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Elementary proofs of the Liouville and Bôcher theorems

for polyharmonic functions

by Ewa Ligocka (Warszawa)

Abstract. Elementary proofs of the Liouville and Bôcher theorems for polyharmonic
functions are given. These proofs are on the calculus level and use only the basic knowledge
of harmonic functions given in Axler, Bourdon and Ramey’s book.

0. Introduction and preliminaries. The Liouville and Bôcher theo-
rems are not a new subject. We found over 150 papers about the Liouville
theorem for solutions of various (mostly elliptic) differential equations. The
Bôcher theorem is somewhat less popular. Besides the classical case of har-
monic functions, we found [4] and [5], where the Bôcher theorem was proved
for solutions of elliptic equations ([4]) and some quasielliptic system of equa-
tions ([5]). There is also [3], where the Bôcher theorem for solutions of the
Laplace–Beltrami equation was studied. While reading the excellent book
of Axler, Bourdon and Ramey [2], we discovered that one can prove the Li-
ouville and Bôcher theorems for polyharmonic functions, using the facts and
ideas on harmonic functions given in that book. We must add only some
elementary calculations. Our proofs will be on the calculus level.

We start with the following

0.1. Definition. Let Ω be an open set in R
n. A function u : Ω → R is

m-polyharmonic iff ∆mu = 0 on Ω, where ∆mu = ∆(∆(. . . ∆u)) (m times),
and ∆u =

∑n
j=1 ∂2u/∂x2

j is the Laplace operator.

Let us next recall

0.2. Theorem (Almansi formula, see [1], Chapter V). If u(x) is a func-

tion m-polyharmonic on the ball B(0, R) then there exist functions h0, . . .
. . . , hm−1 harmonic on B(0, R) such that

u(x) =
m−1
∑

k=0

hk(x)|x|2k
(

|x| =
(

∑

x2
i

)1/2)

.
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In the sequel we shall prove the analogous formula for annular domains.
We shall also use the Laurent series for harmonic functions (see [2], Chap-
ter 10):

0.3. Theorem If h(x) is harmonic in an annular domain A(R, r) =
{x ∈ R

n : r < |x| < R} then

h(x) =























∞
∑

i=0

Pi(x) +

∞
∑

j=0

Qj(x)

|x|n+2j−2
for n > 2,

∞
∑

i=0

Pi(x) +

∞
∑

j=1

Qj(x)

|x|n+2j−2
+ c ln |x| for n = 2.

Here Pi and Qj are i-homogeneous and j-homogeneous harmonic polyno-

mials, respectively , and the i-series converge for |x| < R, while the j-series
for |x| > r.

1. The Liouville theorem. We start with the following.

1.1. Theorem (Liouville theorem).Let u be an m-polyharmonic function

on R
n. Assume that there exists R ≥ 0 such that u(x) > 0 if |x| > R. Then

u(x) = c|x|2m−2 +

m−2
∑

k=0

H2m−2k−2(x)|x|2k,

where H2m−2k−2 is a harmonic polynomial of degree at most 2m−2k−2. The

leading homogeneous term of u is equal to c|x|2m−2+
∑m−2

k=0 Q2m−2k−2(x)|x|2k

where Q2m−2k−2 is a (2m − 2k − 2)-homogeneous harmonic polynomial.

P r o o f. The proof will follow the simple idea of Nelson [7], which was
also used in [2].

Let u be as above. By Theorem 0.2, u(x) =
∑m−1

k=0 hk(x)|x|2k, where
hk(x) is harmonic on R

n for each k.

Assume that |x| > R and put h(y) =
∑m−1

k=0 hk(y)|3x|2k . Note that h(y)
is harmonic in y and h(y) = u(y) if |y| = |3x|. Thus h(y) > 0 on ∂B(0, |3x|)
and by the maximum principle h(y) > 0 on B(0, |3x|). By the mean value
property we have

h(x) − h(0) =
1

vol B(x, 2|x|)

\
B(x,2|x|)

h(y) dVy

−
1

vol B(0, 2|x|)

\
B(0,2|x|)

h(y) dVy .

Since h is positive on B(0, 3|x|), we have
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|h(x) − h(0)| ≤
1

vol B(0, 2|x|)

\
(B(x,2|x|)∪B(0,2|x|))\(B(x,2|x|)∩B(0,2|x|))

h(y) dVy

≤
1

vol B(0, 2|x|)

\
B(0,3|x|)\B(0,|x|)

h(y) dVy

≤
(3|x|)n − |x|n

|x|n
h(0) = (3n − 1)h(0).

