chosen in such a way that β(a0) = 0, Tα(ż0) = 0,
Tα(C(Fy0)) ∩ τ−1

X (U) = {(ε, p1, . . . , pn, q) ∈ R× Rn × Rn :
q = 0, ε = Φ0(p1), pi = Φi(p1), i = 2, . . . , n, ε ∈ β(V ),
p1 ∈ J}, where Φi are Cr-functions on an interval J ⊂ R,
0∈ J , Φj(0) = 0, j = 1, . . . , n, dΦ0(0)/dx1 = 0, d2Φ0(0)/dx2

1

> 0. If ε = β(a) then there exists just one couple of points
(a, ż1), (a, ż2) ∈ C(Fy0) and if s is the number of positive
eigenvalues of the map Ḟy0a(z2) then the number of positive
eigenvalues of the map Ḟy0a(z2) is either s+ 1 or s− 1.
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(c4) If (a0, ż0) ∈ C0(Fy0) then the map Ḟy0a(ż0) has zero eigen-
value of multiplicity 1.

(d) If y0 ∈ C(G) and (a0, ż0) ∈ C(Fy0)−C0(Fy0) then (a0, y0, ż0) is
a hyperbolic critical point of ξ = (F,G) and if (a0, ż0) ∈ C0(fy0)
then there is a saddle-node bifurcation of ξ near (a0, y0, ż0) (i.e.
similar assertions to (2)(a)–(c) hold for the whole vector field ξ).

P r o o f. The assertion (1) is the Kupka–Smale theorem (see e.g. [9]). The
assertion (2)(a) is a consequence of Proposition 2.8. For the simplicity of our
further considerations we assume A = R, X = Rn, i.e. we are working in
coordinates and the corresponding conclusions for the space Hrc(X × Y,A)
can be made in the usual way. We shall work in the space CrB := CrB(R ×
R2n×R2n, R2n) := {h ∈ Cr(R×R2n×R2n, R2n) : ‖h‖r <∞}. In this case
we may identify the set Hrc(X × Y,A) with the set of parametrized systems
of differential equations on R4n of the form

(2.16) ξ :=
{
ṗ = kq, q̇ = kf(ε, p, q, u, v),
u̇ = kv, v̇ = kg(u, v),

where k∈ R, f ∈ Crb , g∈ CrB . The last equation of the system is independent
of the parameter and we simply write g ∈ CrB , omitting the number of
variables. As above we define the norm ‖ξ‖r := |k| + ‖f‖r + ‖g‖r. Denote
the set of all systems of the form (2.16) with the norm ‖ξ‖r < ∞ by Dr.
The space (Dr, ‖ · ‖r) is a Banach space. Let Fε(x, y, u, v) := F (ε, x, y, u, v).
The set of critical points of ξ is C(ξ) = {(ε, x, u, v) ∈ R×R4n : y = 0, v = 0,
f(ε, x, y, u, v) = 0, g(u, v) = 0} and C0(ξ) = {(ε, u, v) ∈ C(ξ) : the matrix
of the linearization of ξ at (ε, x, u, v) is singular}.

Now let J be the set of all 1-jets of mappings from CrB and J1
II := {j1ξ ∈

J1 : ξ ∈ Dr}. If ξ is of the form (2.16) then

j1ξ(ε, p, q, u, v) = (ε, p, q, kq, kf(ε, p, q, u, v), u, v,
kv, kg(u, v), B(ε, p, q, u, v)),

where

(2.17) B = k


0 0 I 0 0
a A0 B0 C0 D0

0 0 0 0 I
0 0 0 P0 Q0


with a = ∂f(c)/∂ε, A0 = ∂f(c)/∂q, C0 = ∂f(c)/∂u, D0 = ∂f(c)/∂v, P0 =
∂g(d)/∂u, Q0 =∂g(d)/∂v, c=(ε, p, q, u, v), d = (u, v). Then J1

II is obviously
a linear subspace of J1. Define the sets

M1
II = {(ε, p, q, q1, u, v, v1, B) ∈ R× R4n ×M(4n, 4n+ 1) :

B is a matrix of the form (2.17)},



Saddle-node bifurcation 221

(M1
II)0 = {(ε, p, q, q1, u, v, v1, B) ∈M1

II : q1 = 0, v1 = 0, detB = 0}.

Then M1
II is obviously a linear subspace of R × R6n ×M(4n, 4n + 1) and

(M1
II)0 is an algebraic manifold. By the Whitney stratification theorem (see

e.g. [1] or [6]) there is an ordered Whitney stratification (M1
II)0 =

⋃m
i=1Mi,

where Mi, i = 1, . . . ,m, are smooth manifolds. Let Xn :=R×R6n. Define the
map %1 : Dr → Cr−1(Xn, J

1
II), %(ξ) = j1ξ, where j1ξ is the 1-jet extension

of ξ. This map is a Cr−1-representation. Let us check that ev% t̄ (M1
II)0

(i.e. ev% t̄ Mi, i = 1, . . . ,m), where ev% : Dr × J1
II , (ξ, ε, p, q, u, v) 7→

%(ξ)(ε, p, q, u, v). We shall prove that ev% t̄ Z for any submanifold Z of M1
II .

Let w = ev%(ξ, c) ∈ Z, where ξ ∈ Dr, c = (ε, p, q, u, v) ∈ Xn. Then
ev% t̄(ξ,c) Z if and only if

(2.18) D(ξ,c) ev%(Dr ×Xn) + TwZ = TwM
1
II .

It suffices to prove that D(ξ,c) ev% is surjective. If (ξ, c), (ξ̃, c̃ ) ∈ Dr × Xn

then

D(ξ,c) ev%(ξ̃, c̃) = (c̃, Dcξ(c̃ ) + ξ̃(c), D2
cξ(c̃ ) +Dcξ̃).

Since TwM1
II can be identified with M1

II , it suffices to prove that for any
ω = (κ, p̂, q̂, û, v̂, U, B̃) ∈ M1

II ≡ TwM
1
II there exist (ξ̃, c̃ ) ∈ Dr × Xn such

that D(ξ,c) ev%(ξ̃, c̃ ) = ω (U corresponds to a value of the vector field and
B̃ has the form (2.17), where in (2.17) there is a tilde above the letters
A0, B0, C0, D0, P0, Q0). It suffices to choose ε = κ, c̃ = ĉ and ξ̃ such that
ξ̃(c̃ ) = U − Dcξ, Dcξ̃ = B̃ − D2

cξ(c̃ ). One can easily check that these
equalities can be satisfied by a suitable choice of ξ̃ with prescribed values
(and the values of its derivatives) at the point c̃. This is a trivial interpolation
problem. All other assumptions of Abraham’s transversality theorem are also
satisfied. By this theorem for any compact neighbourhood K of c0 the set
Dr

0 := {ξ ∈ Dr : ξ t̄K (M1
II)0} is open and dense in Dr. Since codimMi =

2n+ 1 and codim Mi > 2n+ 1 for i > 1, from [1, Corollary 17.2] it follows
that codim C0(ξ) ∩ K = codim(%(ξ))−1(M1) ∩ K = codimM1 = 2n + 1,
i.e. dimC0(ξ) ∩K = 0. Let ξ ∈ D0 and c0 = (ε0, p0, q0, u0, v0) ∈ C0(ξ) ∩K
and let dc0ξ be the derivative of the right-hand side of (2.16) at c0. Since
%(ξ)(c0) ∈ M1, corank dc0ξ = 1. The derivative dc0ξ is of the form (2.17).
By (a) we have

det
(

0 I
P0 Q0

)
6= 0 (generically).

This yields that

(2.19) rank
(

0 0 I 0 0
a A0 B0 C0 D0

)
= 2n.
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We shall show that generically

(2.20) rank
(

0 0 I
a A0 B0

)
= 2n.