Thus we get the inequality

∣

∣

∣

m−1
∑

k=0

hk(x)|3x|2k −

m−1
∑

k=0

hk(0)|3x|2k
∣

∣

∣
≤ (3n − 1)

m−1
∑

k=0

hk(0)|3x|2x .

This inequality is valid for each x ∈ R
n with |x| > R. Hence there exists

c > 0 such that
∣

∣

∣

m−1
∑

k=0

hk(x)|3x|2k
∣

∣

∣
< c|x|2m−2 for |x| > R.

Let R1 > R. By the Cauchy inequalities for harmonic functions we have, for
each multiindex α,

∣

∣

∣

m−1
∑

k=0

Dαhk(0)32kR2k
1

∣

∣

∣
≤

cR2m−2
1

R
|α|
1

.

This implies that each hk(x) must be a harmonic polynomial of degree at
most 2m − 2k − 2. In particular, hm−1 ≡ const.

2. Polyharmonic functions on annular domains

2.1. Theorem. Let u(x) be an m-polyharmonic function on an annular

domain A(R, r) = {x : R > |x| > r}. There exist harmonic functions hk,
k = 0, . . . ,m−1, on A(R, r) and j-homogeneous harmonic polynomials Qµ,j

on R
n for n/2 ≤ µ ≤ m and 0 ≤ j ≤ µ − n/2 such that

u(x) =
m−1
∑

k=0

hk(x)|x|2k +
∑

m≥µ≥n/2

∑

0≤j≤µ−n/2

Qµ,j(x)|x|2µ−2j−n ln |x|.

If n is odd , or if n is even and n > 2m, then the logarithmic term does not

occur.

P r o o f. Let us state the following technical

Lemma. Let Qi be an i-homogeneous harmonic polynomial. Then

(1) ∆(Qi|x|
k) = Qi|x|

k−2(n + k − 2 + 2i)k,

(2) ∆(Qi|x|
k ln |x|)

= Qi|x|
k−2[(n + k − 2 + 2i)k ln |x| + (n + 2k − 2 + 2i)].
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Hence

Qi = ∆p(Qi|x|
2p)

1

2pp!
∏p

l=1(n + 2l − 2 + 2i)
= ∆p(c(n, p, i)Qi|x|

2p),(3)

Qi

|x|s
= ∆p

(

Qi

|x|s−2p

)

1
∏p

l=1(n + 2l − s − 2 + 2i)(2l − s)
(4)

= d(n, p, s, i)∆p

(

Qi

|x|s−2p

)

if s is odd or if s is even and s > 2p (we also assume that the denominator

does not vanish).

If s is even and 2p ≥ s then there exist a, b ∈ R such that

(5)
Qi

|x|s
= ∆p(Qi|x|

2p−s(a ln |x| + b)).

P r o o f. (1)–(4) can be proved by direct calculations; (5) follows from (1)
and (2).

We can now prove our theorem by induction on m. For m = 1 our
statement is obvious. Suppose that it is valid for m − 1. Let u be an m-
polyharmonic function on A(R, r). Then ∆m−1u is a harmonic function on
A(R, r). We shall use Theorem 0.3 and expand ∆m−1u in its Laurent se-
ries

∆m−1u =
∞
∑

i=0

Pi(x) +
∞
∑

j=0

Qj(x)

|x|n+2j−2
for n > 2

or

∆m−1u =

∞
∑

i=0

Pi(x) +

∞
∑

j=0

Qj(x)

|x|n+2j−2
+ c ln |x| for n = 2.

Our Lemma implies that

∆m−1u(x) = ∆m−1

[ ∞
∑

i=0

Pi(x)|x|2m−2c(n,m − 1, i)

+

∞
∑

j=0

Qj(x)

|x|n+2j−2m
d(n,m − 1, n + 2j − 2, j)

]

if n is odd or n is even and n > 2m. The series are almost uniformly conver-
gent because the coefficients {c} and {d} are bounded as fuctions of i and
j respectively.
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If n is even and 2m ≥ n we have

∆m−1u(x) = ∆m−1

[ ∞
∑

i=0

Pi(x)|x|2m−2c(n,m − 1, i)

+
∑

j>m−n/2

Qj(x)

|x|n+2j−2m
d(n,m − 1, n + 2j − 2, j)

+
∑

0≤j≤m−n/2

Qj(x)|x|2m−2j−n(aj ln |x| + bj)

]

.