Define the map

(2.21) σ(ξ)(u0,v0) : (ε, p, q) 7→ (kq, kf(ε, p, q, u0, v0)).

Let J̃1 be the set of all 1-jets of mappings from the set CrB(R×Rn,Rn) and
J̃1
II(u0, v0) = {j1σ(ξ)(u0,v0) : ξ ∈ Dr}, where σ(ξ)(u0,v0) is defined by (2.21).

Obviously,

j1σ(ξ)(u0,v0)(ε, p, q) = (ε, p, q, f(ε, p, q, u0, v0), B̃(ε, p, q, u0, v0)),

where B̃ is the matrix from (2.20) with elements described in (2.17). Define
the sets

M̃1
II = {(ε, p, q, q1, B̃) ∈ R× R3n ×M(2n, 2n+ 1) :

B̃ is the matrix of the form (2.20)},
(M̃1

II)0 = {(ε, p, q, q1, B) ∈ M̃1
II : q = 0, q1 = 0, det B̃ = 0}.

Let (M̃1
II)0=

⋃s
i=1 M̃i be the ordered Whitney stratification. Then codim M̃i

= 2n+ 1. Let X̃n = R× R3n and

%̃ : Dr → Cr−1(X̃n, J̃
1
II(u0, v0)), %̃(ξ) = j1σ(ξ)(u0,v0).

This map is a Cr−1-representation and one can check as for the map %
above that ev%̃ t̄ Z̃ for any submanifold Z̃ of J̃1

II(u0, v0). From Abraham’s
transversality theorem it follows that

Dr
00 = {ξ ∈ Dr : %̃(ξ) = j1σ(ξ)(u0,v0) t̄K (M̃1

II)0}

is open and dense in Dr
0, where K ⊂ R × R2n is a compact set. From [1,

Corollary 17.2] we see that if ξ ∈ Dr
00 then codimC0(σ(ξ)(u0,v0)) ∩ K =

2n+ 1, where C0(σ(ξ)(u0,v0)) = %̃(ξ)−1(M̃1), i.e. dimC0(σ(ξ)(u0,v0)) ∩K =
0. If c̃0 = (ε0, p0, q0) ∈ C0(σ(ξ)(u0,v0)) then the transversality condition,
j1σ(ξ)(u0,v0) t̄K (M1

II)0, yields (2.20), where

(2.22) rank
(

0 I
A0 B0

)
= 2n− 1,

i.e. the matrix from this equality has zero eigenvalue of multiplicity 1. One
can write ξ ∈ Dr

00 near the point (ε, p0, q0) in the form

(2.23) ṗ = kq, q̇ = kf(ε, p, q, u, u0, v0).

Without loss of generality we may assume that k = 1 (if not, it is possible
to achieve it by a transformation of time). This system can be written in
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the form

(2.24) ṗ = q, q̇ = A(ε)p+B(ε)q + h(ε, p, q),

where A,B, h ∈ Cr, h(0, p, q) = o(‖(p, q)‖) (we omit u0, v0 in the notation).
Let C̃ = diag{C,C}, where C ∈M(n) is a regular matrix and let

(2.25) A(ε) =
(

0 I
A(ε) B(ε)

)
.

Obviously,

C̃A(0)C̃−1 =
(

0 I
CA(0)C−1 CB(0)C−1

)
.

Generically the matrix A(ε) has zero eigenvalue of multiplicity 1 for ε = 0
and by [6, Lemma 3.65] one can find the matrix C(ε) in such a way that it
is Cr-differentiable on an open interval I containing 0, C(0) = C and the
matrix Ã(ε) := C(ε)A(ε)(C(ε))−1 is in Jordan’s canonical form for all ε ∈ I.
If p = (C(ε))−1X and q = (C(ε))−1Y then (2.23) becomes