The above formulae imply that u = hm−1|x|
2m−2 + u1 if n is odd or n is

even and n > 2m, while

u = hm−1|x|
2m−2 +

∑

0≤j≤m−n/2

Qj |x|
2m−2j−naj ln |x| + u1

in the other case. Here hm−1 is harmonic on A(R, r) and u1 is (m − 1)-
polyharmonic on A(R, r).

This proves our statement. (We write our formula for n > 2, but for
n = 2 the proof is the same.)

We now prove the following.

2.2. Theorem. Let u be an m-polyharmonic function on an annular

domain A(R, r) = {x : R > |x| > r}. The function has in A(R, r) a Laurent

expansion

u(x) =

∞
∑

i=0

Si(x) +
∑

j=0

Tj(x)

|x|n+2j−2m
if n is odd or n is even and n > 2m,

u(x) =

∞
∑

i=0

Si(x) +
∑

j>m−n/2

Tj(x)

|x|n+2j−2m

+
∑

m≥µ≥n/2

∑

0≤j≤µ−n/2

Qµ,j(x)|x|2µ−2j−n ln |x|

if n is even and 2m ≥ n.

Here

• Si(x) is an i-homogeneous m-polyharmonic polynomial ,

• Tj(x) is a j-homogeneous m-polyharmonic polynomial ,

• Qµ,j(x) is a j-homogeneous harmonic polynomial.

P r o o f. We expand each hk from Theorem 2.1 in a Laurent series (see
Theorem 0.3). We obtain
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u(x) =

m−1
∑

k=0

|x|2k

( ∞
∑

i=0

Pk,i(x) +

∞
∑

j=0

Qk,j(x)

|x|2n+2j−2

)

if n is odd or if n is even and n > 2m, and

u(x) =

m−1
∑

k=0

|x|2k

( ∞
∑

i=0

Pk,i(x) +

∞
∑

j=0

Qk,j(x)

|x|2n+2j−2

)

+ (logarithmic terms)

if n is even and 2m ≥ n.
We define Sl(x) =

∑m−1
k=0 Pk,l−2k(x)|x|2k(x) with Pk,i ≡ 0 if i < 0. To

find Tl(x) we put q = m − 1 − k and observe that

|x|2kQk,j(x)

|x|n+2j−2
=

|x|2qQk,j(x)

|x|n+4q+2j−2m
.

Hence, if we define Ti(x) =
∑m−1

k=0 Qk,l−2q(x)(x)|x|2q we get the required
result. (We put Qk,j ≡ 0 for j < 0.)

2.3. Remark. Laurent expansions for solutions of elliptic differential
equations were studied in [8] and [6].

3. The mth Kelvin transform. Let u be a function defined in A(R, r).
The mth Kelvin transform Km(u) is defined on A(1/r, 1/R) by

Km(u)(x) =
1

|x|n−2m
u

(

x

|x|2

)

.

We have

3.1. Theorem. The function u is m-polyharmonic on A(R, r) iff Km(u)
is m-polyharmonic on A(1/r, 1/R).

P r o o f. For m = 1 Theorem 3.1 is classical (see [2]).
If

u(x) =

m−1
∑

k=0

hk(x)|x|2k

then

Km(u)(x) =
m−1
∑

k=0

1

|x|2k
·

1

|x|n−2m
hk

(

x

|x|2

)

=

m−1
∑

k=0

|x|2(m−1−k) 1

|x|n−2
hk

(

x

|x|2

)

=

m−1
∑

k=0

|x|2(m−1−k)K1(hk)(x).

If u(x) = Qµ,j(x)|x|2µ−2j−n ln |x| then

Km(u)(x) = −Qµ,j(x)
1

|x|2µ−n
·

1

|x|n−2m
ln |x| = −Qµ,j(x)|x|2m−2µ ln |x|.
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By the Lemma from the proof of Theorem 2.1 we have

∆m−µ(Qµ,j(x)|x|2m−2µ ln |x|) = Qµ,j(x)(a ln |x| + b)

and

∆n/2+j−1(Qµ,j(x)(a ln |x| + b)) = c
Qµ,j(x)

|x|n+2j−2

is harmonic. In Theorem 2.1 we have j ≤ µ − n/2 and hence

∆m(Qµ,j(x)|x|2m−2µ ln |x|) = ∆µ∆m−µ(Qµ,j(x)|x|2m−2µ ln |x|)

= ∆µ(Qµ,j(x)(a ln |x| + b))

= ∆µ−n/2−j+1

(

c
Qµ,j(x)

|x|n+2j−2

)

= 0.