(2.26) Ẋ = Y, Ẏ = Ã(ε)X + B̃(ε)Y + h̃(ε,X, Y ),

where Ã(ε) = diag{0, Â(ε)}, Â(ε) ∈M(n− 1, n− 1),

B̃(ε) = C(ε)B(ε)(C(ε))−1 =
(
b11(ε) b12(ε) . . . b1n(ε)

B̂(ε)

)
,

B̂(ε) ∈ M(n − 1, n − 1), h̃(ε,X, Y ) = C(ε)h(ε, C(ε)−1X,C(ε)−1Y ). The
system (2.26) can be written in the form

Ẋ = Y,

Ẏ1 = αε+ βX2
1 + b̃11Y1 + . . .+ b̃1nXn + h1(ε,X1, X̂, Y ),(2.27)

˙̂
Y = ˙̂

A(ε)X̂ +B(ε)Ŷ + h2(ε,X1, X, Y ),

where h1, h2 ∈ Cr, X = (X1, . . . , Xn), Ŷ = (Y2, . . . , Yn), X̂ = (X2, . . .
. . . , Xn), h1(ε,X1, 0, . . . , 0) contains terms of order higher than 2 only and
h2(ε,X, Y ) contains terms of order higher than 1 only. We denote the vector
field (2.27) by F̃ . The set C(F̃ ) of all critical points of F̃ is given by the
equalities

Y = 0,
αε+ βX2

1 + b̃11(ε)Y1 + . . .+ b̃1nYn + h1(ε,X1, X̂, Y ) = 0,(2.28)

Â(ε)X̂ + B̂(ε)Ŷ + h2(ε,X1, X̂, Y ) = 0.

Since det Â(0) 6= 0, from the implicit function theorem it follows that there
exists a Cr-map X̂ = Ψ(ε,X1) such that Ψ(0, 0) = 0 and

P (ε,X1) := Â(ε)Ψ(ε,X1) + h2(ε,X1, Ψ(ε,X1), 0) = 0
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for (ε,X1) from some neighbourhood of (0, 0). Let F be the vector field
(2.26). Then d0F̃ = C(d0F )C−1 and therefore the rank condition (2.22)
implies that α 6= 0. This enables us to use the implicit function theorem
by which there exists a Cr-function ε = Φ0(X1) such that Φ0(0) = 0 and
P (Φ0(X1), X1) = 0 in a neighbourhood of the point X1 = 0. From the last
equality and from (2.27) we obtain Φ′0(0) = 0 and Φ′′0(0) = 2β. If β 6= 0 and
α/β < 0 then Φ′′0(0) > 0 and if α/β < 0 then using the change of coordinates
ε → −ε one can obtain again the case Φ′′0(0) > 0. Therefore it suffices to
prove that β 6= 0 generically.

We know that the matrix of linearization of (2.27) with ε = 0 at the
origin does not have the maximal rank and that its rank is 2n − 1 (see
(2.22)). However, any vector field ξ ∈ Dr

00 satisfies the transversality condi-
tion j1σ(ξ)(u0,v0) t̄ (M1

II)0. Since the system (2.27) is a local representative
of a component of such a vector field this transversality condition is satisfied
for this local representative. One can check that this condition implies that
the system of equations

∂g(ε, z)
∂ε

q = w1,

∂2g(ε, z)
∂X2

1

p+
∂2g(ε, z)
∂X1∂ε

q = w2

is solvable for any w1, w2 ∈ R, where p, q ∈ R are unknowns, z = (X1, X̂, Y )
and g(ε, z) is the right-hand side of the second equation of (2.27). It is
obvious that this system is solvable if and only if ∂2g(ε, z)/∂X2

1 = β 6= 0
(we know that ∂g(0, 0)/∂ε = α 6= 0). The function Φ0 is a solution of the
equation (2.28) which can be solved by using the implicit function theorem.
Since α 6=0, β 6=0 the function Φ0 has the properties as in (c3). The rest of
the assertion (c) and the assertion (d) are consequences of the rank condition
(2.15) and the form of the system (2.27). The proof is finished.
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