Hence Theorem 3.1 is a direct consequence of Theorem 2.1 and the classical
case m = 1.

3.2. Remark. If n = 2m then the mth Kelvin transform is simply su-
perposition with the inversion map x → x/|x|2. Hence superpositions with
Möbius mappings preserve m-polyharmonicity in this case.

4. The Bôcher theorem

4.1. Theorem (Bôcher theorem). Let u be an m-polyharmonic function

on a punctured unit ball B(0, 1)\{0}. Assume that u > 0 on B(0, 1)\{0}.
Then either u has a removable singularity at 0 or a pole with highest singular

term
P2m−2(x) + c|x|2m−2

|x|n+2m−4
,

where P2m−2(x) is an (m − 1)-polyharmonic, (2m − 2)-homogeneous poly-

nomial.

P r o o f. By Theorem 2.2, u can be expanded in a Laurent series on
B(0, 1)\{0}.

1) If n > 2m then

u(x) =
∞
∑

i=0

Ti(x) +
∞
∑

j=0

Sj(x)

|x|n+2j−2m
.

Put

u1(x) = T0 +
∞
∑

j=0

Sj(x)

|x|n+2j−2m
.

2) If n < 2m and n is odd then

u(x) =
∞
∑

i=0

Ti(x) +

[m−n/2]
∑

j=0

Sj(x)

|x|n+2j−2m
+

∑

j>m−n/2

Sj(x)

|x|n+2j−2m
.
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Put

u1(x) = T0 +
∑

j>m−n/2

Sj(x)

|x|n+2j−2m
.

3) If n ≤ 2m and n is even then

u(x) =

∞
∑

i=0

Ti(x) +
∑

n/2≤µ≤m

∑

0≤j≤µ−n/2

Qµ,j(x)|x|2µ−2j−n ln |x|

+
∑

j>m−n/2

Sj(x)

|x|n+2j−2m
.

Put

u1(x) = T0 + Qn/2,0 ln |x| +
∑

j>m−n/2

Sj(x)

|x|n+2j−2m
.

(Sj and Ti are, as before, j-homogeneous and i-homogeneous m-polyharmo-
nic polynomials.)

In every case u(x) − u1(x) → 0 as x → 0. Hence there exists r > 0 such
that u1(x) > 0 on B(0, r)\{0}. Let us apply the mth Kelvin transform to
u1(x). In the first case we have

Km(u1)(x) =
T0

|x|n−2m
+

∞
∑

j=0

Sj(x)

(the last series converges for |x| > 1 and thus for all x ∈ R
n). Since

in this case T0/|x|
n−2m → 0 as x → ∞, there exists R > 0 such that

∑∞
j=0 Sj(x) > 0 for |x| > R. By the Liouville theorem (Theorem 1.1),

Sj(x) ≡ 0 for j > 2m − 2 and

Sm−2(x) = c|x|2m−2 +
m−2
∑

k=0

Q2m−2−2k(x)|x|2k

where c ≥ 0 and Q2m−2−2k is a (2m − 2 − 2k)-homogeneous harmonic
polynomial.

In the second case

Km(u1)(x) = T0|x|
2m−n +

∑

j>m−n/2

Sj(x).

For large |x| we have |T0| · |x|
2m−2 < |T0| · |x|

2m−2. Hence we can apply the
Liouville theorem to the function |T0| · |x|

2m−2 +
∑

j>m−n/2 Sj(x) and get
our assertion.

In the third case we have

Km(u1)(x) = −Qn/2,0 ln |x| +
∑

j>m−n/2

Sj(x).
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For large |x| we have |Qn/2,0| ln |x| < c|x|2. We can again apply the Liouville
theorem to the function c|x|2 +

∑

j>m−n/2 Sj(x). If m = 1 and n = 2 then

2m−2 = m−n/2 = 0 and hence the singular part of the Laurent series can
be equal to c ln |x|, c < 0.
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